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Abstract: Transcription involves gene activation, nuclear RNA export (NRE) and RNA nuclear retention 
(RNR). All these processes are multistep and biochemical. A multistep reaction process can create 
memories between reaction events, leading to non-Markovian kinetics. This raises an unsolved issue: how 
does molecular memory affect stochastic transcription in the case that NRE and RNR are simultaneously 
considered? To address this issue, we analyze a non-Markov model, which considers multistep activation, 
multistep NRE and multistep RNR can interpret many experimental phenomena. In order to solve this 
model, we introduce an effective transition rate for each reaction. These effective transition rates, which 
explicitly decode the effect of molecular memory, can transform the original non-Markov issue into an 
equivalent Markov one. Based on this technique, we derive analytical results, showing that molecular 
memory can significantly affect the nuclear and cytoplasmic mRNA mean and noise. In addition to the 
results providing insights into the role of molecular memory in gene expression, our modeling and analysis 
provide a paradigm for studying more complex stochastic transcription processes. 

Keywords: transcription; RNA nuclear retention; molecular memory; non-Markov model; 
transcription noise 
 

1. Introduction  

Transcription is not only the most important but also the most complex step in gene expression. 
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This double characteristic makes gene transcription receive lasting and extensive attention. With the 
development of measurement technologies (e.g., single-cell and single-molecule technologies), more 
molecular details of transcription have been experimentally uncovered. Nevertheless, some 
intermediate processes would not have been specified due to the complexity of gene transcription. Thus, 
traditional Markov models of gene transcription such as extensively studied ON-OFF models [1–4] would 
nor interpret experimental phenomena nor reveal the stochastic mechanisms of transcription. More 
biologically reasonable mathematical models need to be developed. 

It is well known that gene transcription involves RNA nuclear retention (RNR) and nuclear RNA 
export (NRE). However, these two important processes were often ignored in previous studies [1–8]. 
Main reasons include that 1) NRE was before considered to be a transient process, compared to other 
processes occurring in transcription. It was reported that the NRE phase lasted about 20min on average 
and were gene-specific [9,10]; 2) For RNR, less than 30% poly (A+) RNA is nuclear-retained and 
undetectable in the cytoplasm [11]. Currently, more and more experimental evidences have indicated 
that RNR play a key role in biological processes, e.g., in S. cerevisiae cells, RNR may play a 
precautionary role during stress situations [12]; in plants, the RNR process of NLP7 can orchestrate 
the early response to nitrate [13]; and in the signaling pathway of antiviral innate immunity, the RNA 
helicase DDX46 acts like a negative regulator to induce nuclear retention of antiviral innate transcripts [14]. 
These experimental facts suggest that RNR or NRE cannot be neglected when one makes theoretical 
predictions of gene expression (including expression levels and noise). 

Several works have revealed the respective roles of RNE and RNR in modulating stochastic gene 
expression [15,16–19]. One report exhibited that transcriptional burst attributed to promoter state 
switching could be substantially attenuated by the transport of mRNA from nucleus to cytoplasm [17]. 
Another report showed that slow pre-mRNA export from the nucleus could be an effective mechanism 
to attenuate protein variability arising from transcriptional burst [15]. In addition, RNR was also 
identified to buffer transcriptional burst in tissues and mammalian cells [16,18]. However, it has been 
experimentally confirmed that NRE and RNR can occur simultaneously in eukaryotes [20]. How these 
two dynamic processes cooperatively affect gene expression remains elusive and even unexplored.  

As a matter of fact, gene activation, NRE and RNR are multistep processes. In general, 
transcription begins only when the chromatin template accumulates over time until the promoter 
becomes active [21,22], where the accumulating process is a multistep biochemical process in which 
some intermediate steps would not have been specified due to experimental technologies. A 
representative example is that inactive phases of the promoter involving the prolactin gene in a 
mammalian cell are differently distributed, showing strong memory [23]. Similarly, both the export of 
mRNAs generated in the nucleus to the cytoplasm through nuclear pores and the retention of mRNAs 
among nuclear speckles or paraspeckles are in general also multistep reaction processes [24]. All these 
multistep processes can create memories between reaction events, leading to non-Markov dynamics. 
Traditional Markov models are no longer suitable to the modeling of gene transcription with molecular 
memory, and non-Markov models can well model multistep processes involved in gene transcription [7]. 

In this paper, we introduce a non-Markov model of stochastic gene transcription. It considers 
not only RNR and NRE but also molecular memories created due to the multistep NRE process, 
due to RNR process, or due to the multistep activation process, thus including previous transcription 
models [1–4] as its special case. In order to solve this non-Markov model, we introduce effective transition 
rates, which explicitly decode the effect of molecular memory and by which we can transform the original 
non-Markov issue into an equivalent yet mathematical tractable Markov one. Based on this useful 
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technique, we derive analytical results, which extend previous results [3,8,24,25] and provide insights into 
the role of molecular memory in affecting the nuclear and cytoplasmic mRNA mean and noise. The overall 
modeling and analysis provide a paradigm for studying more complex stochastic transcription processes. 

2. Method 

2.1. Model hypotheses 

Most previous studies [15,20,26] of gene transcription focused on the dynamics of NRE processes, 
where mature mRNAs were released to the cytoplasm with the help of nuclear pore complex (NPC) 
(Figure 1) [16,27]. The number of NPCs or the count of those assistant proteins that controlled NPC 
determined the speed of exporting mRNA. Measuring the exporting rate was often replaced by measuring 
the retention time in the nucleus, which however may vary with environmental changes [16–19]. Other 
previous studies of gene transcription [9–11,28,29] focused on the dynamics of transcription initiation 
and elongation, where elongation time (T ) was measured by the length of a gene using the length of 

bases ( L ) and the average rate of elongation (v), i.e.,  T L v . These studies assumed that all mature 

mRNAs were first exported to the cytoplasm and then translated into proteins. However, biological 
experiments indicated that there were a considerable part of mature mRNAs that stayed in the nucleus 
in a probabilistic manner and lasted a long period (Figure 1) [24]. 

