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Abstract: In this work we investigate the connection between two fundamental features of solutions
of partial differential equations (PDEs), namely the crest factor and the length scale associated to each
solution. We illustrate how the crest factor of solutions of some linear and non-linear PDEs, including
the incompressible two-dimensional Navier-Stokes equations, has the capability for detecting turbulent
and non-turbulent behaviour.
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1. Introduction

In this work we study some properties of the so-called crest factor (CF) in solutions of partial
differential equations (PDEs) and we aim to elucidate the connection between the CF and the length
scale associated to each solution of PDEs. Furthermore we analyse how the CF can shed light on the
nature of turbulence in non-linear PDEs flows.

First we define the CF as the ratio between the sup-norm and the L2 norm of solutions, namely

C̃ f := L
d
2
∥u∥∞

J
1
2
0

,

where J0 :=
∫
Ω

u2 dx = ∥u∥22, ∥ϕ∥∞ = supx∈Ω |ϕ(x)| and L is the side length of the flat torus, that is
Ω = [0, L]d, with d the spatial dimension. It is therefore by definition dimensionless and it contains
important information on the “distortions” between the sup-norm (the amplitude) and the L2 norm of
the solution. It is in fact a standard measurement used in turbulence experiments in fluid dynamics [1].
It is also widely used in various fields of technology and engineering, where it has important
applications. For instance in electrical engineering for describing the quality of an alternating current
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power waveform [2]; in vibration analysis for estimating the amount of impact wear in a bearing [3];
in music in order to generate smooth signals and harmonics [4]; in physiology where it is used to
study human response and discomfort to vibrations [5], and to decipher the sound of snoring [6].

In the context of PDEs, the crest factor of a given solution “captures” the fluctuations and distortions
between the “amplitude” measured by the sup-norm and the L2 norm of that particular solution.

Hence effectively by measuring the crest factor of a solution one obtains some very important
features shown by the solution itself. In particular if the crest factor is of order one then the dynamics
is relatively “mild”, in the sense that the solution does not have major excursions in space-time.
However when the sup-norm of the solution becomes much larger with respect to its spatial average,
it suggests that the solution does have significant fluctuations in space-time; these intermittent
fluctuations away from the averages are one of the characteristic signature of hard turbulence.

In the light of this we will therefore say that a given solution of a PDE shows turbulent behaviour
if its corresponding CF shows turbulent behaviour, namely if it is time-dependent but not in a periodic
or quasi-periodic fashion, and in addition if it is not of order one.

This definition seems to capture the essential features of turbulent and non-turbulent solutions of
PDEs. In the following we will endeavour to elucidate our definition of turbulent behaviour by
analyzing some classical PDEs and their solutions in the various cases where turbulent features are
either present or absent. But before doing that let us make the important remark that the crest factor
can naturally be computed for the solutions of any PDE possessing the classical properties of
existence, uniqueness and regularity of its solutions. The same can be said regarding the boundary
conditions used for the solutions of the PDE under investigation, that is one can compute the crest
factor using other types of boundary conditions such as (for example) Dirichlet boundary conditions.

The main tool for our analysis is computing various Sobolev norms of the solutions of appropriate
PDEs; we will then compute the CF associated to these solutions. The aim is to show on the one
end that when the CF is not time-dependent, then the corresponding solution does not have turbulent
behaviour in its evolution; on the other end if the CF depends explicitly on time and in addition is not
of order one, then the solution does possess turbulent behaviour in its dynamics.

2. Functional settings and notation

Let us first give a brief standard preliminary functional setting and notation [7–9]. Denote by
Ω = [0, L]d the d−dimensional torus; for any scalar function ϕ(x) with x ∈ Ω let

∥ϕ∥p =

(∫
Ω

|ϕ(x)|p dx
) 1

p

be the norm associated with the Banach space of Ω−periodic functions; we also define the L∞ norm as

∥ϕ∥∞ = sup
x∈Ω
|ϕ(x)| .

For p = 2 we denote by L2(Ω) the Hilbert space of Ω−periodic functions ϕ with ∥ϕ∥2 < +∞. Given a
multi-index n⃗ = (n1, n2, . . . , nd), with all the ni non-negative integers, let |⃗n| = n1 + . . . + nd and

Dn⃗ :=
∂|⃗n|

∂xn1
1 ∂x

n2
2 · · · ∂x

nd
d

,
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and let define the subset of periodic functions on the d−dimensional torus Ω{
ϕ :

∫
Ω

(Dn⃗ϕ)2dx < +∞ for all n⃗ such that |⃗n| = n
}
.

as the Sobolev space of Ω−periodic functions with up to n−derivatives in L2(Ω).
Furthermore, given a solution of a PDE, we define the seminorms

Jn :=
∑

n1,...,nd≥0
n1+...+nd=n

n!
n1! · ·nd!

