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Abstract: In this paper, an insect-parasite-host model with logistic growth of triatomine bugs is for-
mulated to study the transmission between hosts and vectors of the Chagas disease by using dynamical
system approach. We derive the basic reproduction numbers for triatomine bugs and Trypanosoma
rangeli as two thresholds. The local and global stability of the vector-free equilibrium, parasite-free
equilibrium and parasite-positive equilibrium is investigated through the derived two thresholds. For-
ward bifurcation, saddle-node bifurcation and Hopf bifurcation are proved analytically and illustrated
numerically. We show that the model can lose the stability of the vector-free equilibrium and exhibit a
supercritical Hopf bifurcation, indicating the occurrence of a stable limit cycle. We also find it unlikely
to have backward bifurcation and Bogdanov-Takens bifurcation of the parasite-positive equilibrium.
However, the sustained oscillations of infected vector population suggest that Trypanosoma rangeli
will persist in all the populations, posing a significant challenge for the prevention and control of Cha-
gas disease.

Keywords: chagas disease; Trypanosoma rangeli; logistic growth; pathogenic effect; Hopf
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1. Introduction

Chagas disease, known as American trypanosomiasis, is a protozoan parasitic disease caused by
Trypanosoma cruzi (T. cruzi). The disease was discovered firstly by Doctor Chagas in 1908 and it
was named after that. Chagas disease is an illness that can cause serious consequences including heart
disease and cardiomyopathy, and many people infected with Chagas disease may die due to these
complications [1, 2]. It is mainly prevalent in Central and South America, such as Argentina, Bo-
livia, Brazil, Chile, etc. About 13% of the Latin American population is at risk of T. cruzi infection
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[3]. Due to convenient transportation and the globalization, Chagas disease is spreading very widely
in the world, see Figure 1(a),(b) for details. An estimated 8 million people are infected with Try-
panosoma cruzi worldwide, mainly in Latin America where Chagas disease remains one of the biggest
public health problems, causing incapacity in infected individuals and more than 10,000 deaths per
year [4–6]. In particular, patients with Chagas disease may be coinfected with other epidemic diseases
including HIV [7] and COVID-19. These patients are at risk of severe COVID-19 manifestations and
should be a priority group to be vaccinated [8].

Trypanosoma cruzi, a protozoan parasite that parasitizes human and mammalian blood and tissue
cells, can be transmitted by blood-sucking triatomine bugs to cause the symptoms of Chagas disease. It
is spread mainly through the faeces of the infected blood-sucking triatomine bugs. These bugs usually
live in the crevices of poorly built houses in rural or suburban areas. They hide during the day and
come out at night to feed on human blood. They bite exposed areas of the skin, such as the face,
and defecate near the bites. If one scratches on the bites, this leads to feces spreading to the sites of
eye, mouth, or any skin break, and then the parasites enter the body, and eventually go into the heart,
survive and proliferate inside [3, 9]. Triatomine bugs, the vectors to transmit Chagas disease, have a
relatively short life span, ranging from 4 to 14 months depending largely on species and environmental
conditions. They suck the blood of vertebrates, especially mammals (such as dogs, bats, armadillos,
squirrels, guinea pigs and humans), and then release feces on the skin of the bitten animal. The feeding
time may take 10–30 minutes [10]. Once healthy triatomine bugs ingest with the parasites of Chagas
disease, they will be infected quickly [11–13].
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Figure 1. (a) Global distribution of cases of Chagas disease, based on the esti-
mates in 2018. (b) Number of Triatominae species identified, at first administrative
level in 2020. All data are from the World Healthy Organization (WHO) website,
https://www.who.int/data/gho/data/countries.

Trypanosoma rangeli (T. rangeli) is a kind of parasite which is pathogenic to some vector species
including triatomine bug, it always influence the transmission dynamics of the infected bugs, so this
kind of transmission behavior deserves further research. Rhodnius prolixus (R. prolixus) is one of
the triatomine species and T. rangeli is one of the trypanosoma which is spread between hosts and
triatomine vectors. Although T. rangeli can infect mammals through the same triatomines, it is not
pathogenic to human. However, it is still important to study the transmission dynamics of T. rangeli
because it shares soluble antigenic epitopes with T. cruzi and the crossed serological reactions affect the
diagnosis of Chagas disease [14, 15]. Both T. rangeli and T. cruzi have common hosts and triatomine
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vectors. The transmission dynamics of T. rangeli between hosts and triatomine bugs can affect the
effectiveness of T. cruzi transmission [10]. Moreover, T. rangeli has pathogenic effect on triatomine
bugs in the sense that the infection of T. rangeli can change the behavior of triatomine bugs, which alters
the transmission of Chagas disease [14, 16]. There are some studies showing the possible interaction
between T. rangeli and T. cruzi [17]. Therefore, it is essential to study the transmission behavior of
T. rangeli. T. rangeli’s infection pattern is similar to that of T. cruzi. The healthy population will get
infected if they bite the infected counterparts through systemic transmission, where T. rangeli parasite
can enter and multiply at the common hosts’ and vectors’ bloodstream. In addition to this normal
insect-host-insect transmission mode, there is another mode of T. rangeli transmission called insect-to-
insect co-feeding transmission. Susceptible triatomine bugs can get infected if they are feeding with
infected counterparts on the same hosts. This has been studied in some papers [10,18–22] and it differs
from the transmission of T. cruzi.

There are a number of mathematical models that studied the transmission dynamics of Chagas
disease, such as the different transmission routes of the interaction between hosts and vectors [2,23,24],
the disease transmission in the host movement and host community composition [9, 16, 25–27], the
triatomine population with temporal or spatial variations [28–33], and the optimal control of Chagas
disease [34–38]. Recently, Wu et al. [10] formulated a new model by considering the Ricker’s
type growth of triatomine bugs and T. rangeli’s pathogenic effect on triatomine bugs. However, the
logistic growth of triatomine bugs is very common but was not investigated in the model. In this
paper, we assume the generation rate of triatomine bugs follows the logistic growth instead of Ricker’s
type function and further study the dynamical behavior of triatomine-rangeli-host transmission. The
new model is shown to have interesting dynamics, provide more insights into the interaction between
triatomine bugs and T. rangeli, and may help to prevent and control the Chagas disease.

The paper is outlined as follows. In the next section, we propose the model with logistic growth
and T. rangli’s pathogenic effect on triamine bugs. In Section 3, the existence and stability of vector-
free equilibrium, parasite-free equilibrium and parasite-positive equilibrium are considered. In Section
4, the bifurcation analysis including forward bifurcation and Hopf bifurcation is studied. Numerical
simulations are also performed in Section 5. Conclusion and discussion are given in Section 6.