 

Figure 1. Schematic diagram for a model of stochastic gene transcription. First, 
chromation (consisting of nucleosomes) opens in a multistep manner, and then, DNA is 
transcribed into mRNAs also in a multistep manner. Some of these mRNAs are remained 
in the nucleus (forming so-called paraspeckles) in a multistep manner, and the others are 
exported into the cytoplasm through the nuclear pores also in a multistep manner. 

Here, we consider two cases: one case where NRE dominates over RNR and the other case where 
RNR dominates over NRE. For both cases, the gene is assumed to have one “off” state (corresponding 
to the inactive form of the promoter) and one “on” state (corresponding to the active form), and the 
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promoter is assumed to switch randomly between these two states. Only in “on” state, can the gene 
generate pre-mRNA. After an alternative splicing (AS) process or an alternative polyadenylation (APA) 
process, which occurs frequently at the 3’ UTR, a portion of mature mRNAs (one type of transcripts) 
may be transported to the cytoplasm through NPC wherein they execute translation tasks. The rest 
mature mRNAs (another type of transcripts) may be remained in the nucleus for a long time, possibly 
assembling on the sub-cellular region (wherein they form nuclear speckles or paraspeckles [30–32]) 
with the assistance of proteins, some of which would have been unspecified. When the intracellular 
environment is changed, most of mature mRNAs will release to the cytoplasm in response to this 
change. In addition, most genes (especially in eukaryotic cells) are expressed in a bursty manner [1–4]. 

As pointed out in the introduction, gene transcription, NRE and RNR are all multistep reaction 
processes. In order to model these processes, we introduce a non-exponential waiting-time distribution 
for each intermediate reaction as done in ref. [7,33]. Since non-exponential waiting times lead to non-
Markovian dynamics, the existing Markov theory cannot be used directly. 

2.2. Mathematical models 

Assume that burst size in gene transcription follows a distribution described by prob{ } iB i   , 
where each i   is a nonnegative constant and 0,1, 2,i    . Let 1M  , 2M   and 3M   represent pre-
mRNA, mature mRNA (one type of transcripts) transported to the cytoplasm and mature mRNA 
(another type of transcripts) retained in the nucleus respectively, and denote by 1m , 2m  and 3m  their 
molecular numbers respectively. Thus, T

1 2 3( , , )m m mm  represents the micro-state of the underlying 
system. Let  1 ;W t m ,  2 ;W t m  and  3 ;W t m  be waiting-time distributions for the syntheses of pre-
mRNAs, mature mRNA transported to the cytoplasm, and mature mRNA retained in the nucleus, 
respectively. Let  4 ;W t m  and  5 ;W t m  be waiting-time distributions for degradations of 2M  and 

3M , respectively. To that end, the gene-expression model to be studied are described by the following 
five biochemical reactions labelled by R i  (1 5i  ) 
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                (1) 

Let B   represent the mean burst size. Note that if 1 1    and 0k    for all 1k   , this implies
1B  . In this case, the promoter is in the ON state all the time, and Eq (1) describes the constitutive 

gene expression. The other cases correspond to bursty gene expression. This is because 0B   implies 
that the promoter is in the OFF state (meaning that pre-mRNAs are not generated), whereas 0B   
implies that the promoter is at the ON state (meaning that pre-mRNAs are generated).  

For each reaction, there is a memory function [7,33]. Denote by  ;iM t m  memory function for 

reaction R i  (1 5i  ). These memory functions can be expressed by waiting-time distributions in Eq (1). 

In fact, if we let  ;iM s m  be the Laplace transform of memory function  ;iM t m , then  ;iM s m  

can be expressed as      5

1
; ; 1 ;i i ii

M s s s s 


     m m m  , where  ;i s m   is the Laplace 
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transform of function  ;i t m  that can be expressed as      
0

; ; 1 ;
t

i i k
k i

t W t W t dt


      m m m  

(1 5i  ) [7]. Let  ;P tm  be the probability that the system is in state m  at time t  and  ;P s m  

be the Laplace transform of  ;P tm . With  ;iM s m , we can show that the chemical master equation 

in the sense of Laplace transform takes the form 
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where   is the step operator and 1  is the inverse of  , and   is the unit operator. 

Interestingly, we find that limit  
0

lim ;is
M s


 m  always exists, and if the limit function is denoted 

by  iK m , then  iK m  can be explicitly expressed by given waiting-time distributions  ;kW t m  

(1 5k  ), that is,  
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Note that 0s   corresponds to t   according to the definition of Laplace transform. However, 
t   corresponds to the steady-state case, which is our interest. We point out that function  iK m , 
which will be called effective transition rate for reaction R i , explicitly decodes the effect of molecular 
memory, where 1 5i  . More importantly, using these effective transition rates, we can construct a 
Markov reaction network with the same topology as the original non-Markov reaction network:  
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Moreover, two reaction networks have exactly the same chemical master equation at steady state: 
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implying that both stationary behaviors are exactly the same (referring to Figure 2), where  P m  is 
the stationary probability density function corresponding to dynamic density probability function 
 ;P tm . 
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In summary, by introducing an effective transition rate (  iK m ) for each reaction R i , given by 
Eq (3), a mathematically difficult non-Markov issue is transformed into a mathematical tractable 
Markov issue. This brings us convenience for theoretical analysis. In the following, we will focus on 
analysis of Eq (5). 

 

Figure 2. Schematic diagram for two reaction networks with the same topology and the 
same reactive species, where W  -type functions represent reaction-event waiting-time 
distributions on the left-hand side whereas K -type functions are effective transition rates 
on the right-hand side (see the main text for details), D   represents DNA, and the other 
symbols are explained in the context. The results in reference [7] imply that the stationary 
behaviors of two reaction networks are exactly the same although reaction events in the 
two cases take place in different manners. 