∥Dn⃗u∥22. (2.1)

In (2.1), we naturally identify the functions having the same “mixed” partial derivatives, because
it is well known that the solutions of regular PDEs are sufficiently smooth [8–10]; for example we
identify the differential operators

∂n1+n2+···+nd

∂xn1
1 . . . ∂x

ni
i . . . ∂x

n j

j . . . ∂x
nd
d

≡
∂n1+n2+···+nd

∂xn1
1 . . . ∂x

n j

j . . . ∂x
ni
i . . . ∂x

nd
d

, (2.2)

and of course any other possible combination of the indices. Also from Parseval’s identity we have that

Jn :=
∑

n1,...,nd≥0
n1+...+nd=n

n!
n1! . . . nd!

∥Dn⃗u∥22 = Ld

(
2π
L

)2n ∑
k∈Zd

|k|2n|uk|
2 . (2.3)

In (2.3) the Fourier series expansion has been used,

ϕ(x) =
∑
k∈Zd

ϕk e2πik·x/L,

and
|k|2 = k · k = k2

1 + k2
2 + . . . + k2

d.

By the same token the definition of Sobolev space can be extended to any real number s as

H s :=
{
ϕ =

∑
k∈Zd

ϕk e2πik·x/L : ϕk = ϕ−k and
∑
k∈Zd

|k|2s|ϕk|
2 < +∞

}
, (2.4)

and the corresponding norm is given by

∥ϕ∥2Hs := Ld

(
2π
L

)2s ∑
k∈Zd

|k|2s|ϕk|
2 .

3. Connection between the CF and the length scale of solutions of PDEs

In this section we wish to analyse the connection between the CF and the length scale of solutions
of PDEs. Let us take our formula for the CF, namely

C̃ f := L
d
2
∥u∥∞

J
1
2
0

. (3.1)
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First of all, for the convenience of the reader, we report here the results contained in [11,12], where we
derived sharp estimates for the ∥u∥∞ of typical solutions u(x, t). Note that in general we cannot assume
that the solutions of our equation have zero-mean. Hence we have to “carry along” the mean value of
our solutions. Thus suppose that

∫
Ω

u(x) dx , 0 and write u(x) = u∗ + u′(x), where u∗ = const , 0 and∫
Ω

u′(x) dx = 0. Then using the inequality

|u∗| = L−d
∣∣∣∣∣∫
Ω

u(x) dx
∣∣∣∣∣ ≤ L−

d
2 J

1
2
0 (3.2)

and defining J′0 := ∥u′∥22, we obtain [33]

∥u∥∞ ≤ |u∗| + ∥u′∥∞ ≤ L−
d
2 J

1
2
0 + c(n)(J′0)

2n−d
4n J

d
4n
n , (3.3)

with n ≥ 1 and c(n) a suitable constant, where we have used a Gagliardo-Nirenberg inequality to obtain
the estimate on ∥u′∥∞. By substituting u = 1 in (3.2) we see that the constant L−

d
2 is sharp. Therefore

we obtain the following estimate

∥u∥∞

J
1
2
0

≤
|u∗| + ∥u′∥∞

J
1
2
0

≤ L−
d
2 +
∥u′∥∞

J
1
2
0

.

Hence by using (3.3) we obtain

∥u∥∞

J
1
2
0

≤ L−
d
2 + c(n)

(
Jn

J0

) d
4n

(
J′0
J0

) 2n−d
4n

.

It is useful to concentrate on the “pure” distortion between the sup-norm and the L2 norm for non-
constant solutions (note that of course purely time dependent functions or constants have crest factor
equal to 1). Bearing this in mind one obtains

C̃ f = 1 +C f , C f := L
d
2
∥u′∥∞

J
1
2
0

≤ c(n)L
d
2

(
Jn

J0

) d
4n

, (3.4)

where the last bound follows noting that J′0 ≤ J0. Since one has trivially C f = 0 if u(x, t) does
not depend on x, in order to estimate the crest factor we may assume in the following that u′ is not
identically zero. Hence Jn > 0 for all n ≥ 0.

