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Abstract: Both differential evolution algorithm (DE) and Bare-bones algorithm (BB) are simple and 
efficient, but their performance in dealing with complex multimodal problems still has room for 
improvement. DE algorithm has great advantages in global search and BB algorithm has great 
advantages in local search. Therefore, how to combine these two algorithms’ advantages remains 
open for further research. An adaptive differential evolution algorithm based on elite Gaussian 
mutation strategy and bare-bones operations (EGBDE) is proposed in this paper. Some elite 
individuals are selected and then the mean and the variance of the bare-bones operation are adjusted 
with the information from the selected elite individuals. This new mutation strategy enhances the 
global search ability and search accuracy of differential evolution with parameters free. It also helps 
algorithm get a better search direction and effectively balance the exploration and exploitation. 
An adaptive adjustment factor is adopted to dynamically balance between differential mutation 
strategy and the elite Gaussian mutation. Twenty test functions are chosen to verify the 
performance of EGBDE algorithm. The results show that EGBDE has excellent performance 
when comparing with other competitors.  
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1. Introduction  

Evolutionary algorithms (EAs) are random search algorithms inspired by the evolution of 
natural organisms [1]. In the past decades, EAs have shown their excellent performance and have 
been widely used in various problems, such as continuous optimization, discrete optimization, 
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constrained optimization, and multi-objective optimization. In addition, swarm intelligence 
techniques which is inspired from the behavior of social insects or animals, nature inspired 
algorithms rise in recent years. In swarm intelligence, every individual has its own intelligence and 
behavior, but the integration of the individuals gives more power to solve complex problems [2]. The 
most common swarm intelligence algorithms include ant colony algorithm (AG), particle swarm 
optimization (PSO), and so on. 

Differential evolution (DE) is one of evolutionary algorithms. It is a population-based algorithm 
and was proposed by Storn and Price [3] on the basis of evolutionary ideas such as genetic algorithm 
in 1997. Since DE was proposed, it has been widely used in various fields because of its 
effectiveness, simplicity, robustness, and a lower number of control parameters [4]. It has been used 
in image recognition [5], vehicle scheduling [6] and other practical problems [7–10]. However, DE 
still has some problems, such as premature convergence [11], slow convergence [12], and many 
improved versions of DE [13] are proposed. Some DE variants for adaptive adjustment of control 
parameters and mutation strategies have been proposed, such as JADE [14], SaDE [15], ODE [16,17]. 
The characteristic of this kind of algorithm is to bring the adjustment of control parameters and 
mutation strategies into the evolutionary process. It records the experience of generating high-quality 
solutions each time, so as to provide beneficial reference for the next iteration [18,19]. 

The Bare-bones idea was firstly applied in particle swarm optimization algorithm by Kennedy 
in 2003, and BBPSO was proposed [20]. Its high search efficiency and accuracy, and relatively 
simple parameter setting have been successfully applied to many fields, such as constrained 
optimization problems [21], data clustering [22] and PV systems [23]. In the improvement of 
differential evolution algorithm, in order to reduce the sensitivity of control parameters to algorithm 
performance, Omran et al. [24] combined BBPSO algorithm and DE algorithm to obtain a skeleton 
differential evolution (BBDE) algorithm in 2008. The algorithm uses the weighted average of 
individual with global optimal position and individual with historical optimal position, which 
reduces the influence of control parameters, such as scaling factor, on the performance of the 
algorithm. But it is easy to fall into local optimal when solving multimodal optimization problems. 
Therefore, Wang et al. [25] proposed a GBDE algorithm based on BBDE algorithm, which 
implements Gaussian mutation strategy. The algorithm uses individual information to maintain 
population diversity, but its mining ability is poor. To improve the performance of the algorithm, 
Peng et al. [26] proposed tBBDE algorithm respectively on the basis of GBDE algorithm. The 
tBBDE algorithm uses the Gaussian mutation strategy based on three random individuals to search 
the solution space more comprehensively. But its large randomness leads to the blind search of the 
algorithm, which affects the convergence speed. Besides tBBDE, Wang et al. [27] proposed MGBDE 
algorithm which uses DE/best/1 mutation strategy and executes two mutation strategies with fixed 
probability. However, the MGBDE algorithm does not make adaptive adjustment to the mutation 
strategy according to the different evolution stages, so it is easy to fall into local optimal.  