Note that Gamma functions can well model multistep processes [34,35]. This is because the 
convolution of several exponential distributions is an Erlang distribution (a special case of Gamma 
distribution). Therefore, in order to model the effect of molecular memory on the mRNA expression, 
we assume that waiting-time distributions for gene activation, NRE and RNR processes are Gamma 

distributions:       00 0
1 1

1 0 0;
LL k tW t L t k e

     m  ,       1
1 1

2 1; cc c
LL m k t

c cW t L t m k e
     m   and

      1
1 1

3 1; rr r
LL m k t

r rW t L t m k e
     m , and that waiting-time distributions for the other processes are 

exponential ones,   2
4 2; cm d t

cW t m d em  , and   3
5 3; rm d t

rW t m d em  . Here      is the common 

Gamma function, 0k  is the mean transcription rate, ck  and rk  denote the mean synthesis rates for 

mRNAs in the nucleus and mRNAs in the cytoplasm respectively, cd   and rd   are the mean 

degradation rates of mRNA in the nucleus and mRNA in the cytoplasm respectively. Throughout this 

paper, 0L  , cL   and rL   are called memory indices since, e.g., 0 1L    corresponds to the 

memoryless case whereas 0 1L   to the memory case. 
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2.3. Parameter settings 

Let 1k  be the total synthesis rate of mRNAs in the cytoplasm, which is composed of two parts: 

one part is the rate at which pre-mRNA generates a transcript through the AS process or the APA 

process, and the other is the rate at which the mature mRNA is finally exported to the cytoplasm with 

the help of NPC. The rate of generating mature mRNAs, determined by the gene length, is generally 

fixed. In contrast, the rate of exporting mRNAs to the cytoplasm may change in a large range, 

depending on cellular environments. This is because some types of mRNAs are exported in a fast 

manner due to RNA binding proteins or linked splicing factors, and other types of mRNAs are exported 

in a slow manner and the corresponding genes are most intron-containing ones [19]. Thus, we can use 

1k  to characterize the export rate indirectly. Similarly, if we let 2k  be the synthesis rate of mRNAs in 

the nucleus, then it also includes two parts: one part is the rate of pre-mRNA produced through an AS 

or APA process, and the other is the rate at which transcripts are transported to some sub-cellular 

regions (e.g., nuclear speckles or paraspeckles) under the assistance of some proteins. Here, we assume 

that 2k  changes a little so that the involved processes are simplified. Owing to AS or APA processes, 

the lengths of mature mRNAs of the two kinds can be significantly different. Usually, the rate 1k  is 

faster than the rate 2k  . The retention and export of transcripts are random, we introduce another 

parameter rp , called remaining probability throughout this paper, to characterize this randomness. 

Then, the practical export rate and the practical retention rate should be  1 1c rk k p   and 2r rk k p  

respectively, where (0,1)rp  . 

Based on the experimental data from Halpern’s group [26] that measured the whole genome-wide 

catalogue of nuclear and cytoplasmic mRNA from MIN6 cells, we know that most genes (~70%) has 

more cytoplasmic transcripts than nuclear transcripts. Thus, we can get an approximate formula for 

remaining probability rp  :  r n n cp N N N   where nN  is the number of transcripts in the 

nucleus and cN  the number of transcripts in the cytoplasm. By considering gene INS1 for which the 

value of ratio c nN N  is the maximal (13.2 4.6 ), we can know that the value of rp  is about 5%. 

In that paper, the authors also mentioned that about 30% of the genes in MIN6 cells have more 

transcripts in the nucleus than in the cytoplasm. By considering gene ChREBP for which the value of 

ratio cytoplasm/nucleus is about 0.05, we can know that the value of rp  is about 95%. Therefore, the 

range of remaining probability ( rp ) in the whole genome is about 5~95%. It is reasonable that the 50% 

value of rp   is set as a threshold. For convenience, we categorize models of eukaryotic gene 

expression into two classes: one class where the RNE process is dominant and the other class where 

the RNR process is dominant. For the former, 0.5rp    holds, implying that most mRNAs are 

exported to the cytoplasm through nuclear pores, whereas for the latter, 0.5rp   holds, implying that 

most mRNAs retain in the nucleus.    

In the following analysis, memory indices iL  ( 0, ,i c r ), and remaining probability rp  will be 

taken as key parameters while the other parameter values will be kept fixed. Without loss of generality, 
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we assume that two degradation rates for mRNAs in the nucleus and cytoplasm are equal and denote 

by d  the common degradation rate, i.e., c rd d d  . 

3. Analytical results 

First, if we let ix   represent the concentration of reactive species iM  , i.e., lim
i

i i
m

x m




   

( 1, 2,3i  ) where   represents the volume of the system, then the rate equations corresponding to 

the constructed-above Markov reaction network can be expressed as 

 d

dt
 S

x
K x ,                                       (6) 

where  T

1 2 3, ,x x xx   is a column vector,  
3 5

1 1 0 0

0 1 0 1 0

0 0 1 0 1
ij

B

S


   
    
  

S   is a matrix, and 

            T

1 2 3 4 5, , , ,K K K K KK x x x x x x  is a column vector of effective transition rates. The 

stead states or equilibriums of the system described by Eq (6), denote by Sx  , are determined by 

solving the algebraic equation group, i.e.,  S S 0K x .  

Second, if denoting by X   the mean of random variable X   and taking approximation 

S
i iM x  ( 1, 2,3i  ), then we can derive the following matrix equation (see Appendix A): 

T
S S S S S  Α Α D 0  ,                                  (7) 

where two square matrices  S 3 3ijA


Α  and  S 3 3ijD


D  evaluated at steady state are known, and 

covariance matrix  S ij   with   ij i i j jM M M M     is unknown. Note that diagonal 

elements 22  and 33  represent variances for random variables 2M  (corresponding to mRNA in 

the cytoplasm) and 3M  (corresponding to mRNA in the nucleus), which are our interest. In addition, 

we can also derive formulae similar to Eq (3) in the case of continuous variables. 
In order to show the explicit effect of molecular memory on the mRNA expression in different 

biological processes, we consider two special cases: 1) The process of gene activation with memory 
and other processes are memoryless. 2) The process of nuclear RNA export with memory and other 
processes are memoryless. In other cases, there are in general no analytical results.  