We now wish to establish the close connection between the CF and the length scale of a given
solution of a PDE. The definition of scale we use is that obtained in [13–15], namely

l−
d
2 = c(n)

(
Jn

J0

) d
4n

. (3.5)

Here with l we indicate the length scale and the c(n) are the constants appearing in the Gagliardo-
Nirenberg inequality. Thus by looking at (3.5) one can see the following

C f := L
d
2
∥u′∥∞

J
1
2
0

≤ L
d
2 c(n)

(
Jn

J0

) d
4n

=

(L
l

) d
2

. (3.6)
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The ideal result would be to have a time-pointwise estimate of C f . However this is very difficult due to
the nonlinearity of the equation. Alternatively one could try to estimate the time-asymptotic behaviour
of C f , but this also proves to be very hard to handle and it is essentially due to the lack of knowledge
of a “decent” lower bound on the quantity J0, namely an estimate of the form J0(t) ≥ α > 0, where
α is a “not too large” positive constant. The problem of estimating the lower bound appears in many
contexts in the theory of nonlinear dissipative PDEs, such as for example in the theory of the Navier-
Stokes equations where it is notoriously very hard to find a “proper” lower bound for the energy even
on the torus [16]. Nevertheless one can generally compute the time-average of the crest-factor C f . For
instance, taking one of the most commonly used models as a representative PDE, namely the classical
Fisher-Kolmogorov-Petrovski-Piskunov Equation (FKPPE) [17, 18]

ut = ∆u + λu − u3. (3.7)

For simplicity we analyse the one-space dimension case (for more details see [19]):

ut = uxx + λu − u3, (3.8)

with periodic boundary conditions on Ω = [0, L].
In one space dimension it is sufficient to have control on J0 and J1 in order to have control on

the sup-norm of any solution of any PDE; this follows from the classical interpolation inequalities of
Gagliardo-Nirenberg and Agmon [7]. Thus we start with the analysis of J0.

Take the time-dependent quantity J0(t) =
∫
Ω

u2(x, t) dx and differentiating it with respect to time one
finds

1
2

J̇0 = −J1 + λJ0 −

∫
Ω

u4 dx. (3.9)

Note that, for non-trivial behaviour, we see that we must have a restriction on the values of the

parameter λ; in fact, noting that −
∫
Ω

u4 dx ≤ −
J2

0

L
, it follows that (4.17a) becomes

1
2

J̇0 ≤ −J1 + λJ0 −
J2

0

L
. (3.10)

Hence one can see that if λ ≤ 0 the zero solution becomes a global attractor. Also, from the linearisation
of our PDE, one finds that the first eigenvalue of the Laplacian on periodic boundary conditions on a

periodic domain Ω = [0, L] is
(
2π
L

)2

. Therefore for non-trivial behaviour we take λ >
(
2π
L

)2

. Also by

taking the time average of (3.6) we see that for d = 1 we need the time average of
J1

J0
. So looking at

(3.10), by dividing for J0 and time averaging one obtains〈 J1

J0

〉
≤ λ −

〈 J0

L

〉
. (3.11)

A standard interpolation inequality gives

∥u∥∞ ≤
(

J1

J0

) 1
4

J
1
2
0 + L−

1
2 J

1
2
0 . (3.12)
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If we multiply through by L
1
2 J−

1
2

0 and then we take the time average we obtain

C̃ f = 1 +C f =
〈
L

1
2
∥u∥∞

J
1
2
0

〉
≤ 1 + L

1
2
〈 (

J1

J0

) 1
4 〉
≤ 1 + L

1
2
〈 J1

J0

〉 1
4
≤ 1 + L

1
2

[
λ −

〈 J0

L

〉] 1
4

. (3.13)

From now on we will focus on the term

C f ≤ L
1
2

[
λ −

〈 J0

L

〉] 1
4

, (3.14)

that is we focus on the mean zero part of the solutions of our equations.
Formula (3.14) is quite expressive and reveals that the time average of the ratio between the “peak

to the root mean square” scales like (3.14) as a function of the positive parameter λ. So for small
λ it is small as it should be, and in general it increases following the estimate given above. This is
in agreement with a qualitative analysis of the solutions of the FKPPE. Furthermore (3.14) reveals
the intimate connection between the estimates for the crest factor, the dissipative length scale and the
fractal dimension of the global attractor of any dissipative PDE. We believe this strong correlation
should be further investigated with the aim to make clearer the relationship among these basic features
of any solution of PDEs.