The above modified algorithms are based on Gaussian sampling. Gaussian sampling is an 
adaptive sampling process, which can adjust the size of the sampling area with the progress of 
sampling. Some research think that the sampling process of Gaussian sampling is very similar to the 
iterative process of DE/best/1 or DE/current-to-best/1. However, it should note that the adaptive 
adjustment of Gaussian sampling can work in a larger area, but the exploration area is still too 
narrow. So, this paper’s motivation is to improve the Gaussian mutation and propose an adaptive 
bare-bones differential algorithm to make differential evolution algorithm performance better.  
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This paper proposes a new elite Gaussian mutation strategy. The new strategy adds more elite 
individual information to the bare-bones operation which can make the population search area 
dynamically adjust in each period of population evolution and make the search area more reasonable. 
So, the strategy not only retains the advantages of the original Gaussian mutation strategy (less 
parameters), but also compensates for the loss of the search range of the mutation strategy. 
Experiments and analysis are presented for the parameter selection in the new strategy. Besides, this 
paper combines both mutation strategies and adjusts them dynamically. The algorithm realizes the 
dynamic balance between exploration and exploitation. And in the process of population evolution, 
premature convergence and search stagnation are effectively reduced. 

The rest of this paper is organized as follows. The second section is the introduction of DE 
algorithm. The third section presents the core improving strategies of EGBDE algorithm. The 
fourth section is for the simulation comparison and experimental analysis. The last Section 
concludes this paper. 

2. Differential evolution 

DE algorithm is a population-based stochastic search algorithm [28].  It is distinguished from 
other evolutionary algorithms (EAs) by its unique trial vector generation strategy (mutation operator 
and crossover operator). The properties of its mutation operator and crossover operator allow DE to 
control the exploration magnitude and direction to find promising solutions [29].  

Firstly, the algorithm needs to generate an initial population containing N D-dimensional vectors 
𝑋 𝑥 , , 𝑥 , , ⋯ , 𝑥 , , and then carries out three operations: differential mutation, crossover and 
selection until the pre-defined termination condition is met. 

2.1. Differential mutation 

Differential mutation is the core generation step of DE. In each iteration, the algorithm performs 
differential mutation operation in sequence according to the order of individuals in the population. 
Several individuals are randomly selected in the population to perform the differential mutation and 
generate a differential vector 𝑉 ,   each time. The mutation operation has quite a significant impact 
on differential evolution algorithm performance. Therefore, a great number of researchers have 
conducted research on mutation operators. Since the differential evolution algorithm first was 
proposed, a significant number of mutation operators have been proposed, and the following are 
classic mutation operators. 

①  DE/rand/1 

𝑉 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 ,                              (1) 

②  DE/rand/2 

𝑉 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 ,                   (2) 

③  DE/best/1 

𝑉 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 ,                            (3) 

④  DE/current/1 

𝑉 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 ,                                (4) 
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⑤  DE/current-to-best/1 

𝑉 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 , 𝐹 ∙ 𝑋 , 𝑋 ,                  (5) 

In Eqs (1)–(5), G is the iteration generation, 𝑋 ,  is the best individual of the current 

population. 𝑋 ,  is the current individual.  The indexes 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 are random integers in 

1, 𝑁𝑝  and they are not equal.  The parameter 𝐹 is the scaling factor in 0,2 ,  usually 0.5. 𝑖 ∈

1,2, ⋯ , 𝑁𝑝 . 

2.2. Crossover operation 

Once the mutation vector has been obtained, the crossover operator is applied to the parent 
vector and mutation vector in order to obtain the trial vector. There are many common crossover 
operations in DE algorithm. Binomial crossover is widely used in DE algorithm. The formula for 
binomial crossover is as follows. 