2. Model

The model developed in the reference [10] is

S ′h(t) = Λh − β̃hIv(t)S h(t) − µ1S h(t),
I′h(t) = β̃hIv(t)S h(t) − µ1Ih(t),
S ′v(t) = r(S v(t) + θIv(t))e−σ(S v(t)+Iv(t)) − β̃vS v(t)Ih(t) − βcS v(t)Iv(t) − µ2S v(t),
I′v(t) = β̃vS v(t)Ih(t) + βcS v(t)Iv(t) − dIv(t) − µ2Iv(t),

(2.1)

where the population is divided into four compartments: susceptible and infected competent hosts,
susceptible and infected triatomine bugs, denoted by S h, Ih, S v, Iv in order. Λh is the constant recruit-
ment rate of susceptible competent host per unit time. The transmission rate from infected bugs to
susceptible competent hosts is denoted by β̃h = ba

Nc+αNq
, where b is the transmission probability from

infected bugs to susceptible competent hosts per bite, a is the number of bites per triatomine bug per
unit time, α is the biting preference of quasi-competent hosts to competent hosts, Nc is the total number
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of competent hosts, and Nq is the total number of quasi-competent hosts. The transmission rate from
infected competent hosts to susceptible bugs is denoted by β̃v = ca

Nc+αNq
, where c is the transmission

probability from infected hosts to susceptible triatomine bug per bite. The total infection rate through
co-feeding transmission between susceptible and infected bugs is βc, which is transmitted by both the
competent and quasi-competent hosts. Here βc = 1

δ
βchNc( a

Nc+αNq

τ1
ω

)2 + 1
δ
βcqNq( aα

Nc+αNq

τ2
ω

)2, where ω is the
unit time, δ is the ratio of night to unit time, βch and βcq are the transmission rates from infected bugs
to susceptible bugs on an average competent host and quasi-competent host during night, respectively.
τ1 and τ2 are the feeding times per bite on a competent host and a quasi-competent host, respectively.
The Ricker’s type function b(x) = rxe−σx was chosen to model the reproduction rate of R. prolixus.
Integrating the pathogenic effect, the growth rate of triatomine bugs is modeled as r(S v + θIv)e−σ(S v+Iv),
where r is the maximal number of offsprings that a triatomine bug can produce per unit time, θ ∈ [0, 1]
is the reproduction reduction of bugs due to the pathogenic effect of T. rangeli on bugs, σ is the
density-dependency strength measuring the reproduction of bugs. µ1 and µ2 are the natural death rates
of competent hosts and triatomine bugs, respectively. d is the death rate of infected vectors induced by
pathogenic effect.

Model (2.1) includes the systemic and co-feeding transmission routes among vectors and hosts. Two
thresholds were derived to study the dynamical behavior of this model [10]. Sustained oscillations
were found numerically by changing the parameters d and θ. Furthermore, the oscillation amplitude is
larger if d is larger or θ is smaller.

In this paper, we assume the generation rate of triatomine bugs follows the logistic growth instead
of Ricker’s type function. Here we only consider the systemic transmission, then model (2.1) can be
changed to

S ′h(t) = Λh − βhIv(t)S h(t) − µ1S h(t),
I′h(t) = βhIv(t)S h(t) − µ1Ih(t),

S ′v(t) = r(S v(t) + θIv(t))(1 −
S v(t) + Iv(t)

K
) − βvS v(t)Ih(t) − µ2S v(t),

I′v(t) = βvS v(t)Ih(t) − dIv(t) − µ2Iv(t),

(2.2)

where βh = ba
Nh
, βv = ca

Nh
, Nh is the total number of hosts. The infection rate of susceptible competent

hosts after bugs’ biting at time t is βhIv(t)S h(t), and the infection rate of susceptible vectors after bugs’
biting at time t is βvS v(t)Ih(t). In the logistic growth r(S v + θIv)(1 − S v+Iv

K ) of triatomine bugs, K is the
carrying capacity. The other parameters are the same as those in model (2.1). All the parameters are
non-negative and their biological meanings and ranges are given in Table 1.

Denote the total population of competent hosts by Nh = S h + Ih. Adding the first and second
equations leads to

N′h(t) = Λh − µ1Nh(t).

It follows that

lim
t→∞

Nh(t) =
Λh

µ1
, Nh.

Thus, in the limiting system we have S h(t) = Nh − Ih(t).
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Table 1. Parameters of model (2.2).

Parameter Range Description

Λh varied Recruitment rate of susceptible competent host per unit time [10, 39]
a [0.2, 33]/day Number of bites per triatomine bug per unit time [10, 39]
b [0.00271, 0.06] Transmission probability from infected bugs to susceptible

competent hosts per bite [2, 9, 10]
c [0.00026, 0.49] Transmission probability from infected hosts to susceptible

triatomine bug per bite [9, 25]
r [0.0274, 0.7714]/day Maximum number of offsprings that a triatomine bug can

produce per unit time [2, 25]
θ [0, 1] Reproduction reduction of bugs due to the infection of parasites [10]
Nh varied Total number of hosts [2]
K varied Carrying capacity [10]
µ1 [0.000038, 0.0025]/day Natural death rate of hosts [9, 25]
µ2 [0.0045, 0.0083]/day Natural death rate of triatomine bugs [9, 25]
d [0.0188, 0.0347]/day Death rate of infected vectors due to pathogenic effect [10]

Accordingly, system (2.2) can be reduced to the following three-dimensional limiting system:

I′h(t) = βhIv(t)(Nh − Ih(t)) − µ1Ih(t),

S ′v(t) = r(S v(t) + θIv(t))(1 −
S v(t) + Iv(t)

K
) − βvS v(t)Ih(t) − µ2S v(t),

I′v(t) = βvS v(t)Ih(t) − dIv(t) − µ2Iv(t).

(2.3)

It is easy to know that the feasible region of system (2.3) is

D = {(Ih, S v, Iv)|0 ≤ Ih ≤ Nh, 0 ≤ S v, 0 ≤ Iv, S v + Iv ≤ K}.

3. Existence and stability of equilibria

3.1. Existence of equilibria

Let the right-hand side of the equations of system (2.3) be zero. There are one vector-free equilib-
rium E0(0, 0, 0) and one parasite-free equilibrium ES (0, K(r−µ2)

r , 0). We will derive two thresholds Rv

and R0 to study the dynamic behavior of system (2.3) where Rv is the triatomine bug basic reproduction
number and R0 is the T. rangeli basic reproduction number.

The Jacobian matrix of system (2.3) at the vector-free equilibrium E0(0, 0, 0) is

J(E0) =


−µ1 0 βhNh

0 r − µ2 θr
0 0 −(d + µ2)

 .
The eigenvalues of the Jacobian matrix J(E0) at E0(0, 0, 0) are −µ1,−(d + µ2) and r − µ2, respectively.
Let

Rv =
r
µ2
.
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We will show that it provides a threshold to determine the persistence or extinction of the vector
population.

For the parasite-free equilibrium ES (0, S 0
v , 0) with S 0

v =
K(r−µ2)

r to be biologically feasible, we need
r − µ2 > 0, namely, Rv > 1. Next, we calculate the T. rangeli basic reproduction number R0 of system
(2.3). Using the method in ref. [40], we have

F =


0 0 Nhβh

0 0 0
K(r−µ2)

r βv 0 0

 ,

V =


µ1 0 0

K(r−µ2)
r βv r − µ2 r − rθ(1 − r−µ2

r ) − µ2

0 0 d + µ2

 .
Thus, the T. rangeli basic reproduction number of system (2.3), given by the spectral radius of the next
generation matrix, is

R0 = ρ(FV−1) =

√
a2bcK(r − µ2)
rNhµ1(d + µ2)

=

√
βhβvNhS 0

v

(d + µ2)µ1
, (3.1)

where S 0
v =

K(r−µ2)
r .