4. Analysis of solutions of PDEs and crest factor

In this section we will illustrate our definition of turbulent and non-turbulent solution of PDEs with
some classical examples whose solutions provide the necessary properties to be used in the analysis of
the CF. The problem of turbulence is well known to everyone working in the field of analysis of the
NSE and more generally to people studying nonlinear PDEs [20, 21]. Nevertheless, to the best of our
knowledge, all the results on the crest factor reported in this paper (and the related ones [19, 22, 23])
are new.

Linear PDEs

1. We start with the steady states solutions of PDEs such as the Laplace equation. Here the CF is
constant and so the solutions of this class of equations cannot have turbulent behaviour. This is
of course quite expected.

2. Our second example is the set of linear parabolic separable PDEs. The prototype of this class of
PDEs is the heat equation on the torus. Here the solutions u(x, t), in one spatial dimension (by
using standard notation for x and t), can be cast into the form u(x, t) =

∑
n Xn(x)Tn(t), with the

Xn(x) depending upon the initial datum and the Tn(t) standard decaying exponentials. So one can
see that the CF of these solutions is damped away in time and it will tend to a constant limit. Thus
the solutions of linear parabolic PDEs such as the heat equation on the torus cannot have turbulent
behaviour.

3. We now consider the class of linear hyperbolic separable PDEs. The prototype of this set of
equations is the wave equation on the torus. Here the fundamental solution is made up of an
infinite superposition of trigonometric oscillating modes both in space and time. So the
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corresponding CF for these solutions will follow a time-periodic evolution and so according to
our definition of turbulent solutions one can see that the solutions of the wave equation cannot
have turbulent behaviour. Similar results are obtained for any other linear hyperbolic separable
PDEs on the torus.

4. If one considers other type of boundary conditions or infinite domains then by using similar
arguments one can see that the solutions of linear PDEs do not show turbulent behaviour; think
for example of the d’Alembert solution for the wave equation in one or more spatial dimensions.

Nonlinear PDEs

1. For nonlinear PDEs let us start with the class of equations having the so-called soliton solutions
[24,25]. The prototype for this class of nonlinear PDEs is the Korteweg-de Vrie (KdV) equation,
namely

ut − 6uux + uxxx = 0.

On the line a classical solution of the KdV equation is given by

u(x, t) = −
c
2

sech2
[ √c

2
(x − ct − a)

]
,

where c and a are constants. Here one can see that the CF on a moving frame is again constant
and so a solitonic solutions cannot have turbulent behaviour. This is obvious as this class of non-
linear PDEs belongs to the so-called class of integrable infinite-dimensional PDEs and so there is
absence of any chaotic behaviour (let alone turbulent behaviour) in their solutions.

2. Another class of widely studied nonlinear PDEs is the so-called class of reaction-diffusion
equations. We have already analysed the FKPPE in section 3 as a model representative to
illustrate the computation of the crest factor and in one space dimension we found the estimate

C f ≤ L
1
2

[
λ −

〈 J0

L

〉] 1
4

. (4.1)

Another classical model which we use to understand how the crest factor gives useful information
on the nature of solutions of the set of reaction-diffusion PDEs is the Bi-Laplacian FKPPE, namely

ut = −uxxxx + λu − u3, (4.2)

in one space dimension and with periodic boundary conditions on Ω = [0, L].
The presence of the Bi-Laplacian instead of the Laplacian changes the contribution of the first
term in all our differential inequalities. We begin with J0, that is

1
2

J̇0 = −J2 + λJ0 −

∫
Ω

u4. (4.3)

Observing that −J2 ≤ −
J2

1

J0
and that −

∫
Ω

u4 ≤ −
J2

0

L
, and dividing by J0 and taking the time average

one has 〈 (
J1

J0

)2 〉
≤ λ −

〈 J0

L

〉
.
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Therefore the crest factor is bounded above by (use that in (3.6) one has c(1) = 1 ( see [27, 28]))

C f ≤
〈
L

1
2

(
J1

J0

) 1
4 〉
≤ L

1
2
〈 (

J1

J0

)2 〉 1
8
≤ L

1
2

(
λ −

〈 J0

L

〉) 1
8

. (4.4)

The estimates above shed light on some of the features of the dynamics of the solutions of our
two models of reaction diffusion equations. In fact for the FKPPE in one space dimension, the
time average of the ratio between the “peak to the root mean square” (i.e. the crest factor) scales
like (4.1) as a function of the positive parameter λ.
So the dependence is somewhat mild and does not grow very fast such as an exponential in λ.

