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Abstract: The increasing integration of large-scale wind power aggravates the difficulty of 

maintaining system frequency deviations in a certain range. The frequency regulation pressure of 

conventional generators increases, which requires wind farms to participate in system frequency 

regulation. In this paper, a multi-area interconnected power system frequency response model with 

wind power is established. Based on the frequency response model, the state space model of regional 

interconnected power system is presented. Then, the wind power variogram characteristics are 

introduced for estimating wind power variations in different time-scales. By predicting the wind power 

variations in AGC time-scale, a strategy of wind farm participating in AGC system is proposed and 

performed based on model predictive control (MPC). The control strategy makes the conventional 

units and wind farms to participate in AGC system coordinately. Simulation results are provided which 

verifies the feasibility and validity of the proposed strategy. 

Keywords: wind power; frequency regulation; wind power variogram characteristics; AGC; MPC. 

 

1. Introduction 

The objective of combating climate change has forced governments and other agencies around 

the world to set plans to transform the conventional power system into low-carbon power systems [1]. 

This process presents a unique opportunity for the rapid development of renewable energy sources 

(RES) such as wind power. However, it also poses enormous technical challenges for power systems, 

especially from a viewpoint of frequency stability [2–4].  
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One of the reasons is that wind turbine generator (WTG) is connected by electronic devices. Most 

WTGs inherently provide either no inertial response or frequency regulation. In addition, the massive 

deployment of WTG is realized by displacement of large numbers of conventional generators. The 

deployment of WTGs would lead to further deterioration in both system frequency control and inertial 

response [5]. Therefore, to ensure a secure transition to future low-carbon electricity systems with high 

penetration of wind power, two requirements are established for power system frequency response. (i) 

Conventional generators should provide more flexible frequency regulation service for a wider 

frequency deviation ranges. (ii) The WTGs should undertake more responsibility for power system 

frequency response. Various frequency regulation control strategies for WTGs have been proposed to 

help WTGs operating like conventional power generators as in references [6–10]. Compared with 

conventional generators, the unpredictable and intermittent nature of wind power should be considered. 

Therefore, the participation of WTGs in power system frequency control needs to be further studied 

and new techniques required to be developed.  

In our previous work [11], a variogram function is proved to be a useful tool to depict the variation 

characteristics of wind power, after which a three-parameter power-law model is established for 

estimating wind power variations. In [12], we use the three-parameter power-law model to predict the 

wind power variations in AGC control time-scale. An AGC feedforward control strategy for 

conventional generators is proposed. In [12], the AGC power set value can be advancingly adjusted 

before the wind power variation really occurs, based on the anticipated wind power variations. Then, 

the AGC units can respond in advance to match the imbalance between generation and load to improve 

system operational performance. However, the variation rates in generation are larger now with the 

increasing integration of wind power generation [13]. This leads to the fact that conventional AGC 

units may not be able to follow these variations as tightly as desired, which also results in the increase 

of system frequency deviations. As a result, the coordination feedforward control of both WTGs and 

conventional AGC units has a significant impact on system operational performance.  

MPC is a new computer control algorithm proposed in the field of industrial process control in 

the 1970s. It is widely used in various fields because it is convenient for modeling with good dynamic 

performance and stability [14]. In recent years, stochastic MPC [15], centralized MPC [16], 

decentralized MPC [17], and distributed MPC [18] and other improved algorithms are used in 

frequency control of multi-area interconnected power systems. However, the above methods are 

mainly focused on the controlling of conventional generators, where wind farms are actively 

participating. In this paper, MPC is chosen as the control algorithm to realize the feedforward control 

for both WTGs and conventional AGC units. Two problems are mainly focused. The first one is to 

predicate the variations of wind power more accurately. The second one is to use the wind power 

prediction information to make wind power generators provide more stable and flexible frequency 

response capacities. To solve these problems, variations of wind power is predicted based on variogram 

function and used in MPC controller to improve system frequency response performance. 

This paper is organized as follows. Section 2 presents the frequency response model of regional 

power system with wind power. Section 3 proposes a strategy of wind farm participating in AGC based 

on the characteristics of wind power variations. Section 4 presents simulations and the performance of 

the control strategy under different conditions. Conclusions are presented in Section 5. 
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2. Frequency response model of regional power system with large-scale wind power integration 

In this paper, the WTGs are considered participating in AGC system. Then, a multi-area frequency 

response model with large scale wind power is established. 

2.1. Frequency response model of the 𝑖-th area 

Consider that the interconnected power system is composed of 𝑁 areas. The frequency response 

model of area 𝑖 is shown in Figure 1 [19]. 
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Figure 1. Frequency response model of multi-area power system. 

In this paper, the wind farm is considered as one equivalent wind farm in the AGC model since 

the control strategy is presented with respect to a wind-farm level. The detailed state equation of AGC 

system for area 𝑖 is as follows.  