For any parasite-positive equilibrium E∗ = (I∗h, S
∗
v, I
∗
v ) of system (2.3), its elements satisfy

S ∗v =
µ1(d + µ2)
βhβv(Nh − I∗h)

, I∗v =
µ1I∗h

βh(Nh − I∗h)
, (3.2)

and I∗h is the positive root of the following equation:

f (I∗h) = A(I∗h)2 + BI∗h + C = 0, (3.3)

where

A =
a2c2µ1

Nh
(abK(rθ − d − µ2) + θrNhµ1),

B = acµ1(abK(ac(d + µ2 − rθ) + (r − µ2)(d + µ2)) + rNhµ1(d + µ2)(θ + 1)),
C = Nhµ1(a2bcK(µ2 − r)(d + µ2) + rNhµ1(d + µ2)2) = (Nhµ1)2(d + µ2)2(1 − R2

0).

Let ∆ = B2 − 4AC. We have

∆ =a2c2µ2
1[−4(d + µ2)(rNhµ1(d + µ2) + a2bcK(µ2 − r))(θrNhµ1 − abK(d + µ2 − rθ))

+ (rNhµ1(θ + 1)(d + µ2) + abK((d + µ2)(r − µ2) + ac(d + µ2 − rθ)))2].

If ∆ ≥ 0, then the equation f (I∗h) = 0 may have two roots, which are denoted by

I∗h1 =
−B −

√
∆

2A
, I∗h2 =

−B +
√

∆

2A
.

From (3.2), we can see that S ∗v > 0, I∗v > 0 as long as I∗h > 0. Therefore, we study the existence of the
parasite-positive equilibria in the following cases:
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1) R0 = 1, namely, a2bcK(r − µ2) = rNhµ1(d + µ2).
In this case, we have B > 0,C = 0,∆ > 0, A =

acµ2
1

r−µ2
((d+µ2)(rθ−d−µ2)+acrθ(r−µ2)). By Vieta theorem,

if A > 0, then I∗h1 < 0, I∗h2 = 0. Thus, system (2.3) has no parasite-positive equilibrium. If A < 0, then
I∗h1 = 0, I∗h2 > 0, and system (2.3) has a unique parasite-positive equilibrium E2(I∗h2, S

∗
v(I∗h2), I∗v (I∗h2)). If

A = 0, then Eq (3.3) has a zero root, i.e., there is no parasite-positive equilibrium of system (2.3).

2) R0 > 1, namely, a2bcK(r − µ2) > rNhµ1(d + µ2).
In this case, we have B > 0,C < 0. If A > 0 , then ∆ > 0, I∗h1 < 0, I∗h2 > 0, and system (2.3) has a
unique parasite-positive equilibrium E2(I∗h2, S

∗
v(I∗h2), I∗v (I∗h2)). If A < 0,∆ > 0, then I∗h1 > 0, I∗h2 > 0, and

system (2.3) has two parasite-positive equilibria E1(I∗h1, S
∗
v(I∗h1), I∗v (I∗h1)) and E2(I∗h2, S

∗
v(I∗h2), I∗v (I∗h2)). If

A < 0,∆ = 0, then E1 = E2, which means that there is a parasite-positive equilibrium of multiplicity 2.
If A < 0,∆ < 0, then there is no parasite-positive equilibrium. If A = 0, there exists only one root of
Eq (3.3) and the root is positive, i.e., one parasite-positive equilibrium E∗(I∗h, S

∗
v(I∗h), I∗v (I∗h)) of system

(2.3).

3) R0 < 1, namely, a2bcK(r − µ2) < rNhµ1(d + µ2).
In this case, we have B > 0,C > 0. If A < 0, then ∆ > 0, I∗h1 < 0, I∗h2 > 0, and system (2.3) has a
unique parasite-positive equilibrium E2(I∗h2, S

∗
v(I∗h2), I∗v (I∗h2)). If A ≥ 0, there is no positive root of (3.3),

i.e., there is no parasite-positive equilibrium of system (2.3).

We summarize the results as follows:
Theorem 3.1 For system (2.3), we have the following results on the existence of equilibria.

1) The vector-free equilibrium E0(0, 0, 0) always exists. The parasite-free equilibrium ES (0, K(r−µ2)
r , 0)

exists if and only if Rv > 1.
2) When R0 ≤ 1, there is a unique parasite-positive equilibrium E2 if A < 0; Otherwise, there is no
parasite-parasite-positive equilibrium.
3) When R0 > 1, there is a unique parasite-positive equilibrium if A ≥ 0, and there are two parasite-
positive equilibria E1 and E2 if A < 0,∆ > 0, and the two equilibria coalesce to E if and only if
A < 0,∆ = 0.

3.2. Stability of equilibria

3.2.1. Stability of vector-free and parasite-free equilibria

Theorem 3.2 The vector-free equilibrium E0(0, 0, 0) of system (2.3) is globally asymptotically stable
if Rv < 1 and unstable if Rv > 1.

Proof. At the vector-free equilibrium E0(0, 0, 0), the eigenvalues of the Jacobian matrix of system
(2.3) are −µ2,−(d + µ2) and r − µ2. If Rv = r

µ2
> 1, namely, r > µ2, then there are two negative

eigenvalues and one positive eigenvalue, i.e., E0 is unstable. If Rv < 1, then all the eigenvalues are real
and negative, which indicates that E0 is locally asymptotically stable for Rv < 1.

Let Nv = S v + Iv. We have

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8452–8478.
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N′v = S ′v + I′v

= r(S v(t) + θIv(t))
(
1 −

S v(t) + Iv(t)
K

)
− µ2S v(t) − dIv − µ2Iv

≤ rNv(1 −
Nv

K
) − µ2Nv

≤ (r − µ2)Nv.

Thus, we have
lim sup

t→∞
Nv(t) ≤ lim

t→∞
Nv(0)e(r−µ2)t = 0,

with any feasible initial solution Nv(0) = S v(0) + Iv(0) when Rv < 1. That is to say, the solutions of
S v and Iv with any feasible initial conditions will tend to zeroes if Rv < 1. For subsystem of Ih, it is
cooperative with the positive invariance set [0,Nh]. The vector-free equilibrium E0 is unique for system
(2.3) if Rv < 1. From this, we know that E0 is globally asymptotically stable if Rv < 1.

Theorem 3.3 The parasite-free equilibrium ES (0, K(r−µ2)
r , 0) of system (2.3) is

1) a saddle-node point when R0 = 1;
2) unstable when R0 > 1;
3) locally asymptotically stable when R0 < 1.