Case 1 0 1L   , 1cL    and 1rL   . In this case, the five effect transition rates become: 
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0

0 0

1 1 2 3 0
1

1 1 2 3 0 0

L

c r
L L

c r

k x k x dx dx k
K

k x k x dx dx k k

  


    
x  ,  2 1cK k xx  ,  3 1rK k xx  ,  4 2K dxx  , and 

 5 3K dxx . Note that in the case of continuous variables, the corresponding effect transition rates 

 iK x  (1 5i  ) have the same expressions except for variable notations. 

We can show that the means of mRNAs in the nucleus and in the cytoplasm are given respectively 
by (see Appendix B) 

2 0 cM k k   , 3 0 rM k k   ,                           (8) 

where   01 0
0

1
1 2 1 0

2

L

c r

k
k B

k k
    
  

   with B   being the expectation of burst size B  

(random variable),  c
c

k
k

d
  and r

r

k
k

d
 . Apparently, iM  ( 2,3i  ) is a monotonically decreasing 

function of memory index 0L , implying that molecular memory always reduces the mRNA expression 

level in the nucleus and cytoplasm. In addition, by noting  1 1c rk k p   and 2r rk k p , we can know 

that if 2 1k k   is fixed, then 3M   (i.e., the mean of mRNAs in the nucleus) is a monotonically 

increasing function of remaining probability rp   whereas 2M   (i.e., the mean of mRNAs in the 

cytoplasm) is a monotonically decreasing function of rp  . In addition, 3M   is a monotonically 

decreasing function of c rk k    whereas 2M   is a monotonically increasing function of   . 

These results are in agreement with intuition. 
Interestingly, we find that 22   and 33  , the variances for mRNAs in the nucleus and in the 

cytoplasm resepctively, have the following relationship (see Appendix B) 

 
2

22 33 0
cr

c r

c r

kk
k k k

k k
 

 
   
 

   
  ,                          (9) 

indicating that the mRNA variance in the cytoplasm, 22 , is larger than that in the nucleus, 33 . 

From the viewpoint of experiments, the cytoplasmic mRNAs are easy to measure whereas the 
cytoplasmic mRNAs are difficult to measure. Therefore, we are interested in the cytoplasmic mRNA 
expression (including the level and noise). By complex calculations, we can further show that the 
cytoplasmic mRNA variance is given by 

   
   

2

3
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22 3 3

2 11
2

2 1 1 1 2

c r
c r c

c r r c r

b b k kk k k k
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       .              (10) 
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where     0 01

0 0 0

1
2 1 1 2 0

4

L L
b L L B L B

B

        
  and 

2B B

B



  with 2B  being 

the second-order raw moment of burst size B . Furthermore, if we define the noise intensity as the 
ratio of the variance over the squared mean, then the noise intensity for the cytoplasmic mRNA, 

denoted by c , can be analytically expressed as  
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Note that if 0 1L  , which correspond to the Markov case, then 0
0

c r

k B
k

k k



  and 0b  . Thus, the 

cytoplasmic mRNA noise in the Markov case, denoted by 
0 1c L




, is given by 

0
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3 31
0
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2 1
c r c rr

c L
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k k k kk

k k k k k k k




  
  

   

   
       .                   (12) 

Therefore, the ratio of the noise in non-Markov ( 0 1L  ) case over that in the Markov ( 0 1L  ) case 

   
   

0

2
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2 12 21

2 2 11 1 1 2

c r
c c r c r c r

c r r c rc rL

b b k kk k k k k k

k k k kb b k k

 






                
       

 

        
       ,       (13) 

which may be more than the unit but may also be less than the unit, depending on the size of remaining 

probability. However, if 0L  is large enough (e.g., 0 2L  ), then the ratio in Eq (13) is always larger 

than the unit, implying that molecular memory amplifies the cytoplasmic mRNA noise. 

Case 2 0 1L  , 1cL   and 1rL  . In this case, five effect transition rates reduce to  1 0K kx , 

    
   

0 1 2 3 1
2

0 1 1 2 3 1

c

c c

L

r c
L L

c r c

k k x dx dx k x
K

k k x k x dx dx k x

  


    
x ,  3 1cK k xx ,  4 2K dxx , and  5 3K dxx . It 

seems to us there are no analytical results as in Case 1. However, if 0rp   (i.e., if we do not consider 

nuclear retention), then we can show that the steady state is given by 00
1 2 3

1

, , 0
k Bk

x x x
k d
   , 

where 
 

 

1

1 1

1

1 2

c

c c

L

L L

B B

B B





 
 is a factor depending on both transcriptional burst and molecular 

memory. Moreover, the mRNA noise in the cytoplasm is given by (see Appendix C for derivation) 
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1 2 1 1 2

2 1 1 2 1

c
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.        (15) 

In order to see the contribution of molecular memory to the cytoplasmic mRNA noise, we calculate 
the ratio of the noise in non-Markov ( 1cL  ) case over that in the Markov ( 1cL  ) case 

     
     

1 11

1 11

1 2 1 1 2

2 1 1 2 1
c

cc

c cL

B d B L k B k Bd k

d k d B L B B d k B

  
    

       
        

,         (16) 

which is in general larger than the unit for large 1cL   (corresponding to strong memory), indicating 
that molecular memory in general enlarges the cytoplasmic mRNA noise. 