𝑈 , ,
𝑉 , , , 𝑟𝑎𝑛𝑑 0,1 𝐶𝑅 𝑜𝑟 𝑗 𝑗

𝑋 , , , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      (6) 

where 𝑗  is a predefined random integer in 1, 𝐷 ,  the parameter 𝐶𝑅  is the crossover 
probability, 𝑟𝑎𝑛𝑑 0,1  is a random number on 𝑈 0,1  and 𝑈 0,1  represents the uniform 
distribution on the interval 0,1 . 

2.3. Selection operation 

In DE algorithm, greedy selection strategy is generally used to select the competitive individual 
according to the fitness value of 𝑋 ,  and mutation crossover vector 𝑈 , .  For the minimization 
problem, the formula of the selection operation is as follows. 

𝑋 ,
𝑈 , , 𝑓 𝑈 , 𝑓 𝑋 ,

𝑋 , , otherwise                                      (7) 

3. Adaptive differential evolution algorithm based on elite gaussian mutation strategy 

3.1. Research motivation 

Traditional DE algorithms often use mutation strategy (1) and it has strong global search ability, 
but its randomness is so high that the convergence speed of the algorithm is slow [30,31]. Strategy (3) 
has fast convergence speed, but the small search range leads to the poor effect of the algorithm in 
dealing with complex optimization problems. Many improved DE variants hope to enhance the 
algorithm adaptability and realize the balance between exploration and exploitation [32]. Bare-bones 
algorithm is also a common optimization algorithm. But compared with DE algorithm, its poor 
ability to jump out of the local optimum makes the bare-bones algorithm’s performance poor. To 
search for better balance between the global exploration and the local exploitation, this paper 
proposes an adaptive bare-bones differential evolution algorithm based on improved Gaussian 
mutation strategy. The new hybrid mutation strategy uses more  elite individual information and 
avoids the problem that elite learning is easy to fall into local optimum. In addition, the new strategy 
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has fewer parameters and can be used in other algorithms. 

3.2. Elite gaussian mutation strategy based on bare-bones 

The improved Gaussian mutation strategy proposed in this paper is different from the traditional 
bare-bones Gaussian mutation strategy. The traditional bare-bones Gaussian strategy is as follows. 

𝑉 , 𝑁 , , , 𝑋 , 𝑋 ,                                  (8) 

where 𝑋 ,  represents the individual with the best fitness, 𝑋 ,  represents the current individual, 
and 𝑁 𝜇, 𝜎  represents normal distribution with mean 𝜇 and variance 𝜎. 

In order to improve the general performance of DE algorithm, this paper integrates the idea of 
bare-bones strategy into DE algorithm, so that the advantages and disadvantages of differential 
mutation strategy and bare-bones generation strategy complement each other. The main differential 
mutation strategy used in this paper is DE/rand/1, and the improved Gaussian mutation strategy with 
the heuristic information of elite individuals is as follows. 

𝑉 , 𝑁 𝑋 ,
∑ ,                                       (9) 

𝑋 , , ⋯ ,                                      (10) 

where indexes 𝑟1, 𝑟2, ⋯ , 𝑟𝐿𝑠 are integers from 1,2, ⋯ , 𝑁𝑝 𝑘⁄ , where 𝑘 is a positive number,  𝐿𝑠 
is set to 3 in this paper, G is the current iteration number, and 𝑁 𝜇, 𝜎  represents normal 
distribution with mean 𝜇 and variance 𝜎. 

3.3. Discussion on the elite population size 

Table 1. Average ranking comparison among different parameters. 

 𝑘 2 𝑘 10/3 𝑘 4 𝑘 5 𝑘 10 

Ranking 3.57 3.23 2.87 2.33 3 

 