𝛥𝑓�̇� =
∑ 𝛥𝑃𝐺𝑘𝑖

𝑚
𝑘=1 +∑ 𝛥𝑃𝑊𝐹𝑙𝑖

𝑛
𝑙=1 −𝛥𝑃𝑡𝑖𝑒𝑖−𝛥𝑃𝐿𝑖−𝐷𝑖𝛥𝑓𝑖

2𝐻𝑖
                    (1) 

𝛥�̇�𝑡𝑖𝑒𝑖 = 2𝜋(∑ 𝑇𝑖𝑗𝛥𝑓𝑖 − ∑ 𝑇𝑖𝑗𝛥𝑓𝑗
𝑁
𝑗=1

𝑗≠𝑖

𝑁
𝑗=1

𝑗≠𝑖

)                     (2) 
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𝛥�̇�𝐺𝑘,𝑖 =
𝛥𝑃𝑐𝐺𝑘 ,𝑖−

1

𝑅𝑘𝑖
⋅𝛥𝑓𝑖−𝛥𝑋𝐺𝑘𝑖

𝑇𝐺𝑘𝑖
                          (3) 

𝛥�̇�𝑅𝑘,𝑖 = −
𝐹𝑅𝑘𝑖

𝑅𝑘𝑖⋅𝑇𝐺𝑘𝑖
𝛥𝑓𝑖 + (

1

𝑇𝑅𝑘𝑖
−

𝐹𝑅𝑘𝑖

𝑇𝐺𝑘𝑖
) ⋅ 𝛥𝑋𝐺𝑘,𝑖 −

1

𝑇𝑅𝑘𝑖
⋅ 𝛥𝑃𝑅𝑘,𝑖 +

𝐹𝑅𝑘𝑖

𝑇𝐺𝑘𝑖
⋅ 𝛥𝑃𝑐𝐺𝑘,𝑖         (4) 

𝛥�̇�𝐺𝑘,𝑖 =
𝛥𝑋𝐺𝑘 ,𝑖−𝛥𝑃𝐺𝑘,𝑖

𝑇𝑅𝑘𝑖
                             (5) 

𝛥�̇�𝑊𝐹𝑘𝑖 =
𝛥𝑃𝑐𝑊𝑘,𝑖−𝛥𝑃𝑊𝐹𝑘𝑖

𝑇𝑊𝐹𝑘𝑖
                            (6) 

In this paper, 𝐴𝐶𝐸𝑖 is selected as the output of area 𝑖. The output equation can be obtained as 

follow: 

𝑦𝑖 = 𝛽𝑖𝛥𝑓𝑖 + 𝛥𝑃𝑡𝑖𝑒,𝑖                                 (7) 

where, 𝛽𝑖  is the area frequency deviation coefficient. 𝛥𝑓𝑖 is the frequency deviation of area i. 𝛥𝑃𝑡𝑖𝑒,𝑖 

is the exchange power deviation of the tie-line. 𝛥𝑋𝐺𝑘,𝑖 is the variation of thermal generator governor 

position. 𝛥𝑃𝑅𝑘,𝑖  is power variation of re-heat turbine. ∑ 𝛥𝑃𝐺𝑘,𝑖
𝑚
𝑘=1  and ∑ 𝛥𝑃𝑊𝐹𝑙𝑖

𝑛
𝑙=1  are the output 

power of thermal generators and wind farms respectively. 𝛥𝑃𝑐𝐺𝑘,𝑖  and 𝛥𝑃𝑐𝑊𝑘,𝑖  are active power 

control command signals respectively. 𝛥𝑃𝐿𝑖  is load fluctuations in the i-th area.  

2.2. State space model of regional interconnected power system 

From the frequency response model in Fig.1, the state space model of area i can be obtained by 

(1)–(7). 

{
�̇�𝑖 = 𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖 + 𝐹𝑖𝑤𝑖 + ∑ (𝐴𝑖𝑗𝑥𝑗 + 𝐵𝑖𝑗𝑢𝑗)𝑗≠𝑖

𝑦𝑖 = 𝐶𝑖𝑥𝑖

               (8) 

where, 𝑥𝑖 ,𝑢𝑖 , 𝑤𝑖 ,𝑦𝑖 is the state variable, control variable, disturbance variable and output variable 

respectively. 𝐴𝑖 , 𝐵𝑖 , 𝐹𝑖 , 𝐶𝑖 is the corresponding state matrix, control matrix, disturbance matrix and 

output matrix of area i. 𝐴𝑖𝑗 and 𝐵𝑖𝑗 is the state interaction matrix and control interaction matrix 

respectively. 