Proof. At the parasite-free equilibrium ES (0, S 0
v , 0), where S 0

v =
K(r−µ2)

r , the Jacobian matrix of system
(2.3) is

J(ES ) =


−µ1 0 Nhβh

−S 0
vβv µ2 − r (1 + θ)µ2 − r

S 0
vβv 0 −d − µ2

 . (3.4)

The corresponding characteristic polynomial of (3.4) is

P(λ) = −(λ + r − µ2)[λ2 + b0λ + c0], (3.5)

where

b0 = µ1 + µ2 + d, c0 = µ1(d + µ2) −
a2bcK(r − µ2)

rNh
.

The eigenvalues of system (2.3) at ES are the roots of P(λ) = 0 and denoted by λ1, λ2, and λ3.
Let ∆0 = b2

0 − 4c0, i.e.,

∆0 =
4a2bcK(r − µ2)

rNh
+ (d − µ1 + µ2)2.

Then the eigenvalues of (3.5) are

λ1 = µ2 − r, λ2 =
−b0 −

√
∆0

2
, λ3 =

−b0 +
√

∆0

2
.

Since r > µ2, we have ∆0 > 0, which means that λ2, λ3 are real.
When R0 = 1, we have c0 = 0, b0 =

√
∆0. Therefore, λ1 = µ2 − r < 0, λ2 = −b0 = −d − µ1 − µ2 < 0 and
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λ3 = 0. Because of the zero eigenvalue, we need to further study the type of ES .
We let x = Ih, y = S v − S 0

v , z = Iv and shift the equilibrium to the origin. System (2.3) becomes

x′ = abz + x(−
abz
Nh
− µ1),

y′ = −rz −
ry2

K
−

acKx
Nh
−

rθz2

K
+ µ2z +

acKµ2x
rNh

+ θµ2z + y(−r −
acx
Nh
−

rz
K
−

rθz
K

+ µ2),

z′ =
acxy
Nh

+
acKx

Nh
+ z(−d − µ2) −

acKµ2x
rNh

.

(3.6)

Then we make the following transformations

x = m1X + m2Z, y = m3X + Y + m4Z, z = X + Z,

where
m1 =

ab
µ1
,m2 = −

ab
d + µ2

,m3 = −
d + r − θµ2

r − µ2
,m4 = −

(1 + θ)µ2 + µ1 − r
d − r + µ1 + 2µ2

.

This leads to the following system

X′ = −
ab((r − µ2)(d + µ2) + ac(d + r − θµ2))

Nh(r − µ2)(d + µ1 + µ2)
X2 + XO(|Y,Z|) + O(|Y,Z|2),

Y ′ = (µ2 − r)Y + O(|X,Y,Z|2),
Z′ = (−d − µ1 − µ2)Z + O(|X,Y,Z|2).

(3.7)

We know that ES is a saddle-node point when R0 = 1. Moreover, if R0 > 1, then λ1 < 0, λ2 < 0, λ3 > 0,
i.e., ES is unstable; if R0 < 1, then λ1 < 0, λ2 < 0, λ3 < 0, i.e., ES is locally asymptotically stable.

Based on the above analysis, we conclude that the parasite-free equilibrium ES of system (2.3) is a
saddle-node point when R0 = 1, unstable when R0 > 1, and locally asymptotically stable when R0 < 1
[41].

3.2.2. Stability of the unique parasite-positive equilibrium

In this section, we will study the global stability of the unique parasite-positive equilibrium E1 by
Li-Muldowney global-stability criterion [42] when R0 > 1, Rv > 1 and A ≥ 0.

Let | · | denote a vector norm in Rn and the induced matrix norm in Rn×n, the space of all n × n
matrices. For matrix A in Rn×n, the Lozinskĩ measure or the logarithmic norm of A with respect to | · |
[43] is

µ(A) = lim
h→0+

|I + hA| − 1
h

.

Let y(t) be a solution of linear differential equation

y′(t) = A(t)y(t),

where A(t) is m × m matrix-valued continuous function. For t ≥ t0, we have

|y(t)| ≤ |y(t0)|e
∫ t

t0
µ(A(t))dt

.
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Let B be an n × n matrix. The second additive compound matrix of B, denoted by B[2], is an (n
2) × (n

2)
matrix. For instance, if B = (bi j) is a 3 × 3 matrix, then

B[2] =


b11 + b22 b23 −b13

b32 b11 + b33 b12

−b31 b21 b22 + b33

 .
Consider the following autonomous system

x′ = f (x), (3.8)

where f : Ω→ Rn,Ω ⊂ Rn is an open set, simply connected, and f ∈ C1(Ω). Let x(t, x0) be the solution
of system (3.8) such that x(0, x0) = x0. Suppose x∗ is an equilibrium of system (3.8), i.e., f (x∗) = 0.
A set K is said to be absorbing in Ω for system (3.8) if x(t,K1) ⊂ K for each compact set K1 ⊂ Ω and
sufficiently large t. Assume the following assumptions hold:
(H1) System (3.8) has a unique equilibrium point x∗ in Ω.
(H2) System (3.8) has a compact absorbing set K ⊂ Ω.
Let Q : Ω 7→ Q(x) be (n

2) × (n
2) matrix-valued function with its inverse Q−1(x). Let µ be a Lozinskĩ

measure on RN×N , where N = (n
2). Define

q̄2 = lim sup
t→∞

sup
x0∈K

1
t

∫ 1

0
µ(X(x(s, x0)))ds,

where
X = Q f Q−1 + QJ[2]Q−1,

the matrix Q f is obtained by replacing each entry qi j of Q by its derivative in the direction of f , (qi j) f ,
and J[2] is the second additive compound matrix of the Jacobian matrix J of system (3.8).
Lemma 3.1 [42] Assume that Ω is simply connected and assumptions (H1) and (H2) hold. Then, the
unique equilibrium x∗ of system (3.8) is globally asymptotically stable in Ω if there exist a function Q
and a Lozinskĩ measure µ such that q̄2 < 0.

We have the following theorem for our model.
Theorem 3.4 Assume that R0 > 1, Rv > 1 and A ≥ 0. The unique parasite-positive equilibrium E1 of
system (2.3) is globally asymptotically stable if σ = K2βv + ṽ < 0, where

ṽ = max{v1, v2},

v1 = −
r(S 2

v+Iv(K−Iv)θ)+S vK(Ivβh+µ1)
S vK + max{| Ivr(S v+(2Iv+S v−K)θ)

S vK |, Iv(Nh−Ih)βh
S v

},

v2 = max{−Ivβh − S vβv − µ1,
r(K−2S v)−Ivr(1+θ)−K(Ihβv+µ2)

K }.

(3.9)

Proof. When R0 > 1, Rv > 1 and A ≥ 0, it is easy to show the uniqueness of the parasite-positive equi-
librium E1. By Theorems 3.2 and 3.3, we know that the vector-free equilibrium E0 and the parasite-free
equilibrium ES are unstable when Rv > 1 and R0 > 1. It can also be checked that the conditions (H1)
and (H2) are satisfied. Next we show the global stability of the unique parasite-positive equilibrium
E1(Ih, S v, Iv).