Figure 1. Experimental comparison results with 𝑘 2，𝑘 ，𝑘 4，𝑘 5，𝑘 10. 
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Parameter k is used to control the elite population size. Five simulation experiments are conducted 
on five parameters k = 2，k = 10/3，k = 4，k = 5 and k = 10 in which Np = 100. The test function is same 
as Section 4.1 and the algorithm will run 10 times in a simulation experiment. After 5 simulation 
experiments, each parameter will get a ranking on each test function. The results will be each parameter’s 
average ranking on 20 test function and these results are shown in Table 1. Some of the results on one 
algorithm are shown in Fig. 1 where EGBDEtest1 shows the result of k = 2, EGBDEtest2 shows the 
result of k = 10/3, EGBDEtest3 shows the result of k = 4, EGBDEtest4 shows the result of k = 5, 
EGBDEtest5 shows the result of k = 10. Observed from the simulation results, it finds that the situation 
when k = 5, the optimization effect is the best. Based on the situation, when the selected sample range is 
too large, the randomness is too strong, which affects the convergence speed and convergence accuracy 
of the algorithm. When the selected sample range is too small, the search range is relatively limited and 
the possibility of being trapped in the local area is greatly improved. Therefore, the value of key 
parameter k will be set to 5 in the following experiment and analysis of this paper. 

3.4. Comparison analysis between both gaussian mutations 

  

Figure 2. The changing of mean value fitness and variance of the improved Gaussian mutation. 

Different from the improved Gaussian mutation proposed in this paper, the traditional Gaussian 
mutation takes the average between the present optimal vector and the current vector as the mean. 
The new individual will be obtained with the absolute difference between the optimal vector and the 
current vector as the variance. According to the new individuals’ generation process, all the new 
individuals will locate around the present optimal solution although the neighbor size is different. 
The improved Gaussian mutation strategy takes three individuals from the first best quarter of the 
population randomly and computes their geometric center of gravity as mean. The mean distance 
from three individuals to the center of gravity will be used as the variance to generate new 
individuals. Compared with the traditional Gaussian mutation strategy, this strategy utilizes more 
elite individual information and expands the scope of local search. The new strategy also retains the 
characteristics of the original Gaussian algorithm. In the early stage of evolution, the distance among 
the selected three individuals is relatively larger. Most of the new individuals generated by the 
improved Gaussian mutation are concentrated near 𝑋 . The new strategy has even more uniformly 
distribution and has strong exploration ability in this stage. With the progress of evolution, the 
distance among the selected three individuals is decreasing. The strategy will gradually turn from 
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exploration to exploitation, and its local search ability is continuously enhanced. 
Figure 2 selects the first test function’s result and indicates the change of mean and variance in 

the improved Gaussian mutation strategy. It can track the change trend of the optimal value of the 
population to a certain extent. The variance is gradually shrinking and retaining the characteristics of 
the original Gaussian variation strategy. 

3.5. Hybrid mutation strategy 

The DE/rand/1 variation strategy has outstanding performance in global search and maintaining 
population diversity, but the convergence speed is slower than the improved elite Gaussian mutation. 
On the other hand, the improved elite Gaussian mutation utilizes much more heuristic information 
from the elite individuals, so it can use the information of the elite individuals to help population 
converge. In order to take full use of the beneficial features from both mutation strategies and to 
realize the complementarity of the pros and cons in different evolutionary stages, this paper 
combines both mutation strategies into a hybrid mutation strategy. The improved elite Gaussian 
mutation will be used with a high probability in the early stage of the algorithm, so that it can help 
the algorithm find believable exploration direction. An adaptive parameter is used to adjust the rate 
of both strategies with the increase of generation. The hybrid mutation is shown as follows. 

𝑉 ,
𝑉 , , 𝑟𝑎𝑛𝑑 0,1 𝑊

𝑉 , , otherwise
                                     (11) 

where 𝑉 ,  is DE/rand/1 variation strategy, 𝑟𝑎𝑛𝑑 0,1  is a random number on 𝑈 0,1 . 

The equation for the adaptive parameter value 𝑊  is as follows. 

𝑊 𝑤 1 𝑤 ∙                                   (12) 

where 𝑤  represents the initial predefined selection probability of the first mutation, 𝐹𝐸𝑆 
represents the current function evaluation number, and 𝑚𝑎𝑥𝐹𝐸𝑆   represents the maximum 
function evaluation number. 