From the above analysis，the state variable 𝑥𝑖 consists of 𝛥𝑓𝑖,𝛥𝑃𝑡𝑖𝑒,𝑖, 𝛥𝑋𝐺𝑘,𝑖 , 𝛥𝑃𝑅𝑘,𝑖, 𝛥𝑃𝐺𝑘,𝑖 

and 𝛥𝑃𝑊𝐹𝑘,𝑖: 

𝑥𝑖 = [𝛥𝑓𝑖    𝛥𝑃𝑡𝑖𝑒,𝑖    𝛥𝑋𝐺𝑘,𝑖    𝛥𝑃𝑅𝑘,𝑖    𝛥𝑃𝐺𝑘,𝑖    𝛥𝑃𝑊𝐹𝑘𝑖]
𝑇
                 (9) 

The control variable of area 𝑖 ,𝑢𝑖 , is composed of all the power control signals that participating 

in AGC, namely: 
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𝑢𝑖 = [𝛥𝑃𝑐𝐺𝑚,𝑖         𝛥𝑃𝑐𝑊𝑛,𝑖]
𝑇
                            （10） 

The disturbance variable 𝑤𝑖 is defined as the load disturbance of area 𝑖, whose expression is 

𝑤𝑖 = 𝛥𝑃𝑑,𝑖  ; The output variable 𝑦𝑖  is considered as the regional deviation signal ACE, whose 

expression is 𝑦𝑖 = 𝛽𝑖𝛥𝑓𝑖 + 𝛥𝑃𝑡𝑖𝑒,𝑖. 

The state matrix of area 𝑖, 𝐴𝑖, can be obtained by (1)–(10): 

𝐴𝑖 =

[
 
 
 
 
 
 
 
 
 
       

−𝐷𝑖

2𝐻𝑖
               

−1

2𝐻𝑖
             0               0           

1

2𝐻𝑖
          

1

2𝐻𝑖

2𝜋∑ 𝑇𝑖𝑗
𝑁
𝑗=1

𝑗≠𝑖

        0               0               0             0              0

    
−1

𝑅𝑘𝑖𝑇𝐺𝑘𝑖
             0            

−1

𝑇𝐺𝑘𝑖
             0             0              0

    
−𝐹𝑅𝑘𝑖

𝑅𝑘𝑖𝑇𝐺𝑘𝑖
             0      

1

𝑇𝑅𝑘𝑖
−

𝐹𝑅𝑘𝑖

𝑇𝐺𝑘𝑖
   

−1

𝑇𝑅𝑘𝑖
           0              0

      0                     0               0            
1

𝑇𝐶𝑘𝑖
        

−1

𝑇𝐶𝑘𝑖
           0

      0                     0               0               0             0         
−1

𝑇𝑊𝐹𝑘𝑖 ]
 
 
 
 
 
 
 
 
 
 

                (11) 

The control matrix 𝐵𝑖 is  

𝐵𝑖 = [
0       0        

1

𝑇𝐺𝑘𝑖
          

𝐹𝑅𝑘𝑖

𝑇𝐺𝑘𝑖
          0          0

0       0           0               0             0     
1

𝑇𝑊𝐹𝑘𝑖

]

𝑇

                     (12) 

The disturbance matrix 𝐶𝑖 is  

𝐹𝑖 = [ −
1

2𝐻𝑖
       0      0      0      0      0]

𝑇

                      (13) 

The output matrix 𝐶𝑖 is  

𝐶𝑖 = [𝛽𝑖       1      0      0      0      0]                         (14) 

It is noting that, only 𝐴𝑖𝑗(2,1) = −2𝜋 ∑ 𝑇𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 , while other elements are 0 in 𝐴𝑖𝑗. And that 

all the elements in 𝐵𝑖𝑗 are 0. 

With the state space model of area 𝑖, the state space model of inter-connected power system can 

be obtained as follows: 

{
�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑤
𝑦 = 𝐶𝑥

                                (15) 

where, 𝑥, 𝑢, 𝑤 are the state variable, control variable and disturbance variable of the inter-connected 

power system. 
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{

𝑥 = [𝑥1
𝑇    𝑥2

𝑇    ⋯    𝑥𝑁
𝑇]𝑇

𝑢 = [𝑢1
𝑇    𝑢2

𝑇    ⋯    𝑢𝑁
𝑇 ]𝑇

𝑤 = [𝑤1   𝑤2  ⋯    𝑤𝑁]𝑇
                             (16) 

The state matrix of the inter-connected power system is as follows: 

𝐴 = [

𝐴11  𝐴12  ⋯   𝐴1𝑁

𝐴21   𝐴22  ⋯   𝐴2𝑁

⋮       ⋮     ⋱   ⋮ 
𝐴𝑁1   𝐴𝑁2 ⋯   𝐴𝑁𝑁

] , 𝐵 = [

𝐵11   𝐵12  ⋯   𝐵1𝑁

𝐵21   𝐵22  ⋯   𝐵2𝑁

⋮       ⋮     ⋱   ⋮
𝐵𝑁1   𝐵𝑁2  ⋯  𝐵𝑁𝑁

]                  (17) 

{
𝐹 = 𝑑𝑖𝑎𝑔{𝐹1    𝐹2    ⋯    𝐹𝑁}

𝐶 = 𝑑𝑖𝑎𝑔{𝐶1   𝐶2   ⋯    𝐶𝑁}
                               (18) 

where, 𝐴𝑖𝑖 = 𝐴𝑖 and 𝐵𝑖𝑖 = 𝐵𝑖 .  