Note that the quantity λ −
〈 J0

L

〉
is always positive. This in turn suggests that our model PDE

cannot have hard turbulent behaviour unless one takes a relatively large parameter λ.
For solutions of the Bi-Laplacian FKPPE the crest factor scales like (4.4). This estimate shows
again that the solutions of the Bi-Laplacian FKPPE cannot possess hard turbulent behaviour
unless λ is very large. So from these two typical reaction diffusion PDEs one can conclude that
the solutions of this set of dissipative PDEs have in general soft turbulent behaviour provided the
bifurcation parameter λ is not too large. For more details about these two model PDEs see [19].

The incompressible two-dimensional Navier-Stokes equations on the torus with large Reynolds
number

We now consider one of the most important systems of classical dynamics, namely the incompressible
two spatial dimensions Navier-Stokes equations (NSE) on the periodic domain Ω = [0, 2π]2,

ut + (u · ∇)u = ν∆u − ∇P + f , ∇ · u = 0, ∇ · f = 0, u(0) = u0. (4.5)

We call u = (u1, u2) the velocity vector, P the pressure, f the external force applied to the fluid and ν the
kinematic viscosity. We assume that our force is periodic in space and independent of time. In addition
we suppose that it belongs to the Sobolev space L2(Ω) together with its n spatial derivatives. We note
however that our analysis still holds for force functions which are bounded above and below both in
space and time. Such a class includes the bounded (above and below) time periodic and quasi-periodic
functions. Rigorous results [8–10, 26] for the Navier-Stokes flow on the two-dimensional torus show
that for any periodic and divergence free initial condition u0 ∈ J1 and any force f ∈ L2(Ω) there is
a unique solution which depends continuously on the initial condition u0.We take the spatial average
of both the velocity field and the force field to be zero, namely we suppose that (all the integrals are
evaluated on the domain Ω = [0, 2π]2)∫

u(x, t)dx = 0, and
∫

f (x)dx = 0.

Below we are going to use the Brezis-Gallouet inequality with explicit constants, and so we need to
have an as accurate as possible estimate of the J1(t) norm which appears in the denominator.

Recall that the Brezis-Gallouet inequality states that for any J2 mean-zero function ϕ(x, y) on the
two dimensional torus we have (see formula (48) in [11])

∥ϕ∥2∞ ≤
∥∇ϕ∥22

4π
[
η + ln δ

]
, (4.6)

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8273–8287.



8281

where 1 ≪ δ :=
∥∆ ϕ∥22
∥∇ ϕ∥22

, ϵ :=
1

ln δ
≪ 1, and η := 1.24 + γ + O(ϵ) ≃ 1.82 + O(ϵ), with γ ≃ 0.58 being

the Euler-Mascheroni constant.
In the vector case u = (u1, u2), as for example in our case of the two-dimensional Navier-Stokes

equations, the explicit constants are essentially the same (see ( [12]) for a detailed analysis). Note that
here we use the vector version of the Jn, that is

Jn :=
2∑

i=1

∑
n1,...,nd≥0

n1+...+nd=n

n!
n1! . . . nd!

∥Dn⃗ui∥
2
2. (4.7)

Using the Jn above, in [12] it is shown that

∥u∥2∞ ≤
J1

4π

[
η̂ +

1
2

ln
(

J2

J1

)]
, (4.8)

where η̂ = η −
1
4

ln(4c1c2), and c1, c2 are two positive constants such that c1 + c2 = 1.
We can cast (4.8) into the form

∥u∥∞ ≤

√
J1

4π

[
η̂ +

1
2

ln J2 −
1
2

ln J1

] 1
2

. (4.9)

Analysing the term −J1 ln J1 one can see that it has a maximum at the value
1
e

and hence

∥u∥∞ ≤

√
1

4π

[
J1(η̂ +

1
2

ln J2) +
1
2e

] 1
2

. (4.10)

In order to compute the crest factor we need to divide by some seminorm which in principle can become
very small, causing unwanted complications. Therefore a way to control this division is to include the
forcing term into the evolution of the Jn by adding the set of seminorms

Φn :=
2∑

i=1

∑
n1,...,nd≥0

n1+...+nd=n

n!
n1! . . . nd!