The Jacobian matrix of system (2.3) at E1 is

J =


−Ivβh − µ1 0 (Nh − Ih)βh

−S vβv J22 J23

S vβv Ihβv −d − µ2

 ,
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where J22 = r(1− Iv+S v
K )−Ihβv−µ2−

r(S v+θIv)
K , J23 = rθ(1− Iv+S v

K )− r(S v+θIv)
K . The second additive compound

matrix J[2] is

J[2] =


−Ivβh − µ1 + J22 J23 −(Nh − Ih)βh

Ihβv −Ivβh − µ1 − d − µ2 0
−S vβv −S vβv J22 − d − µ2

 .
Let P(Ih, S v, Iv) = diag(1, S v

Iv
, S v

Iv
). Then P f = diag(0, Ṡ v

Iv
−

S v İv
I2
v
, Ṡ v

Iv
−

S v İv
I2
v

). We have P f P−1 = diag(0, S
′

v
S v
−

I
′

v
Iv
,

S
′

v
S v
−

I
′

v
Iv

), and let B = P f P−1 + PJ[2]P−1.
From system (2.3), we obtain

S
′

v

S v
= r − µ2 −

S v(rS v + IhKβv) + I2
v rθ + Ivr(S v + S vθ − Kθ)
S vK

,

I
′

v

Iv
= −d − µ2 +

IhS vβv

Iv
.

Straightforward calculations yield

B =

(
B11 B12

B21 B22

)
,

where
B11 =

r(K − 2S v) − Iv(r + rθ + Kβh) − K(Ihβv + µ1 + µ2)
K

,

B12 = (−
Ivr(S v + (2Iv + S v − K)θ)

S vK
,

Iv(Ih − Nh)βh

S v
),

B21 = (
IhS vβv

Iv
,−

S 2
vβv

Iv
)T ,

B22 =

 −d − Ivβh − µ1 − µ2 −
I
′

v
Iv

+
S
′

v
S v

0

−S vβv
r(K−2S v)−Ivr(1+θ)−K(d+Ihβv+2µ2)

K −
I
′

v
Iv

+
S
′

v
S v

 .
Take the norm |(Ih, S v, Iv)| = max{|Ih|, |S v| + |Iv|} in R3. µ(·) is the Lozinskĩ measure with the vector
norm [44]. We have

µB ≤ sup{g1, g2} = sup{µ1(B11) + |B12|, µ1(B22) + |B21|},

where |B12|, |B21| are the matrix norms with respect to l1 vector norm.
Calculations show that

µ1(B11) =
r(K − 2S v) − Iv(r + rθ + Kβh) − K(Ihβv + µ1 + µ2)

K
,

|B12| = max{|
Ivr(S v + (2Iv + S v − K)θ)

S vK
|,

Iv(Nh − Ih)βh

S v
},

|B21| =
IhS vβv

Iv
+

S 2
vβv

Iv
,

µ1(B22) = −
I
′

v

Iv
+

S
′

v

S v
− d − µ2 + v2.
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Thus, we have

g1 =
S
′

v

S v
+ v1 ≤

S
′

v

S v
+ ṽ,

g2 =
S 2

vβv

Iv
+

S
′

v

S v
+ v2 ≤

S
′

v

S v
+

S 2
vβv

Iv
+ ṽ,

µB ≤
S
′

v

S v
+

S 2
vβv

Iv
+ ṽ,

where ṽ, v1, v2 are defined by (3.9).
According to S v + Iv ≤ K, we have µB ≤

S
′

v
S v

+ K2βv + ṽ, that is

µB ≤
S
′

v

S v
+ σ,

where σ = K2βv + ṽ.

Along each solution (Ih, S v, Iv) ⊂ D of system (2.3), then for t > t̄, we have

1
t

∫ t

0
µ(B)ds =

1
t

∫ t̄

0
µ(B)ds +

1
t

∫ t

t̄
µ(B)ds

≤
1
t

∫ t̄

0
µ(B)ds +

1
t

ln
S v(t)
S v(t̄)

+
t − t̄

t
σ,

which means that q̄2 ≤ σ < 0. This completes the proof.

T. rangeli may not be pathogenic to every triatomine species [17]. Thus, we also study the dynamics
of system (2.3) in the absence of pathogenic effect on triatomine bugs, i.e., d = 0 and θ = 1. This allows
us to compare the obtained results with and without the pathogenic effect.

Theorem 3.5 Assume Rv > 1 and R0 > 1. In the absence of pathogenic effect on triatomine bugs,
namely, θ = 1 and d = 0, system (2.3) admits a unique parasite-positive equilibrium E∗ = (I∗h, S

∗
v, I
∗
v ),

which is locally asymptotically stable when d∗ > 0, unstable when d∗ < 0, where d∗ is defined by
(3.13).

Proof. In the case of θ = 1, d = 0, system (2.3) becomes

I′h(t) = βhIv(t)(Nh − Ih(t)) − µ1Ih(t),

S ′v(t) = r(S v(t) + Iv(t))(1 −
S v(t) + Iv(t)

K
) − βvS v(t)Ih(t) − µ2S v(t),

I′v(t) = βvS v(t)Ih(t) − µ2Iv(t).

(3.10)

According to Theorem 3.1, the system (3.10) has a unique parasite-positive equilibrium E∗ =

(I∗h, S
∗
v, I
∗
v ) when R0 > 1. Adding the second and third equations of system (3.10), we have

N′v = rNv(1 −
Nv

K
) − µ2Nv. (3.11)

Letting the right-hand side of equation (3.11) be equal to zero, we obtain a unique parasite-positive
equilibrium N∗v = S 0

v if Rv > 1, and a unique zero equilibrium which is globally asymptotically stable
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if Rv ≤ 1.
When Rv > 1, the limiting system of system (3.10) can be reduced to

I′h(t) = βhIv(t)(Nh − Ih(t)) − µ1Ih(t),
I′v(t) = βvIh(t)(S 0

v − Iv) − µ2Iv(t).
(3.12)

System (3.12) has an unstable parasite-free equilibrium (0, 0). When R0 > 1, there is a unique
parasite-positive equilibrium E1 = (I∗h, I

∗
v ), where S ∗v is replaced by S 0

v − I∗v for susceptible vectors at
equilibrium. The Jacobian matrix of system (3.12) at E1 is

J(E1) =

(
−βhI∗v − µ1 βh(Nh − I∗h)
βv(S 0

v − I∗v ) −βvI∗h − µ2

)
.

It is easy to know that the trace of J(E1) is negative. The determinant of J(E1) is

det(J(E1)) = βhβvNhI∗v − βhβvS 0
v(Nh − I∗h) + βvµ1I∗h + βhµ2I∗v + µ1µ2 , d∗. (3.13)

The eigenvalues of Jacobian matrix J(E1) have negative real parts when d∗ > 0. When d∗ < 0, one of
the eigenvalues of Jacobian matrix J(E1) has a negative real part and the other has a positive real part.
Therefore, the equilibrium E1(I∗h, I

∗
v ) of system (2.3) is locally asymptotically stable if d∗ > 0, unstable

if d∗ < 0. That is to say, the parasite-positive equilibrium E∗ = (I∗h, S
∗
v, I
∗
v ) of system (2.3) is locally

asymptotically stable if d∗ > 0, unstable if d∗ < 0.

Denote (
f (Ih, Iv)
g(Ih, Iv)

)
=

(
βhIv(Nh − Ih) − µ1Ih

βvIh(S 0
v − Iv) − µ2Iv

)
.