3. Strategy of AGC with wind power integration  

In the latest Chinese national standard technical regulations (GB /t19963-2021) for wind farm 

integration, wind farms are supposed to participate in power system frequency regulation and peak 

load regulation. This section focuses on the strategy of wind farm participating in powers system AGC. 

3.1. Frequency control framework of wind farm participating in AGC based on MPC  

 

Figure 2. Wind Farm output power curve.  

Normally, the active power control command of the wind farm is set lower than its available 

power (maximum wind power that can be generated by wind turbine) to ensure the active power control 

capability. However, the above method is built on the assumptions that the actual power (the measured 

wind power) of the wind farm can track the power control command. In actual operation process, the 

available power of wind farm cannot reach the active power control command within a certain period 



8294 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8288-8303. 

due to the uncertainty and variability of wind power. At such time, the actual power generated by the 

wind farm would instead be the available power. The actual output curve of a wind farm in one day is 

shown in Figure 2. 

In Figure 2, it is assumed that the active power control command of the wind farm is 35MW and 

remains unchanged. It can be seen that the available power of the wind farm is higher than the active 

power control command during the time period of 00:30–04:15, 04:40–05:25, 10:30–13:45 and 17:20–

23:55. At these time periods, the actual generated power of the wind farm tracks the active power 

control command; In other periods, the available power of the wind farm is lower than the active power 

control command, and the actual output power of the wind farm is instead the real available power. 

The above analysis shows that the wind farm output power should be regarded as an additional 

system disturbance when the available power of the wind farm is lower than the active power control 

command. Otherwise, the wind farm can participate in the system AGC when the available power of 

the wind farm is greater than the control command. 

As a new computer control algorithm for industrial control process, MPC has the characteristics 

of high robustness, good control effect, strong adaptive ability and low requirement for model accuracy. 

In this paper, the AGC control strategy is proposed based on MPC controller. The overall control 

method is shown in Figure 3. 
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Figure 3. Diagram of AGC strategy based on MPC. 

The core idea of this strategy is:  

a) The total active power command of AGC system is calculated by MPC controller according to 

system frequency deviation and tie-line power flow; 

b) The situation of each wind farm, i.e., whether they can participate in frequency regulation, is 

judged by wind power prediction;  

c) Online rolling optimization is performed considering the output state of thermal generators and 

wind farms. After which, the active power control commands of wind farm and thermal generator are 
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calculated. 

3.2. Wind power prediction model considering wind power variogram characteristics  

It is noting that the control time step of AGC system is about 30s-1min, while the time-scale of 

ultra-short-term wind power prediction is 5–15 min [20]. The wind power prediction data of 5–15min 

scale could not be used as the control signal of AGC system. One of the solution is to generate a wind 

power prediction data with a time resolution of 1 min based on 5–15 minute wind power prediction 

data. The common algorithm is autoregressive integrated moving average model (ARIMA). However, 

the increasing wind power penetration leads to the fact that conventional AGC units may not be able 

to follow these variations as tightly as desired. Therefore, a more accurate and shorter time-scale 

prediction data may lead both the conventional units and wind farms to participate AGC system better.  

With the above analysis, it is necessary for the wind farm to provide wind power prediction data with 

a time scale of less than 1 min.  

3.2.1. Wind power variogram power law model in time domain 

Based on the variation characteristics of wind power, this paper proposed a method to estimate 

the variations of wind power with a time scale of 5 s–1 min based on the 15 min wind power prediction 

data. 

The variogram of the wind power output 𝑃(𝑡) during an interval [𝑡, 𝑡 + 𝛥𝑡] from 𝑡 to 𝑡 + 𝛥𝑡 

with 𝛥𝑡 duration is defined as 𝑃𝛾[𝑡, 𝛥𝑡] 

𝑃𝛾[𝑡, 𝛥𝑡] =
1

2
Var[𝑃(𝑡) − 𝑃(𝑡 + 𝛥𝑡)]                           (19) 

Let  

{
�̄�𝑊

∗ (𝑡) =
�̄�𝑊 (𝑡)

𝑃𝑁

𝑃𝛾
∗(𝑡,𝛥𝑡) =

𝑃𝛾(𝑡,𝛥𝑡)

𝑃𝑁
2

                                    (20) 

where, �̄�𝑊 (𝑡) is hourly average wind power with 15 min sampling interval;𝑃𝑁  is the maximum power 

of wind farm. �̄�𝑊
∗ (𝑡) and 𝑃𝛾

∗(𝑡,𝛥𝑡) are per-unit values. 

With the above definition, variation intensity 𝐼Var(𝑡) is defined as follows: 

𝐼Var(𝑡) =
[𝑃𝛾

∗(𝑡,𝛥𝑡)]
1
2

�̄�𝑊
∗ (𝑡)

                                     (21) 

𝐼Var(𝑡) is an index to measure the change intensity of wind power. 