4. Numerical results 

4.1. Impact of memory index cL  on cytoplasmic mRNA expression 

Here we numerically investigate the effect of molecular memory ( cL ) from nuclear RNA export 
on the cytoplasm mRNA ( 2M ) in the cases that the other model parameter values are fixed. Numerical 
results are demonstrated in Figure 3. From Figure 3(a), we observe that the mean level of the cytoplasm 
mRNA is a monotonically decreasing function of cL , independent of the value choice of remaining 
probability ( rp ) (even though we only show the two cases of rp  values). This is in agreement with 
our intuition since a more reaction step for mRNA synthesis inevitably leads to less mRNA molecules. 
On the other hand, we observe from Figure 3(b) that molecular memory reduces the cytoplasm mRNA 
noise ( c ) for smaller values of cL  but enlarges c  for larger values of cL , implying that there is an 
optimal cL   such that c   arrives at the minimum. We emphasize that the dependences shown in 
Figure 3(a),(b) are qualitative since they are independent of the value choice of remaining probability. 

Importantly, Figure 3 indicates that the results obtained by the linear noise approximation (solid 
lines) are well in agreement with the results obtained by the Gillespie algorithm [36]. Therefore, the 
linear noise approximation can be used in fast evaluation of the expression noise, and in the following, 
we will focus on results obtained by the linear noise approximation. In addition, we point out that most 
results obtained here and thereafter are qualitative since they are independent of the choice of 
parameter values. However, to demonstrate interesting phenomena clearly, we will choose special 
values of some model parameters. 
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Figure 3. Influence of molecular memory ( cL  ) from multistep RNA export on the 
cytoplasmic mRNA ( 2M ), where solid lines represent theoretical results obtained by linear 
noise approximation (Appendix A), and empty circles represent numerical results obtained 
by a Gillespie algorithm [36]. Parameter values are set as 2B  , 1 4k  , 2 0.8k  , 

0 1k  , 1c rd d  . (a) Impact of molecular memory from the RNA export on the mean 
cytoplasmic mRNA ( 2M ) for two values of remaining probability ( rp ), where the blue 
solid line corresponds to 0.2001rp   and the orange solid line to 0.3001rp  . (b) Effect 
of molecular memory from the RNA export on the cytoplasmic mRNA noise ( c ) for two 
values of rp . 

4.2. Effects of molecular memory and remaining probability on cytoplasmic mRNA expression: The 

case of 1cL   and 0 1rL L   

 

Figure 4. Influence of remaining probability and molecular memory on mature mRNA 
transported to the cytoplasm ( 2M ). Solid lines represent theoretical results obtained by our 
linear noise approximation (Appendix A). Empty circles represent the minimum of the 
noise of the cytoplasm mRNA. (a) Parameter values are set as 40B   , 1 5k   , 

2 0.8k   , 0 2.5k   , 1c rd d   . (b) Parameter values are set as 2B   , 1 2k   , 

2 0.8k  , 0 1k  , 1c rd d  . 
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Here we focus on numerically investigating joint effects of molecular memory ( cL  ) and 

remaining probability ( rp ) on the cytoplasm mRNA ( 2M ). Figure 4(a) demonstrates effects of rp  

on the 2M  noise for three values of cL . We observe that with the increase of remaining probability, 

the cytoplasmic mRNA noise ( c ) first decreases and then increases, implying that there is a critical 

rp  such that c  arrives at the minimum (referring to empty circles in Figure 4(a)) or that remaining 

probability can minimize the cytoplasmic mRNA noise. Moreover, this minimum is independent of 

the values of memory index cL . In addition, we find that the minimal c  first increases and then 

decreases with increasing cL  (the inset of Figure 4(a)). In other words, noise of cRNA can derive a 

optimal value with the decrease of remaining probability and the increase of memory index. Figure 4(b) 

shows the dependences of c  on cL  for three different values of remaining probability. We find that 

molecular memory can also make cytoplasmic mRNA noise reach the minimum (referring to empty 

circles in Figure 4(b)), and this minimal noise is monotonically increasing function of rp . 

4.3. Effects of molecular memory and remaining probability on cytoplasmic mRNA expression: The 

case of 0 1L  , 1cL   and 1rL   

 

Figure 5. Influence of remaining probability for nuclear RNA retention and molecular 

memory from multistep gene activation on the cytoplasmic mRNA ( 2M  ), where lines 

represent the results obtained by linear noise approximation (Appendix A). Empty circles 

represent the minimum of the noise of the cytoplasm mRNA. ( )a   The dependence of 

cytoplasmic mRNA noise c   on remaining probability rp   for two values of memory 

index 0L , where the inset is an enlarged diagram showing the dependence of the minimal 

c   on 0L  . Parameter values are set as 20B   , 1 10k   , 2 1k   , 0 2.5k   , 

1c rd d   . ( )b   The dependence of cytoplasmic mRNA noise c   on remaining 

probability rp  for three values of remaining probability rp . Parameter values are set as 

2B  , 1 4k  , 2 1k  , 0 2.5k  , 1c rd d  . 

Here we focus on numerically analyzing joint effects of memory index 0L   and remaining 
probability rp  on the cytoplasm mRNA ( 2M ). Figure 5(a) demonstrates effects of rp  on the 2M  
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noise for two representative values of 0L  (note: 0 1L   corresponds to the memoryless case whereas 

0 2L   corresponds to the memory case). We observe that with the increase of remaining probability, 
the cytoplasmic mRNA noise ( c ) first decreases and then increases, implying that there is a critical 

rp  such that c  reaches the minimum (referring to empty circles in Figure 5(a)) or that remaining 
probability can minimize the cytoplasmic mRNA noise. Moreover, this minimum (referring to empty 
circles) is a monotonically increasing function of memory index 0L . 

Figure 5(b) demonstrates that the cytoplasmic mRNA noise ( c  ) is always a monotonically 

increasing function of memory index 0L  , independent of remaining probability. In addition, we 

observe that c  is a monotonically increasing function of remaining probability (this can be seen by 

comparing three lines). 