Obviously, both f and g : R2
+ → R are continuously differentiable maps. We have ∂ f

∂Iv
= βh(Nh − Ih) −

µ1Ih ≥ 0, and ∂g
∂Ih

= βv(S 0
v − Iv) − µ2Iv ≥ 0. The system is cooperative in a domain D = {(In, Iv) ∈ R2 :

Ih ∈ [0,Nh], Iv ∈ [0, S 0
v]}. System (3.12) has a parasite-free equilibrium (0, 0) and a unique parasite-

positive equilibrium E1. According to Theorem 3.2.2 in [45], E1 is globally attractive. Thus, the
parasite-positive equilibrium E∗ of sub-system (3.12) is globally asymptotically stable. This shows
that the pathogenic effect may cause the system to be unstable and be responsible for the occurrence of
sustained oscillations.

4. Bifurcation analysis

In this section, we will analyze the existence of forward bifurcation and Hopf bifurcation of system
(2.3).
Theorem 4.1 System (2.3) exhibits a forward bifurcation from ES (0, K(r−µ2)

r , 0) when R0 = 1. Further-
more, no backward bifurcation occurs.

Proof. The Jacobian matrix of system (2.3) at ES (0, K(r−µ2)
r , 0) is

J(ES ) =


−µ1 0 Nhβh

−S 0
vβv µ2 − r (1 + θ)µ2 − r

S 0
vβv 0 −d − µ2

 .
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Its eigenvalues are

λ1 = µ2 − r, λ2 =
−b0 −

√
∆0

2
, λ3 =

−b0 +
√

∆0

2
,

where

b0 = µ1 + µ2 + d,∆0 =
4a2bcK(r − µ2)

rNh
+ (d − µ1 + µ2)2.

Because all parameter values are non-negative, we know that λ1 is always negative.
If R0 = 1, then

c∗ ,
rNhµ1(d + µ2)
a2bK(r − µ2)

.

Substituting c = c∗ into λ2 and λ3, we have λ2 < 0, λ3 = 0. Also, the parasite-free equilibrium ES is
locally stable when c < c∗, and unstable when c > c∗. Therefore, c = c∗ is a bifurcation value.

We obtain a right eigenvector u and a left eigenvector v̄ associated with the zero eigenvalue, where

u =(u1, u2, u3)T = (abIh,
µ1(θµ2 − r − d)

r − µ2
Ih, µ1Ih)T ,

v̄ =(v̄1, v̄2, v̄3) = (d + µ2, 0, ab).

By the orthogonal condition < u, v̄ >= 1, we get

I∗h =
1

ab(d + µ1 + µ2)
.

By the transformation
Ih = x1, S v = x2, Iv = x3,

and noticing that system (2.3) has the form dx
dt = f , where x = (x1, x2, x3)T and f = ( f1, f2, f3)T , we

have

x′1(t) = βhx3(t)(Nh − x1(t)) − µ1x1(t) := f1,

x′2(t) = r(x2(t) + θx3(t))(1 −
x2(t) + x3(t)

K
) − βvx2(t)x1(t) − µ2x2(t) := f2,

x′3(t) = βvx2(t)x1(t) − dx3(t) − µ2x3(t) := f3.

(4.1)

The formula of the bifurcation coefficient in system (4.1) at ES is:

ā =

3∑
i, j,k=1

v̄iu juk
∂2 fi

∂x j∂xk
(ES , c∗), b̄ =

3∑
i, j=1

v̄iu j
∂2 fi

∂x j∂c
(ES , c∗).

Since v̄2 = 0, what we need to consider are the cross derivatives of f1 and f3 in system (4.1) at the
equilibrium ES . We obtain some non-zero terms

∂2 f1

∂x1∂x3
=

∂2 f1

∂x3∂x1
= −βh,

∂2 f3

∂x1∂x2
=

∂2 f3

∂x2∂x1
= βv,
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∂2 f3

∂x1∂c
=

∂2 f3

∂c∂x1
=

aS 0
v

Nh
.

Now we calculate the values of ā and b̄.

ā =

3∑
i, j,k=1

v̄iu juk
∂2 fi

∂x j∂xk
(ES , c∗)

=v̄1

3∑
j,k=1

u juk
∂2 f1

∂x j∂xk
(ES , c∗) + v̄3

3∑
j,k=1

u juk
∂2 f3

∂x j∂xk
(ES , c∗)

= −
2abµ1(d + µ2)(abK(r − µ2)2 + rNhµ1(d + r − θµ2))

NhK(r − µ2)2 I∗2h < 0,

b̄ =

3∑
i, j=1

v̄iu j
∂2 fi

∂x j∂c
(ES , c∗)

=v̄3u1
∂2 f3

∂x1∂c
(ES , c∗)

=
a3b2K(r − µ2)

rNh
I∗h > 0.

From [41], we know that the local dynamical behavior of system (4.1) at equilibrium ES is determined
by the signs of ā and b̄. From the above calculation, we have ā < 0 and b̄ > 0. Thus, there exists a
locally asymptotically stable endemic equilibrium of system (4.1) showing a forward bifurcation near
the equilibrium ES .

Remark 4.2 We conclude that no backward bifurcation occurs for system (4.1). The forward bifur-
cation of system (4.1) is shown by Figure 7 in Section 5.

For any parasite-positive equilibria E∗ = (I∗h, S
∗
v, I
∗
v ), the Jacobian matrix of system (2.3) at E∗ is

J(E∗) =


−I∗vβh − µ1 0 (Nh − I∗h)βh

−S ∗vβv J∗22 J∗23
S ∗vβv I∗hβv −d − µ2

 ,
where

J∗22 = r(1 −
I∗v + S ∗v

K
) − I∗hβv − µ2 −

r(S ∗v + θI∗v )
K

, J∗23 = rθ(1 −
I∗v + S ∗v

K
) −

r(S ∗v + θI∗v )
K

. (4.2)

The corresponding characteristic polynomial is

P(ξ; I∗h, S
∗
v, I
∗
v ) = ξ3 + a1ξ

2 + b1ξ + c1, (4.3)

where
a1 = d − J∗22 + I∗vβh + µ1 + µ2,

b1 = −J∗22[d + I∗vβh + (µ1 + µ2)] + dI∗vβh − J∗23I∗hβv + (I∗h − Nh)S ∗vβhβv + dµ1

+ I∗vβhµ2 + µ1µ2,

c1 = −J∗22[dµ1 + I∗vβhµ2 + µ1µ2 + dI∗vβh + I∗hS ∗vβhβv − NhS ∗vβhβv] + I∗hNhS ∗vβhβ
2
v

− J∗23[I∗hβvµ1 + I∗hI∗vβhβv] − I∗2h S ∗vβhβ
2
v ,
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J∗22, J
∗
23 are defined by (4.2), S ∗v and I∗v are defined in (3.2) and the coordinate of I∗h is a positive root of

(3.3).
From the above calculation and reference [46], we have the following theorem.