By curve fitting, a three-power law model is presented as follows: 

𝐼Var(𝑡) = 𝛼 ⋅ [�̄�𝑊
∗ (𝑡)]𝛽 + 𝑐                                (22) 

where 𝛼, 𝛽 and 𝑐 are parameters of the power law model. 

With (21) and (22), the variogram of wind power can be predicted when �̄�𝑊 (𝑡) is obtained by 
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real-time measurement. 

3.2.2. Wind power prediction based on variogram power law model 

Suppose that the �̄�𝑊 (𝑡) is available. Then the variance of wind power can be predicted using the 

following equation: 

|𝛥𝑃𝑊(𝑡, 𝛥𝑡)| = 𝛼 ⋅ [�̄�𝑊
∗ (𝑡)]1+𝛽 + 𝑐 ⋅ �̄�𝑊

∗ (𝑡)                      (23) 

In (23), |𝛥𝑃𝑊(𝑡, 𝛥𝑡)| represents the absolute value of wind power variance. The plus-minus sign 

of |𝛥𝑃𝑊(𝑡, 𝛥𝑡)| is another important component, which can be obtained by  

𝛥𝑃𝑊(𝑡,𝛥𝑡) = {
𝛼 ⋅ [�̄�𝑊

∗ (𝑡)]1+𝛽 + 𝑐 ⋅ �̄�𝑊
∗ (𝑡)𝑃𝑎𝑣𝑒

(𝑡,𝑡+𝛥𝑡) > 0

−𝛼 ⋅ [�̄�𝑊
∗ (𝑡)]1+𝛽 − 𝑐 ⋅ �̄�𝑊

∗ (𝑡)𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) < 0

                  (24) 

where 𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) = (

1

𝑁
)∑ 𝑃𝑊(𝑡𝑖)

𝑁
𝑖=1  is the wind power moving average in the time interval [𝑡, 𝑡 + 𝛥𝑡]. 

𝑁 is the total number of sampling points. 

From (24), the predicted variation of wind farm output power can be expressed as  

𝛥𝑃𝑊,𝑖
𝑝𝑟𝑒(𝑡+ 𝛥𝑡) = {

|𝛥𝑃𝑊,𝑖(𝑡, 𝛥𝑡)|𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) > 0

−|𝛥𝑃𝑊,𝑖(𝑡,𝛥𝑡)|𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) < 0

                   (25) 

With (25), the prediction value of wind power at 𝑡 + 𝛥𝑡 is obtained 

𝑃𝑊,𝑖
𝑝𝑟𝑒(𝑡+ 𝛥𝑡) = {

𝑃𝑊,𝑖(𝑡) + |𝛥𝑃𝑊,𝑖(𝑡,𝛥𝑡)|𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) > 0

𝑃𝑊,𝑖(𝑡) − |𝛥𝑃𝑊,𝑖(𝑡,𝛥𝑡)|𝑃𝑎𝑣𝑒
(𝑡,𝑡+𝛥𝑡) < 0

                   (26) 

3.3. Prediction model of MPC 

From (25), the variation of wind power at 𝑡 + 𝛥𝑡 can be predicted by �̄�𝑊
∗ (𝑡). The predicted wind 

power variation sequence can be recorded as: 

𝛥𝑃𝑊𝐹𝑘,𝑖 = [𝛥𝑃𝑊𝐹𝑘,𝑖(𝑡+ 𝛥𝑡)⋯ 𝛥𝑃𝑊𝐹𝑘,𝑖(𝑡 + 𝑛𝛥𝑡)]                  (27) 

In Section 2, the state space model of (8) and (15) are continuous state space model. Using the 

zero-order holder discretization method, the discrete state space model of system (8) and (15) can be 

obtained as follows:  

{
𝑥𝑖(𝑘 + 1) = 𝐴𝑑,𝑖𝑥𝑖(𝑘) + 𝐵𝑑,𝑖𝑢𝑖(𝑘)+ 𝐹𝑑,𝑖𝑤𝑖(𝑘)+ ∑ (𝐴𝑑,𝑖𝑗𝑥𝑗(𝑘) + 𝐵𝑑,𝑖𝑗𝑢𝑗(𝑘))𝑗≠𝑖

𝑦𝑖(𝑘) = 𝐶𝑑,𝑖𝑥𝑖(𝑘)
       (28) 

{
𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝐹𝑑𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑑𝑥(𝑘)
                   (29) 

Where, 𝑥𝑖(𝑘),𝑢𝑖(𝑘),𝑤𝑖(𝑘),𝑦𝑖(𝑘),𝑥(𝑘),𝑢(𝑘),𝑤(𝑘) and 𝑦(𝑘) is the corresponding discrete variable 
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respectively；𝐴𝑑,𝑖,𝐵𝑑,𝑖,𝐶𝑑,𝑖,𝐹𝑑,𝑖,𝐴𝑑,𝑖𝑗,𝐵𝑑,𝑖𝑗, 𝐴𝑑,𝐵𝑑,𝐶𝑑 and 𝐹𝑑 is the discrete matrix respectively. 