In this paper, the using proportion of both strategies is dynamically adjusted. At the beginning of 
the proposed strategy, the improved elite Gaussian mutation strategy has a larger probability to be 
chosen. Because it can provide better search direction, the strategy assists the algorithm to carry out 
effective exploration to a great extent. With the process of the algorithm, the improved elite Gaussian 
mutation strategy has a smaller and smaller probability [33,34]. Its local search ability cannot help 
the algorithm exploit locally, so the improved elite Gaussian mutation strategy has a low probability 
at the end of the algorithm. The algorithm procedure is shown in Algorithm 1. 



8544 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8537–8553. 

 

3.6. Procedure of EGBDE 

 

 

EGBDE algorithm has similar framework with classic DE algorithm, but it presents more 
choices in mutation strategy. As presented in Algorithm 2, the proposed EGBDE starts with the 
random initialization population with size 𝑁. In each generation, every individual generates a 
random number in 𝑈 0, 1  and selects mutation strategy according to the random number. Then, 
every individual will experience crossover operation and elite selection operation. When the 
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termination is met, the algorithm will stop. 

4. Experimental comparison and verification analysis 

4.1. Test functions and parameter setting 

In order to fully verify the performance and effectiveness of EGBDE algorithm, this paper 
uses 20 benchmark functions in CEC2014 to compare the performance with the well-known DE 
variants ODE, JADE, SaDE and the improved Gaussian bare-bones algorithm without differential 
mutation operation. In the test function, unimodal function includes f3, simple multimodal functions 
include f4, f5, f6, f7, f9, f11, f12, f15 and f16, hybrid functions include f18, f19, f20 and f21, and 
composition functions include f24, f25, f26, f27, f28 and f30. Each function is for minimization 
which are renamed as F1~F20. 

In order to ensure the fairness of comparison, the common parameter settings of all 
algorithms are the same, as shown in Table 2. Other parameters take the recommended values of 
each algorithm, and each algorithm runs for 30 times independently. All experiments were run on 
a computer with Intel (R) core (TM) i7-9750h CPU @ 2.6 GHz, 16 GB memory and 64-bit 
Windows 10 (R) operating system. 

Table 2. Parameter setting. 

Population Size CR  F Max Iterations 
100 0.9 0.5 500 

4.2. Comparison analysis of convergence accuracy 

Table 3 shows the average best fitness and standard deviation of the final solution at each 
independent run found by each algorithm in 30 runs. The best results of each test function are 
marked in bold. The evaluation criterion is that the smaller the average value is, the better for the 
corresponding function. When the average fitness is the same, the one with the smaller standard 
deviation is better. Wilcoxon signed rank test where the significance level of 0.05 is carried out. 
From the results in Table 4 of Wilcoxon signed rank test [35], there is no significant performance 
difference between EGBDE and JADE. Besides, EGBDE is significantly better than SaDE, ODE 
and BB. 
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Table 3. The average values and standard deviation of the best results. 
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Table 4. Statistical comparison results of Wilcoxon signed rank test. 

 EGBDE JADE SaDE ODE BB 
p-value - 0.079 < 0.0001 0.002 < 0.001 

Observed from the numerical results of Table 3, the proposed EGBDE algorithm achieves the 
best performance in general. For unimodal problems, the performance of EGBDE is only second to 
ODE. Because ODE adopts the contraposition search method for exploration and development, it has 
a larger search range on unimodal problems than other algorithms and can search a larger area within 
a limited number of iterations, so it achieves better performance in solving unimodal problems. 

For the simple multimodal problem, the search area of EGBDE can be changed with the update 
of individuals and dynamically adjust the balance between exploration and exploitation. Therefore, 
very excellent results have been obtained in test functions F3, F4, F5, F6 and F8. It is secondly only 
to JADE in test functions F2, F7, F9 and F10. The possible reason is the ensemble strategy of JADE 
for the diverse search trajectories. 

For hybrid functions, EGBDE achieves excellent results on test functions F11, F12 and F13, and 
is worse than JADE on F14. As shown in the Figure 3, at the initial search stage of algorithm, the 
function image can be approximated as a unimodal function. The requirement for local search ability 
is not high. JADE uses the improved DE/current-to-best/1 mutation strategy and adaptive parameters. 
So, JADE can find the optimal evolving direction in a short time and has better performance in 
function F14. Besides, the results show that EGBDE has good adaptability and obvious improvement 
in the treatment of hybrid problems. 