Theorem 4.3 The parasite-positive equilibrium E∗ of system (2.3) undergoes
1) a static bifurcation if c1|E∗ = 0 and ∆1,2|E∗ > 0;
2) a Hopf bifurcation if ∆2 = 0, d∆2

d(Bi f .) , 0,∆1|E∗ > 0 and c1|E∗ > 0.
Here a1, b1, c1 are the coefficients of the characteristic polynomial (4.3), d(Bi f .) is the differentiation of
the bifurcation parameter, and ∆1 = a1,∆2 = a1b1 − c1 are the first and the second Hurwitz arguments,
respectively.

5. Numerical results
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Figure 2. (a) The basic reproduction number R0 as a function of the number of competent
hosts (Nh) and the carrying capacity of bugs (K). (b) The impact of the transmission rate
from infected bugs to susceptible competent hosts (βh) and the carrying capacity of bugs (K)
on the basic reproduction number R0. The other parameter values are fixed as in (5.1).

In this section, we conduct numerical simulations for system (2.3) by using Matlab and Auto07P
[47]. We choose the following parameter values,

a = 0.6, b = 0.06, c = 0.49, r = 0.0274, θ = 0.9,K = 1000,Nh = 400,
µ1 = 0.0025, µ2 = 0.0083, d = 0.0246,

(5.1)

which were also used in the reference [10]. It is easy to calculate that there are one vector-free equilib-
rium, one parasite-free equilibrium, and one parasite-positive equilibrium point with the above param-
eter values.

We study the effect of the number of competent hosts Nh and the carrying capacity of triatomine
bugs K on the basic reproduction number of T. rangeli R0. R0 is proportional to K. Thus, R0 increases
as K increases. In particular, R0 increases with an increasing number of hosts and the carrying capacity
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of bugs K. This is shown in Figure 2(a). R0 depends on βh, which is an important parameter and its ex-
pression is a combination of Nh and K. We find that the slopes of the curves increase when the number
of competent hosts decreases. Because R0 is related to βh and K, the transmission rate from infected
bugs to susceptible hosts is inversely proportional to the number of hosts, as shown in Figure 2(b).
Figure 3(a) shows the occurrence of sustained oscillation as the parameter values are defined in (5.1)
while Figure 3(b) illustrates the stability of the parasite-positive equilibrium in Theorem 3.4.
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Figure 3. (a) A numerical solution of system (2.3) converges to a stable limit cycle. Param-
eter values are given in (5.1). The initial solution is (Ih, S v, Iv) = (36, 3.5, 2.75). Time series
of Ih(t), S v(t), Iv(t), which is corresponding to the limit cycle in Figure 1; (b) A numerical
solution of system (2.3) converging to a stable equilibrium. Parameter values are given in
(5.1) except r = 0.01. The initial solution is (Ih, S v, Iv) = (7.53963, 1.24224, 0.533644).

Next, we consider the influence of the maximal number of offsprings that a triatomine bug produces
per unit time (r), the carrying capacity of bugs (K), the pathogenic effect (d), and the transmission
probability from infected hosts to susceptible triatomine bug per bite (c) in model (2.3) by using one-
parameter and two-parameter bifurcation analysis.

We start with the maximal number of offsprings that a triatomine bug can produce per unit time. We
choose r as the primary bifurcation parameter and keep the other parameters fixed as in (5.1). The one-
parameter bifurcation diagram is shown in Figure 4. There exist two transcritical bifurcation points
TC1(0, 0, 0) and TC2(0, 3.10847, 0) when r = 8.3 × 10−3 and r = 8.326 × 10−3, one supercritical Hopf
bifurcation point HB1(1.94275, 3.12364, 0.135572) when r = 9.39283 × 10−3, and one supercritical
Hopf bifurcation point HB2(8.18863, 3.17343, 0.580539) when r = 1.23408 × 10−2. The numbers
of infected competent hosts, susceptible triatomine bugs and infected triatomine bugs will increase
gradually when 0 < r < 9.39283 × 10−3 and r > 1.23408 × 10−2. There is an unstable interval in
which supercritical Hopf bifurcation occurs when 9.39283 × 10−3 ≤ r ≤ 1.23408 × 10−2. The red solid
curve represents the stable limit cycle branch bifurcating from the supercritical Hopf bifurcation point,
which indicates the appearance and the disappearance of stable limit cycle with the increase of the
parameter r. Thus, when the maximal number of offsprings of susceptible triatomine bugs increases,
the number of infected competent hosts and the number of infected triatomine bugs will increase out
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Figure 4. (a) One-parameter bifurcation diagram of system (2.3) showing the impact of r
on Ih; (b) One-parameter bifurcation diagram of system (2.3) showing S v vs. r; (c) One-
parameter bifurcation diagram of system (2.3) showing Iv vs. r; (d) Two-parameter Hopf
bifurcation diagram for system (2.3) showing r vs. µ1. The dotted blue line is µ1 = 0.0025.
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of the Hopf bifurcation interval r ∈ [9.39283 × 10−3, 1.23408 × 10−2]. Further, if we use µ1 and r as
the primary bifurcation parameters, then we obtain a two-parameter Hopf bifurcation curve, where the
line µ1 = 0.0025 corresponds to the parameter values for Hopf bifurcation shown in Figure 4(a)–(c).
The limit cycle branch connects the two Hopf bifurcation points and the period of limit cycle is finite.
From Figure 4(d), we find that there are one or two Hopf bifurcation points when 0 ≤ µ1 ≤ 0.0055,
and no Hopf bifurcation occurs when µ1 > 0.0055.

TC

HB

(a)

HB

TC

(b)

HB

TC

(c)

K=800

K=1000

K=1200

(d)

Figure 5. (a) One-parameter bifurcation diagram of system (2.3) showing K vs. Ih; (b)
One-parameter bifurcation diagram of system (2.3) showing K vs. S v; (c) One-parameter
bifurcation diagram of system (2.3) showing K vs. Iv; (d) Two-parameter Hopf bifurcation
diagram for system (2.3) showing r vs. d when K = 800, 1000, 1200, respectively.

The carrying capacity of triatomine bugs is the number that the ecosystem can sustainably support.
It may vary due to many factors. We also use the carrying capacity K as the primary bifurcation pa-
rameter. With θ = 0.3, we obtain the one-parameter bifurcation diagram for system (2.3) shown in
Figure 5. There are one transcritical bifurcation point TC(0, 3.10847, 0) and one supercritical Hopf
bifurcation point HB(33.9734, 3.39698, 2.57824) when K = 4.45926 and K = 5.45626 × 102, respec-
tively. The amplitudes and periods of limit cycles bifurcating from HB become larger as K increases.
When the carrying capacity of susceptible triatomine bugs increases, there will be always a supercrit-
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ical Hopf bifurcation point, i.e., all the state variables will vary periodically, and all the competent
hosts, susceptible triatomine bugs and infected triatomine bugs will coexist. In addition, if we use r
and d as the primary two bifurcation parameters, then we obtain the two-parameter Hopf bifurcation
curves which are all closed curves when K = 800, 1000, 1200, respectively. This also indicates that no
Bogdanov-Takens bifurcation of the parasite-positive equilibrium occurs for system (2.3).