4.4. Effects of molecular memory and remaining probability on cytoplasmic mRNA expression: The 

case of 1rL  , 1cL   and 0 1L   

 

Figure 6. Influence of remaining probability and molecular memory on mature mRNA 
transported to the cytoplasm ( 2M ), solid lines represent theoretical results obtained by 
linear noise approximation (Appendix A). Empty circles represent the minimum of the 
noise of the cytoplasm mRNA. (a) Parameter values are set as 2B   , 1 2k   , 

2 0.8k   , 0 2.5k   , 1c rd d   . (b) Parameter values are set as 2B   , 1 2k   , 

2 0.8k  , 0 1k  , 1c rd d  . 

Here we consider the case that RNR is a multistep process, i.e., 1rL  . Numerical results are 
demonstrated in Figure 6. We observe from Figure 6(a) that except for the case of 1rL   , which 
corresponds to the Markov process and for which the cytoplasmic mRNA noise ( c ) is a monotonically 
increasing function of remaining probability ( rp ), the dependences of c  on rp  are not monotonic 
in the cases of 1rL   (corresponding to non-Markov processes) but there is a threshold of rp  such 
that c   reaches the minimum (referring to empty circles), similarly to the case of Figure 5(a). 
Moreover, this minimal noise is a monotonically decreasing function of memory index rL  (referring 
to the inset of Figure 6(a)) but the monotonicity is opposite to that in the case of Figure 5(a). 

Figure 6(b) shows how the cytoplasmic mRNA noise ( c ) depends on memory index rL  for two 
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different values of remaining probability. Interestingly, we observe that there is an optimal value of 

rL  such that the cytoplasmic mRNA noise reaches the minimum. Moreover, the minimal c  is a 
monotonically decreasing function of remaining probability ( rp ), referring to the inset in the bottom 
right-hand corner. 

5. Conclusions and discussion 

Gene transcription in eukaryotes involve many molecular processes, some of which are well 
known and others are little known and even unknown [37,38]. In this paper, we have introduced a non-
Markov model of stochastic transcription, which simultaneously considers RNA nuclear retention and 
nuclear RNA export processes and in which we have used non-exponential waiting-time distributions 
(e.g., Gamma distributions) to model some unknown or unspecified molecular processes involved in, 
e.g., the synthesis of pre-mRNA and the export of mRNAs generated in the nucleus to the cytoplasm 
and the retention of mRNA in the nucleus. Since non-exponential waiting times can lead to non-
Markov kinetics, we have introduced effective transition rates for the reactions underlying 
transcription to transform a mathematically difficult issue to a mathematically tractable one. As a result, 
we have derived the analytical expressions of mRNA means and noise in the nucleus and cytoplasm, 
which revealed the importance of molecular memory in controlling or fine-tuning the expressions of 
two kinds of mRNA. Our modeling and analysis provided a heuristic framework for studying more 
complex gene transcription processes. 

Our model considered main events occurring in gene transcription such as bursty expression 
(burst size follows a general distribution), alternative splicing (by which two kinds of transcripts are 
generated), RNR (a part of RNA molecules that are kept in the nucleus) and RNE (another part of RNA 
molecules that are exported to the cytoplasm). Some popular experimental technologies such as single-
cell sequence data [39], single-molecule fluorescence in-situ hybridization (FISH) [40] and electron 
micrographs (EM) of fixed cells [41] have indicated that RNR and NRE are two complex biochemical 
processes, each involving regulation by a large number of proteins or complexes [42]. In particular, 
the mRNAs exported to the cytoplasm involve the structure of nuclear pore complex (NPC) [43]. A 
number of challenging questions still remain unsolved, e.g., how do RNR and NRE cooperatively 
regulate the expressions of nuclear and cytoplasmic mRNAs? Why are these two dynamical processes 
necessary for the whole gene-expression processes when the cells survive in complex environments? 
And what advantages do they have in contrast to a single NRE process? 

Despite simple, our model can not only reproduce results for pre-mRNA (nascent mRNA) means 
at steady state in previous studies but also give results in agreement with experimental data on the 
mRNA Fano factors (define as the ratio of variance over mean) of some genes. However, we point out 
that some results of Fano factors obtained using our model is not always in agreement with the 
experimental data, e.g., for five genes, RBP3, TAF5, TAF6, TAF12 and KAP104, results obtained by 
our model seem not in agreement with experimental data but results obtained by a previous theoretical 
model [44] seems better (data are not shown). In addition, for the PRB8 gene, results on Fano factor, 
obtained by our model and the previous model, are poorly in agreement with experimental data (data 
are not shown). This indicates that constructing a theoretical model for the whole transcription process 
still needs more work.  

In spite of differences, our results are wholly in agreement with some experimental data or 

observations. First, the qualitative result that RNR always reduces the nuclear pre-mRNA noise 
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and always amplifies the cytoplasmic mRNA noise is in agreement with some experimental 

observations [28,42,45] and also with intuition since the retention naturally increases the mean number of 

the nuclear pre-mRNAs but decreases the mean number of the cytoplasmic mRNAs. Second, we compare 

our theoretical predictions with experimental results [28,45]. Specifically, we use previously published 

experimental data for two yeast genes, RBP2 and MDN1 [28,45] to calculate the cytoplasmic mRNA Fano 

factors. Parameter 1k  is set as 1 0.29 0.013 / mink   , which is based on experimental data [28] and the 

degradation rates of the cytoplasmic mRNAs for RBP2 and MDN1 are set according to 1/2ln 2cd t , 

where 1/2t  is an experimental mRNA half-life. Then, we can find that the results on the Fano factors of 

genes RBP2 and MDN1 are well in agreement with the experimental data [45].  
At the whole genome scale, about 70% mRNAs in the nucleus are transported to the cytoplasm 

whereas about 30% mRNAs are retained in the nucleus [26]. This fact implies that the changing range 
of remaining probability is moderate or small. In addition, the nuclear export rate of a different gene 
is in general different. If this rate is not too large, then following the increase of remaining probability, 
the increase in the cytoplasmic mRNA noise is inevitable. This result indirectly interprets the reason 
why the noise at the protein level is quite large as shown in previous studies of gene expression [46].  