∥Dn⃗ fi∥
2
2, (4.11)

where fi are the components of the periodic time independent forcing function. We wish to add the
Φn to the Jn for each n, and so in order to make the involved quantities dimensionally equivalent we
multiply each Φn by the quantity τ2 = L4ν−2 with L = 2π in our case (for more details see [13, 14]).
Hence we obtain

Fn = Jn + τ
2Φn.

Note that Jn ≤ Fn and τ2Φn ≤ Fn.

We can now compute the crest factor for the solutions of the two-dimensional NSE on the torus.
Using the Fn we can rewrite (4.10) as follows:

∥u∥∞ ≤

√
F1

4π

[
η̂ +

1
2

ln J2 +
1
2e

1
F1

] 1
2

≤

√
F1

4π

[
η̂ +

1
2

ln J2 +
1
2e

1
τ2Φ1

] 1
2

. (4.12)
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We then multiply by
L

F
1
2
0

with L = 2π and we time average obtaining

C f =
〈
L
∥u∥∞

F
1
2
0

〉
≤

L
√

4π

〈 [
F1

F0

(
η̂ +

1
2

ln J2 +
1
2e

1
τ2Φ1

)] 1
2 〉
. (4.13)

Splitting the time average

〈 [
F1

F0

(
η̂ +

1
2

ln J2 +
1
2e

1
τ2Φ1

)] 1
2 〉
≤

〈F1

F0

〉 1
2
〈
η̂ +

1
2

ln J2 +
1
2e

1
τ2Φ1

〉 1
2

we obtain

C f =
〈
L
∥u∥∞

F
1
2
0

〉
≤

L
√

4π

〈F1

F0

〉 1
2

[
η̂ +

1
2

ln
〈
J2

〉
+

1
2e

1
τ2Φ1

] 1
2

, (4.14)

where in the logarithm term we have used the Jensen inequality and L = 2π.
The formula above expresses the non-dimensional crest factor for solutions of the two dimensional

NSE. So we need to estimate the quantities 〈F1

F0

〉
,

〈
J2

〉
and substitute them into (4.14). To this aim we use the following result with the details contained
in [13, 14]:

1
2

Ḟn ≤ −νFn+1 +
[
cn ∥Du∥∞ + νλ−2

n

]
Fn. (4.15)

were cn are the constants appearing in the embedding theorem of Gagliardo and Nirenberg and

λ−2
n :=

[
Φn+1

Φn
+

1
L2

]
. Considering the above differential inequality in the two dimensional case for

n = 0, 1 one obtains

1
2

Ḟ0 ≤ −νF1 + νλ
−2
0 F0, (4.16a)

1
2

Ḟ1 ≤ −νF2 + νλ
−2
1 F1. (4.16b)

We also need the differential inequalities for J0 and J1 which are

1
2

J̇0 ≤ −νJ1 + J
1
2
0Φ

1
2
0 , (4.17a)

1
2

J̇1 ≤ −νJ2 + J
1
2
1Φ

1
2
1 . (4.17b)

In order to obtain
〈F1

F0

〉
we divide (4.16a) by F0, we then time average to obtain

〈F1

F0

〉
≤ λ−2

0 . (4.18)
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To compute
〈
J2

〉
we take the time average of (4.17b)

〈
J2

〉
≤

〈
J

1
2
1Φ

1
2
1
〉

ν
≤

〈
J1

〉 1
2Φ

1
2
1

ν
. (4.19)

Similarly from (4.17a) one has 〈
J1

〉
≤

〈
J

1
2
0Φ

1
2
0
〉

ν
≤

〈
J0

〉 1
2Φ

1
2
0

ν
. (4.20)

Here we need the result that for any function f (t) with a bounded time average and initial condition
inside the global attractor one has

〈
f
〉
≤ f where f := lim

t→∞
f .