Let 𝑁𝑝 be the prediction time domain，𝑁𝑐 be the control time domain； 𝑥𝑖(𝑘 + 𝜏|𝑘) and 

𝑦𝑖(𝑘 + 𝜏|𝑘)  is set as the state vector and output vector of time 𝑘 + 𝜏  predicted for time 𝑘 ; 

𝑢𝑖(𝑘 + 𝜏|𝑘) is set as the control vector of time 𝑘 + 𝜏 predicted for time 𝑘. 

3.4. Optimization model  

Based on the above analysis, the objective function of the interconnected power system is: 

𝑚𝑖𝑛
𝑢(𝑘+𝑁𝑐 |𝑘)

𝐽(𝑘) = ∑ [‖𝑦(𝑘+ 𝜏|𝑘)‖𝑄
2 + ‖𝑢(𝑘 + 𝜏|𝑘)‖𝑅

2]
𝑁𝑝

𝜏=1
                   (30) 

where, 𝐽(𝑘) is the objective function for time 𝑘; 𝑄 and 𝑅 is the diagonal weighting matrix for 

output variable and control variable respectively.  

System active power balance constraint is expressed as: 

∑ (∑ 𝛥𝑃𝐺𝑘,𝑖 +𝑚
𝑘=1 ∑ 𝛥𝑃𝑊𝐹𝑘,𝑖 − 𝛥𝑃𝑑,𝑖 −𝑛

𝑘=1 𝛥𝑃𝑡𝑖𝑒,𝑖)
𝑁
𝑖=1 = 0           (31) 

Active power output constraints of thermal generators is: 

�̱�𝐺𝑘,𝑖 ≤ 𝑃𝐺𝑘,𝑖(𝑡) ≤ �̄�𝐺𝑘,𝑖                           (32) 

Climbing rate constraint of thermal generators is: 

𝛥�̱�𝐺𝑘,𝑖 ≤ 𝛥𝑃𝐺𝑘,𝑖(𝑡) ≤ 𝛥�̄�𝐺𝑘,𝑖                         (33) 

Tie-line power deviation constraint is: 

𝛥�̱�𝑡𝑖𝑒,𝑖 ≤ 𝛥𝑃𝑡𝑖𝑒,𝑖(𝑡) ≤ 𝛥�̄�𝑡𝑖𝑒,𝑖                          (34) 

3.5. Feedback correction 

Due to the error of wind power prediction, the prediction sequence of each wind farm is corrected 

after each optimization to compensate the error in real time.  

The compensation strategy is as follows: The predicted wind power value at the next time interval 

is corrected according to the measured active power value of the wind farms.  

For example, 𝛥𝑃𝑊𝐹𝑘,𝑖(𝑘 + 1|𝑘)  is considered as the prediction wind power for time 𝑘 + 1 

predicted at time 𝑘. 𝛥𝑃𝑊𝐹𝑘,𝑖
∗ (𝑘 + 1|𝑘) is the measured wind power at time 𝑘 + 1. The corrected 

wind power can be written as: 

𝛥𝑃𝑊𝐹𝑘,𝑖
𝑐𝑜𝑟𝑟 (𝑘 + 1|𝑘) = 𝛥𝑃𝑊𝐹𝑘,𝑖(𝑘 + 1|𝑘) − 𝛥𝑃𝑊𝐹𝑘,𝑖

∗ (𝑘 + 1|𝑘)              (35) 

𝛥𝑃𝑊𝐹𝑘,𝑖
𝑐𝑜𝑟𝑟 (𝑘 + 1|𝑘)  is the corrected wind power for time 𝑘 + 2 . The influence of wind power 

prediction error on control effect is reduced by this method. 
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4. Simulation results 

The control strategy proposed in Section 2 is studied by a three area inter-connected power system. 

It is assumed that the installed capacity and generator deployment of each region is consistent. Each 

area has thermal generators and wind farms, and the total installed capacity of each area is 3352 MW, 

where thermal AGC generator capacity is 1946 MW and wind power installed capacity 1406 MW. 

GRCs of different type AGC units are 1.5, 2 and 4 per minute, respectively. The control time step of 

MPC is set as 1 min, while the prediction time domain is 15minpN =  and the control time domain 

15mincN = . 

Load curve of each area is shown in Figure 4. Curves are drawn by actual measured data from 

00:00 to 24:00. The load forecasting curve is obtained by 15-min average from actual load data. It is 

noting that, the load data of each area is assumed to be the same. The difference between each area is 

the control mode of AGC system.  

  

Figure 4. Three areas load curves. 

The actual wind power curve and the forecasting wind power curve are shown in Figure 5. It is 

noting that, the forecasting wind power curve in Figure 5 is calculated based on the wind power 

variograms with a temporal lag of 30 s. The forecasting accuracy is much better than that of the 15 

min wind power prediction.  
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Figure 5. Wind power forecasting curve. 