Finally, for some genes, the relative changing ranges of remaining probability and nuclear export 
rate may be large at the transcription level. In this case, it is in theory sufficient that adjusting one of 
nuclear export rate and remaining probability can fine-tune the cytoplasmic mRNA noise if the mean 
burst size is fixed, but differences would exist between theoretical and experimental results since NRE 
and RNR occur simultaneously in gene expression and are functionally cooperative. In addition, since 
biological regulation may be different from the theoretical assumption made here, the nuclear or 
cytoplasmic mRNA noise predicted in theory may be overestimated. 
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Appendix 

A. Linear noise approximation for the gene model in the main text  

First, the chemical master equation for the constructed Markov reaction network reads 
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Second, the stead state or equilibrium of the system described by Eq (6) in the main text, denoted 

by  T

1 2 3, ,S S S Sx x xx , can be obtained by solving the algebraic equation group 
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Then, we perform the Ω-expansions [47] to derive a Lyapunov matrix equation for covariance 
matrix between iM   and jM   with , 1, 2,3i j   , i.e., for matrix 
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Hereafter  o y   represents the infinitestmal quantity of the same order as 0y   . We denote by 
 ; t z  the probability density function for new random variable z . Then, the relationship between 

variables  ;P tm  and  ; t z  is  
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By substituting Eqs (A3) and (A4) into Eq (A1) and comparing the coefficients of 1 2 , we have 
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which naturally holds due to Eq (6) in the main text, where 
1

0

m

i
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B i


   is the mean burst size. 

Comparing the coefficients of 0 , we have 
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where 
1

2 2
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  is the second moment of burst size. Since  iK x  is independent of z , Eq (A6) 

can be rewritten as 

   
 

 
 

2

, 1,2,3 , 1,2,3

;; ;1

2
j

ij ij
i j i ji i j

z tt t
A D

t z z z 

       
    

zz z
,          (A7) 

where the elements of matrix  ijAA  take the form 

 

3 3 31 2 1 2 1 2

1 1 1 2 2 2 3 3 3

2 4 2 4 2 4

1 1 2 2 3 3

3 5 3 5 3 5

1 1 2 2 3 3

ij

K K KK K K K K K
B B B

x x x x x x x x x

K K K K K K
A

x x x x x x

K K K K K K

x x x x x x

        
               

      
     

      
      

          

A   (A8a) 

and matrix  ijDD  takes the form 

2
1 2 3 2 3

2 2 4

3 3 5

0

0

B K K K K K

K K K

K K K

    
 

   
   
 

D .              (A8b) 

If we consider the stationary equation of Eq (A7), denote by SΑ  and SD  the corresponding matrices. 

Third, the steady-state Fokker Planck equation allows a solution of the following form 

 
   

T 1
S3

S

1 1
exp

22 det
    

 
z z z


.                  (A9) 

Here, matrix       T

S
S S

ij   M x M x  (covariance matrix) is determined by solving the 

following Lyapunov matrix equation 

T
S S S S S  Α Α D 0  .                         (A10) 
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Note that the diagonal elements of matrix S  are just the variances of the state variables, and the 
vector of the mean concentrations of the reactive species is given approximately by SM x . Eq 
(A10) is an extension of the linear noise approximation in the Markov case [48]. 

B. Analytical results for statistical quantities in the case of 0 1L   and 1c rL L   

In this case, we can show that effective transition rates are given by 

    
   

0

0 0

1 1 2 3 0
1

1 1 2 3 0 0

L

c r
L L

c r

x k x k x d x d k
K

x k x k x d x d k k

  


    
x  ,  2 1 cK x kx  ,  3 1 rK x kx  ,  4 2K x dx  , and 

 5 3K x dx , where  T

1 2 3, ,x x xx . Thus, accoridng to Eq (A2), we know that the steady state is 

given by  

0
1
s

c r

ak
x

k k



, 2 1

s sck
x x

d
 , 3 1

s srk
x x

d
 ,                      (B1) 

where 
  01
1 2 1

2

L
B

a
 

 . Note that  

    
   

    

    
000

0 0 0 0

1

0 0 0 01 0
2

1 0 0 0 0

2 1 2

1 2 1 2

LLL
c rc r

L L L L

ak L k k k k aK k k k

x k a k k a k


      

         

x
 

Therefore,  

     
    0 01

011
2

1 1

2 1 2 1 2

4S

L L
S

c r

B L B BKK
k k

x x B





         
 

x x

xx
.    (B2a) 

Completely similarly, we have 

        0 01

0
1 1

2
2 3

2 1 2 1 2

4

L L
B L B BK K

d
x x B

         
 

x x
.       (B2b) 

Thus, matrix SΑ  reduces to 

 
  1

0

0

c r

ij c

r

b B k k bd B bd B

A k d

k d

  
 

   
   

A ,                (B3) 

where     0 01

0 0 02

1
2 1 1 2

4

L L
b L L B L B

B

        
. Meanwhile, the matrix SD  in Eq (A10) 

becomes  
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S 0 2 0

0 2

c r c r

c c

r r

k k k k

k k k

k k

    
   
  

D  ,                         (B4) 

where 0
0

c r

ak
k

k k



  and 

2B B

B



 . We can directly derive the following relationships from 

Eq (A10): 

      0
11 12 131

2c r c r

k
b B k k bd B k k         


            (B5a) 

   12 22 23 11 12 01 c r c cb B k k bd B bd B k d k k                    (B5b) 

   13 23 33 11 13 01 c r r rb B k k bd B bd B k d k k                     (B5c) 

and obtain the following relationships  

12 22 0
c

d
k

k
    , 13 33 0

r

d
k

k
     and 23 22 33 0

1

2 2
c c rr

c r

k k kk
k

k k d
  

  
   

 
 . 