For composite functions, EGBDE is obviously superior to other competitors in test functions 
F17, F18, f19 and F20. It ranks only second to ODE algorithm for test function F15 and SaDE 
algorithm for test function F16. The results show the competitive advantages of EGBDE in dealing 
with complex problems. 

 

Figure 3. 3-D map and Contour map for 2-D function of F14 [36]. 

To further statistically obtain the pros and cons of each algorithm, Fried-man test is used to rank the 
comprehensive optimization performance of the algorithms. In the experiment, the smaller the rank mean, 
the better the performance of the algorithm. The statistical results are shown in Table 5. 

Table 5. Statistical comparison of Friedman test. 

 EGBDE JADE SaDE ODE BB 
Rank 1.40 2.25 3.10 3.65 4.60 
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4.3. Comprehensive evolving behavior comparison 

Besides the final convergence accuracy comparison, the comprehensive evolving behaviors 
comparison of the competing algorithms is also presented in this paper. Due to the evolving 
similarities for some functions, the representative evolving behavior comparison curves of six 
functions F3, F4, F6, F8, F18 and F19 are plotted and shown in Figure 4. This figure is based on 10 runs. 

 

  

  

Figure 4. Evolving behavior comparison among algorithms. 
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Observed from Figure 4, the proposed EGBDE does not illustrate all time superiority to the 
other algorithms. EGBDE usually converges slower than competitors and surpassed them at the 
middle to later stage during the optimizing process. The inherent reason is that the proposed 
Gaussian mutation strategy only utilizes the elite individuals as the mean and generates a new 
individual randomly around the mean. It provides search direction for the algorithm in global 
exploration. However, the end stage of evolution, the probability of choosing Gaussian mutation 
approaches to zero and its variance is also usually too small to help the algorithm jump from 
local optimum. 

In addition to the above numerical and convergence comparison, the boxplots of the same six 
representative functions are illustrated in Figure 5. It indicates that the first quantile, the middle value 
and the third quantile of EGBDE are better than other competitors. The solutions of EGBDE are 
relatively concentrated which shows the promising and robust property of EGBDE. 

     

    

     

Figure 5. Boxplots of illustration comparison among algorithms. 



8550 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8537–8553. 

Based on the above experimental comparison and analysis, it can conclude that the proposed 
elite Gaussian mutation strategy greatly enhances the performance of the algorithm. It makes the 
population evolve in a possible promising direction in a limited number of iterations and achieves a 
balance between exploration and exploitation. 

5. Conclusions 

An elite Gaussian mutation strategy is proposed in this paper inspired by bare-bones operation 
and differential mutation. Some elite individuals are firstly selected and then the mean and the 
variance of the bare-bones operation are calculated from the randomly selected elite individuals. This 
new mutation strategy enhances the global search ability and search accuracy of the canonical 
differential evolution algorithm. In addition, the improved Gaussian mutation strategy not only 
retains the characteristics of the original Gaussian mutation strategy, but also carries out global 
search in a larger space to reduce the possibility of falling into local extremum. The new algorithm 
randomly selects from both strategies which is adaptively adjusted by a proportion factor, and the 
proportion changes with the evolution of algorithm, aiming at the dynamic adaptive adjustment of 
the search range. 

This paper also discusses the mean and variance of the improved elite Gaussian mutation 
strategy. Different mean and variance show different performance on different test functions. A set of 
mean and variance is selected with the best performance to improve the performance of the 
algorithm. From the simulation comparison, EGBDE performs very promising and has a good ability 
to balance between exploitation and exploration. 

Just as there is no free lunch, the improved Gaussian mutation strategy still has room be 
improved. The improved Gaussian mutation strategy uses elite solutions frequently, so it will be a 
little difficult for algorithm to jump out from local optimum. In the future EGBDE or its variant is 
possible to be applied to multi-objective optimization and some practical problems like portfolio 
optimization problems [37]. 
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