In order to compare the performance of different AGC strategies, three control modes are 

proposed in this section for in-depth analysis. Different control modes are list as follows: 

Control Mode I: MPC according to wind power prediction based on wind power variogram 

characteristics (MPC+VC); 

Control Mode II: MPC according to ultra-short-term wind power prediction based on ARMIA 

(MPC+UST); 

Control Mode III: Conventional PI control of AGC system; 

The frequency deviation curves of three regions are shown in Figure 6. Figure 6(a) is the 

frequency deviation curve of area 1 with Control Mode I. Figure 6(b) is the frequency deviation curve 

of area 2 with Control Mode II and Figure 6(c) is the frequency deviation curve of area 3 with Control 

Mode III.  

 
 

Figure 6(a). MPC+VC Figure 6(b). MPC+UST 
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Figure 6(c). PI control Figure 6(d). Enlarged drawing 

Figure 6. Frequency deviation curve of three areas. 

It can be seen from Figure 6 that each control mode can maintain the frequency deviation of each 

area at –0.1 ~ 0.1 Hz. With wind farms participate in AGC system, the frequency deviation is smaller 

than that of the conventional PI control of thermal generators. The control mode with prediction 

information based on wind power variogram characteristics has a better performance than the control 

mode with ultra-short-term wind power prediction information.  

In order to verify that the wind power variogram characteristics based method can improve the 

accuracy of wind power prediction and make rational use of the reserve capacity of wind farms, 

comparative studies are performed. The simulation results of thermal generator output power by 

variogram characteristic based wind power prediction method and normal ultra-short-term wind power 

prediction method are selected. The results are shown in Figure 7. 

 

Figure 7. Thermal generator output power curve. 
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In Figure 7, the output power curve of thermal generator by MPC + VC control mode is smoother 

than that of thermal generator by MPC + UST control mode. The active power control amplitude and 

control frequency of thermal power generators decreases when the wind farm participates in AGC. The 

participation of wind farm can well alleviate the frequency regulation pressure of thermal power 

generators. 

5. Discussion 

This paper proposes an AGC control strategy with wind power participation based on wind power 

variogram characteristics. Through simulation verifications, the following conclusions are obtained: 

1) Based on the wind power prediction data of AGC control time-scale, wind farm have more 

flexible reserves to enable the wind farm to participate in AGC system. The frequency stability of the 

power system with large-scale wind power is effectively improved. 

2) With the three-parameter power-law model, the variation of wind power in future can be 

predicted and taken as the prediction model. The actual available power of wind farm is compared 

with the predicted wind power, and the prediction error of is corrected to reduce the impact on AGC 

system. 

3) Simulation results show that with this new strategy, frequency deviations under wind power 

variations can be effectively decreased. The control strategy makes both conventional AGC generators 

and wind farms act in advance to race against time, and therefore reduce system frequency regulation 

pressure.  

Conflict of interest 

Authors declare no conflict of interest. 

References 

1. X. Chen, M. B. Mcelroy, Q. Wu, Y. Shu, Y. Xue, Transition towards higher penetration of 

renewables: an overview of interlinked technical, environmental and socio-economic challenges, 

J. Modern Power Syst. Clean Energy, 7 (2019), 1–8. https://doi.org/10.1007/s40565-018-0438-9 

2. C. Rahmann, S. I. Chamas, R. Alvarez, H. Chavez, D. Ortiz-Villalba, Y. Shklyarskiy, 

Methodological approach for defining frequency related grid requirements in low-carbon power 

systems, IEEE Access, 8 (2020), 161929–161942.  

https://doi.org/10.1109/ACCESS.2020.3021307 

3. Y. Fang, S. Zhao, E. Du, S. Li, Z. Li, Coordinated operation of concentrating solar power plant 

and wind farm for frequency regulation, J. Modern Power Syst. Clean Energy, 9 (2021), 751–759. 

https://doi.org/10.35833/MPCE.2021.000060 

4. Z. Zheng, J. Li, H. Sang. A hybrid invasive weed optimization algorithm for the economic load 

dispatch problem in power systems, Math. Biosci. Eng., 16 (2019), 2775–2794. 

https://doi.org/10.3934/mbe.2019138 

5. N. Nguyen, J. Mitra, An analysis of the effects and dependency of wind power penetration on 

system frequency regulation, IEEE Trans. Sustain. Energ., 7 (2016), 354–363. 

https://doi.org/10.1109/TSTE.2015.2496970 

https://doi.org/10.1007/s40565-018-0438-9
https://doi.org/10.1109/ACCESS.2020.3021307
https://doi.org/10.35833/MPCE.2021.000060
https://doi.org/10.3934/mbe.2019138
https://doi.org/10.1109/TSTE.2015.2496970


8302 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8288-8303. 