Substituting these relationships into Eq (B4a)–Eq (B4c) yields 

    0
11 22 33 01 2

2c r c r
c r

kd d
b B k k bd B bd B k k k

k k
   

 
       

 

 ,      (B6a) 

11 22 33 0 0

3 2 3 2
2 1 1

2 2 2
c c c c rr

c c r

b B b B b Bk k k k kk d
b B k k

d k k k d d
  

     
          
   

  ,(B6b) 

11 22 33 0 0

3 2 3 2
2 1 1

2 2 2
c c rr r r

c r r

b B b B b Bk k kk k kd
b B k k

d k k k d d
  

     
          

   
  .(B6c) 

The combination of Eq (B6a),(B6b) gives  
2

22 33 0
c c rr

c r

k k kk
k

k k d
 

  
  
 

 , or 
2

33 22 0
c c r c

r r

k k k k
k

k d k
 

   
    
   

 .         (B7a) 

The sum of Eq (B6b),(B6c) gives 

 11 22 33 0

3 1
2 1 1 1

2
c r c r c r

c r

b Bk k k k k kd d
b B k

d d k k d
  

                    
 .   (B7b) 

The combination of Eq (B7b) and (B6a) yields 

 

  

2

22 33

1
1

21
1 1 2 1

c r

c rc r

k k
b B b Bd d d

k kk k b B b B
d


 

   
   


  

               (B7c) 

By substituting this equation into Eq (B7a), we finally obtain 
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2

3
0

22 3 3

2 11
2

2 1 1 1 2

c r
c r c

c r r c r

b b k kk k k k

k k k b b k k




           
     

 

      
       ,               (B8a) 

and further 

   
   

2

3 3 4
0

33 3 3 3 4

2 11
1

2 1 1 1 2

c r
r c c c

c r r r c r

b b k kk k k k k

k k k k b b k k




            
     

 

       
        .             (B8b) 

where     0 01

0 0 0

1
2 1 1 2 0

4

L L
b b B L L B L B

B

          
   with 0b  , c

c

k
k

d
  , 

r
r

k
k

d
 , 

2B B

B



 . 

Thus, the cytoplasmic mRNA noise is given by 

   
   

2

3
22

2 3 3
02

2 11 1
1

2 1 1 1 2

c r
c rr

c

c c r r c r

b b k kk kk

k k k k k b b k kM



             
     

 

    
         ,       (B9a) 

and the nuclear mRNA noise in the nucleus by  

   
   

2

3 3 4
33

2 3 3 3 4
03

2 11 1
1

2 1 1 1 2

c r
c c c

r

r c r r r c r

b b k kk k k

k k k k k k b b k kM



             
     

 

     
          .       (B9b) 

C. Analytical results for statistical quantities in case of 1cL    and 0 1rL L   

In this case, we can show that five effect transition rates take the forms:  1 0K kx  , 

    
   

0 1 2 3 1
2

0 1 1 2 3 1

c

c c

L

r c
L L

c r c

k x k dx dx x k
K

k x k x k dx dx x k

  


    
x ,  3 1 rK x kx ,  4 2K dxx , and  5 3K dxx . In 

order to derive analytical results, we assume that remaining probability is so small that 0rp   , 

implying 0rk  , 1ck k  and  3 0K x . By solving the steady-state deterministic equation  

1 2 3

2 4

3 5

0

0

0,

B K K K

K K

K K

   


 
  

                              (C1) 

we obtain the analytical expression of steady state ( Sx ) given by  
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1

0
1 1 1

1

1

1 2

c

c c

L

S

L L

k B B
x

k B B




  
 

, 0
2
S k B

x
d

  and 3 0Sx  .            (C2) 

Note that the elements of Jacob matrix in the linear noise approximation reduce to  

 2

11
1

SK
a

x


 



x
 , 

 2

12
2

SK
a

x


 



x
 , 

 2

13
3

SK
a

x


 



x
 , 

 2

21
1

SK
a

x






x
 , 

 2

22
2

SK
a d

x


 



x
 , 

 2

23
3

SK
a

x






x
, 31 0a  , 32 0a  , and 33a d  . Defferentiating function  2K x  with regard to 1x  

yields 

      
   

        

   

1 11
0 2 1 1 1 0 1 1 2 1 12 0 2 1 1

2
1 0 1 1 2 1 1 0 1 1 2 1 1

c c c c
c c

c c
c c

L L L LL L
cc

L L L L

L k x d x k k k x k x d k xK L k x d k x

x k x k x d x k k x k x d x k

          
        

x
. 

Therefore,  

     1

2 02

1 1 1

1 2 1 2

1 1

c c

S

L LS

c
K L k B B B BK

x x x B B B





                  x x

xx
.     (C3) 

Completely similarly, we have  

     12

2 2 0

2 3 1 1

1 2

1 1

c cL L

cd B dL B BK K k

x x B B k x B


  

          

x x
.         (C4) 

Furthermore, the Jacob matrix becomes 

11 12 12

11 12 12

0 0
s

a a a

a a d a

d

 
      
  

A ,                         (C5) 

where 
 2

11
1

=
SK

a
x






x
 and 

 2

12
2

=
SK

a
x






x
 are given by Eqs (C3) and (C4). 

Meanwhile, the matrix sD  in the linear noise approximation is given by 

2
0 0 2

2 2

0

2 0

0 0 0
s

k B k B K

K K

  
 

  
  
 

D .                         (C6) 

It follows from matrix equation T
S S S S S  Α Α D 0   that  

 2
0 0 12 1212

11 2 222 2
11 11 112

k B k B a a da
K

a a a
 

 
    ,                (C7a) 
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2
11

22 0
12 11

2

2

a B B d B
k

d a d a


  


 
.                       (C7b) 

Substituting the expressions of 11a  and 12a  into Eq (C7b) yields 
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0
22

1

1 2
2

1

2 1 2

1 1 1

c

c

BL k
B B d

k B B

d L B B kd d
B B B

 


 


 

 


  
  

    

,              (C8) 

where 
 

 

1

1 1

1

1 2

c

c c

L

L L

B B

B B





 
. 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