HB1

HB2

(a)

HB1

HB2

(b)

HB1HB2

(c)

K=1000

(d)

Figure 6. (a) One-parameter bifurcation diagram of system (2.3) showing d vs. Ih; (b)
One-parameter bifurcation diagram of system (2.3) showing d vs. S v; (c) One-parameter
bifurcation diagram of system (2.3) showing d vs. Iv; (d) Two-parameter Hopf bifurcation
diagram for system (2.3) showing d vs. K when θ = 0.2.

Next, we use d as the primary bifurcation parameter to study the influence of the pathogenic effect in
system (2.3). The parameter θ is set to 0.2 and other parameters are fixed as in (5.1). We obtain the one-
parameter bifurcation diagram, shown in Figure 6(a)–(c). There are two supercritical Hopf bifurcation
points HB1(27.3612, 8.51017, 2.03959) and HB2(36.7308, 1.90856, 2.80866) when d = 0.0756105 and
d = 0.0100453, respectively. Thus, when the death rate of infected vectors increases due to the strong
pathogenic effect, the number of the competent hosts and infected triatomine bugs will decrease, and
the number of susceptible triatomine bugs will increase except an unstable interval for the occurrence
of Hopf bifurcation. Two-parameter Hopf bifurcation curve is also given to illustrate the occurrence of
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Figure 7. (a) One-parameter bifurcation diagram of system (2.3) showing c vs. Ih; (b)
One-parameter bifurcation diagram of system (2.3) showing c vs. S v; (c) One-parameter
bifurcation diagram of system (2.3) showing c vs. Iv; (d) Two-parameter Hopf bifurcation
diagram for system (2.3) showing c vs. K.
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stable limit cycles (Figure 6(d)), where the red dotted line is K = 1000. Hopf bifurcation will always
occur when K ≥ 252.498.

The transmission rate from infected competent hosts to susceptible bugs (βv) depends on the number
of bites per triatomine bug per unit time (a) and the transmission probability from infected hosts to sus-
ceptible triatomine bugs per bite (c). Since the two parameters a and c have a similar role in βv, for sim-
plicity, we only use c as the primary bifurcation parameter and fix θ = 0.3. We obtain the one-parameter
bifurcation diagram (Figure 7(a)–(c)). There is a transcritical bifurcation point TC(0, 6.9708 × 102, 0)
when c = 2.18504 × 10−2, which confirms the forward bifurcation as shown in Theorem 3.1. The
numbers of infected hosts and infected vectors will increase firstly, then decrease dramatically to a low
level. The appearance of the limit cycle indicates that T. rangeli parasites will persist with the increase
of the transmission probability from infected hosts to susceptible triatomine bugs per bite. Also, there
is a supercritical Hopf bifurcation point HB(44.6167, 4.57113, 348737) when c = 0.375043. The am-
plitudes and periods of limit cycles bifurcating from HB become larger as c increases. From Figure 7,
we can see that all state variables coexist once the number of bites of per triatomine bug per unit time
is greater than 0.865432. Therefore, T. rangeli parasites will always persist if the infection rates of
susceptible triatomine bug and infected triatomine bug increase. The two-parameter (c vs. K) Hopf
bifurcation curve of system (2.3) is given in Figure 7(d), which tells the relationship of the carrying
capacity and the transmission probability from infected hosts to susceptible triatomine bug per bite.
There is only one supercritical Hopf bifurcation occurring for system (2.3).

From the above analysis, we know that the dynamics of triatomine bugs in system (2.3) are similar
to HIV dynamics in [41, 48]. System (2.3) undergoes a forward bifurcation instead of a backward
bifurcation. However, from the limit cycle branches in Figures 5(a)–(c) and 7(a)–(c), we conclude that
the T. rangeli parasites relevant to Chagas disease will persist due to the sustained oscillations from
Hopf bifurcation when the carrying capacity (K) or the transmission probability (c) increases. Thus, it
is challenging to eliminate T. rangeli parasites, a sister trypanosoma to T. cruzi and commonly causing
the misdiagnosis of the Chagas disease.

Comparing with the dynamics of model (2.3) and revisiting model (2.1) numerically, we find that
model (2.1) with Ricker’s type function in [10] also doesn’t undergo Bagdanov-Takens bifurcation
at the parasite-positive equilibrium. However, model (2.1) has periodic-doubling bifurcation of limit
cycles for r, the maximal number of offsprings that a triatomine bug can produce per unit time. This
indicates the occurrence of chaos for model (2.1), which differs from the dynamics of model (2.3).

6. Discussion and conclusions

In this paper, we have formulated a model with a logistic growth of of triatmine bugs to study the
dynamics of infected competent hosts, susceptible and infected triatomine bugs. The existence and
stability of the vector-free equilibrium, parasite-free equilibrium and the parasite-positive equilibrium
are studied. The direction of transcritical bifurcation and Hopf bifurcation is also investigated.
Numerical simulations are conducted to illustrate and expand the theoretical results.

For many infectious disease models, the disease-free equilibrium usually loses its stability when
R0 increases to cross one, which results in a bifurcation where a curve of endemic equilibria emerges.
The direction of this bifurcation is forward if the endemic curve occurs when R0 is slightly above 1
and there is no parasite-positive equilibrium near the disease-free equilibrium for R0 < 1. In contrast,
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the bifurcation is backward if the bifurcating equilibrium occurs when R0 < 1. Basically, a backward
bifurcation implies the occurrence of multiple endemic equilibria and the coexistence of a stable
endemic equilibrium with a stable disease-free equilibrium. Thus, a forward bifurcation indicates that
the infectious disease may be cured while it is not easy to eliminate the disease when a backward
bifurcation occurs. Model (2.3) only goes through the forward bifurcation. However, this doesn’t
mean that the disease would be eliminated. The persistence of sustained oscillations of T. rangeli
makes the disease eradication challenging.

One-parameter bifurcation diagrams for the parameters r,K, d, c are showed, respectively. Oscil-
lations always persists as K or c increases. This shows that the Trypanosoma rangeli will always
exist in all the population and it is difficult to be eliminated. Bagdanov-Takens bifurcation of the
parasite-positive equilibrium doesn’t occur in models (2.1) and (2.3). Using numerical simulations, we
also find that model (2.1) with Ricker’s type function growth rather than the logistic function growth
could go though periodic-doubling bifurcation of limit cycles when the maximal number of offsprings
that a triatomine bug can produce per unit time (r) increases. This suggests the emergence of chaos
for model (2.1).

The pathogenic effect to the triatomine bug population is also studied. This may provide some
critical insights for the prevention and control of Chagas disease. Although T. rangeli is not pathogenic
to human, it is pathogenic to triatomine bugs, which have a great effect on the dynamics of T. cruzi
population and triatomine bug population. It can cause the model to lose stability and undergo
Hopf bifurcation. Moreover, the amplitudes of oscillations become larger as the parameters K or c
increases. It is worth noting that we illustrate the non-existence of Bagdanov-Takens bifurcation of
the parasite-positive equilibrium numerically without providing analytical results due to too many
parameters in model (2.3). This work provides more information that improves our understanding of
the complexity of host-parasite-vector interactions.
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