6. H. Ye, W. Pei, Z. Qi, Analytical modeling of inertial and droop responses from a wind farm for 

short-term frequency regulation in power systems, IEEE Trans. Power Syst., 31 (2016), 3414–

3423. https://doi.org/10.1109/TPWRS.2015.2490342 

7. Y. Wu, W. Yang, Y. Hu, P. Q. Dzung, Frequency regulation at a wind farm using time-varying 

inertia and droop controls, IEEE Trans. Ind. Appl., 55 (2019), 213–224. 

https://doi.org/10.1109/TIA.2018.2868644 

8. H. Luo, Z. Hu, H. Zhang, H. Chen, Coordinated active power control strategy for deloaded wind 

turbines to improve regulation performance in AGC, IEEE Trans. Power Syst., 34 (2019), 98–108. 

https://doi.org/10.1109/TPWRS.2018.2867232 

9. Z. Wang, W. Wu, Coordinated control method for DFIG-based wind farm to provide primary 

frequency regulation service, IEEE Trans. Power Syst., 33 (2018), 2644–2659. 

https://doi.org/10.1109/TPWRS.2017.2755685 

10. M. A. Kamarposhti, I. Colak, K. Eguchi, Optimal energy management of distributed generation 

in micro-grids using artificial bee colony algorithm, Math. Biosci. Eng., 18 (2021), 7402–7418. 

https://doi.org/10.3934/mbe.2021366 

11. J. Liu, G. Ren, J. Wan, Y. Guo, D. Yu, Variogram time-series analysis of wind speed, Renewable 

Energy, 99 (2016), 483–491. https://doi.org/10.1016/j.renene.2016.07.013 

12. Y. Guo, Q. Wang, D. Zhang, J. Wan, D. Yu, J. Yu, Anticipatory AGC control strategy based on 

wind power variogram characteristic, IET Renewable Power Gen., 14 (2020), 1124–1133. 

https://doi.org/10.1049/iet-rpg.2019.0723 

13. J. Kiviluoma, H. Holttinen, D. Weir, R. Scharff, L. Soder, N. Menemenlis, et al., Variability in 

large-scale wind power generation, Wind Energy, 19 (2016), 1649–1665. 

https://doi.org/10.1002/we.1942 

14. C. Wang, J. Tang, B. Jiang, Z. Wu. Sliding-mode variable structure control for complex automatic 

systems: a survey, Math. Biosci. Eng., 19 (2022), 2616–2640. 

https://doi.org/10.3934/mbe.2022120 

15. H. Zhao, Q. Wu, Q. Guo, H. Sun, Y. Xue, Distributed model predictive control of a wind farm for 

optimal active power controlpart ii: implementation with clustering-based piece-wise affine wind 

turbine model, IEEE Trans. Sustain. Energ., 6 (2015), 840–849. 

https://doi.org/10.1109/TSTE.2015.2418281 

16. H. Jiang, J. Lin, Y. Song, D. J. Hill, MPC-based frequency control with demand-side participation: 

a case study in an isolated wind-aluminum power system, IEEE Trans. Power Syst., 30 (2015), 

3327–3337. https://doi.org/10.1109/TPWRS.2014.2375918 

17. X. Kong, X. Liu, L. Ma and K. Y. Lee, Hierarchical distributed model predictive control of 

standalone wind/solar/battery power system, IEEE Trans. Syst. Man Cybernetics Syst., 49 (2019), 

1570–1581. https://doi.org/10.1109/TSMC.2019.2897646 

18. J. C. Sánchez, O. Marjanovic, M. Barnes, P. R. Green, Secondary model predictive control 

architecture for VSC-HVDC networks interfacing wind power, IEEE Trans. Power Del., 35 

(2020), 2329–2341. https://doi.org/10.1109/TPWRD.2020.2966325  

19. S. Desai, N. R. Sabar, R. Alhadad, A. Mahmood, Naveen Chilamkurti, Mitigating consumer 

privacy breach in smart grid using obfuscation-based generative adversarial network, Math. Biosci. 

Eng., 19 (2022), 3350–3368. https://doi.org/10.3934/mbe.2022155 

https://doi.org/10.1109/TPWRS.2015.2490342
https://doi.org/10.1109/TIA.2018.2868644
https://doi.org/10.1109/TPWRS.2018.2867232
https://doi.org/10.1109/TPWRS.2017.2755685
https://doi.org/10.3934/mbe.2021366
https://doi.org/10.1016/j.renene.2016.07.013
https://doi.org/10.1049/iet-rpg.2019.0723
https://doi.org/10.1002/we.1942
https://doi.org/10.3934/mbe.2022120
https://doi.org/10.1109/TSTE.2015.2418281
https://doi.org/10.1109/TPWRS.2014.2375918
https://doi.org/10.1109/TSMC.2019.2897646
https://doi.org/10.1109/TPWRD.2020.2966325
https://doi.org/10.3934/mbe.2022155


8303 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8288-8303. 

20. F. M. Butt, L. Hussain, A. Mahmood, K. Lone, Artificial intelligence based accurately load 

forecasting system to forecast short and medium-term load demands, Math. Biosci. Eng., 18 

(2021), 400–425. https://doi.org/10.3934/mbe.2021022 

©2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

javascript:void(0);
https://doi.org/10.3934/mbe.2021022