The time-asymptotic behaviour of J0(t) can be obtained from (4.17a) as follows: first we take a
Poincaré inequality on the torus with side length L = 2π giving J0 ≤ J1 and use it in (4.17a), then solve
the closed differential inequality for J0 obtaining

J0 := lim sup
t→∞

J0(t) ≤
Φ0

ν2 , (4.21)

where the limit superior is taken over all the initial data inside the attractor. Inserting the above
inequality in (4.20) we finally get 〈

J1
〉
≤
Φ0

ν2 . (4.22)

Substituting into (4.19) one has 〈
J2

〉
≤
Φ0Φ1

ν2 . (4.23)

Thus by inserting the estimates (4.18) and (4.23) in the estimate (4.14), we can now state the
following result:

Theorem: For large Reynolds numbers, the time-averaged crest factor for the two-dimensional
incompressible NSE on the torus obeys the estimate

C f =
〈
L
∥u∥∞

F
1
2
0

〉
≤

1
√

4π

L
λ0

[
η̂ +

1
2

ln
(
Φ0Φ1

ν2

)
+

1
2e

1
τ2Φ1

] 1
2

, (4.24)

where

λ−2
0 :=

[
Φ1

Φ0
+

1
L2

]
, τ := L2ν−1, L = 2π.

Looking at the theorem above one can see that, for very small ν, the crest factor for the solutions of

the two-dimensional NSE on the torus has the term ln
(
Φ0Φ1

ν2

)
and so goes like

1
ν2 logarithmically; this

is effectively saying that the crest factor of the solutions ”follows” the scale of the forcing function

through the term
L
λ0

modulus a logarithmic correction. In other words one can say that the solutions

of the the two-dimensional NSE on the torus do not generally show strong turbulent behaviour unless

the term (involving the forcing)
[
Φ1

Φ0

]
is very large, or the viscosity parameter is extremely small,

and so very close to the inviscid limit which coincide (on the torus) with the two-dimensional Euler
equations [29].

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8273–8287.



8284

5. Conclusions

Given the universally acknowledged consensus that understanding the nature of turbulence is an
extremely complicated issue, we can certainly say that any little light shed on this problem ought to
be very welcome. That said, in this work we have stated a criterion for discerning if a solution of a
particular PDE shows turbulent or non-turbulent behaviour. Our criterion (and it may help reporting it
here again) is:

A solution of a PDE shows turbulent behaviour if its corresponding crest factor (CF) shows turbulent
behaviour, namely if it is time-dependent but not in a periodic or quasi-periodic fashion, and in addition
if is not of order one.

We believe this definition captures the intrinsic character of turbulence, namely its erratic and
intermittent space-time evolution. We believe that one way of measuring the intermittent behaviour
contained in a given solution of a PDE is analysing its corresponding CF. Hence if its CF is
time-independent or time periodic or quasi-periodic then the given solution does not show turbulent
behaviour. According to this, we have shown that the solutions of linear PDEs and the solutions of the
so-called completely integrable non-linear PDEs do not have any turbulent behaviour in their
evolution. On the other hand, in the case where the CF is time-dependent but not in a periodic or
quasi-periodic way, we distinguish between two fundamentally different regimes:

1. The CF is of order one. We call this regime soft or mild turbulent regime. This appears to be quite
natural because we are in a situation where the sup-norm and the L2 norm of the solution are close
to one another. Therefore no strong intermittent excursions are experienced by the solution.

2. The CF is not of order one. We call this regime strong or hard turbulent regime. Again this is also
quite natural because here the solution does have relevant and intermittent excursion away from
its mean square space average. These strong fluctuations are one of the fundamental hallmark of
turbulence. Thus, it appears that the CF is able to extract this feature in any turbulent solution in
non-linear PDEs.

In the light of the two regimes above we have found that the solutions of the so-called non-linear
reaction-diffusion PDEs can show both regimes depending upon the value of the ”bifurcation”
parameter λ. More precisely for λ relatively small we are in a soft regime. As the parameter λ
increases we tend to go to a potentially hard turbulent regime.

The same can be said for the incompressible two-dimensional Navier-Stokes equations on the torus.
Here the solutions normally have mild turbulent behaviour unless one chooses forcing functions which

make the term
[
Φ1

Φ0

]
large, or take the kinematic viscosity extremely small, thereby going towards the

two-dimensional forced Euler equations [29].
It would be also very interesting to compute the crest factor for the three-dimensional NSE on the

torus. Here we are still plagued by the fact that we do not yet know about existence, uniqueness and
regularity of the solution for all time for large Reynolds numbers. This open problem is one of the
seven Clay Millennium Prize Problems. To its solution there is attached the prize of one million US A
dollars. However one can compute a “conditional” CF for the three-dimensional NSE as a function of
the vorticity field. It turns out that in this case the time averaged CF would depends in an essential way
upon the sup-norm of the vorticity field.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8273–8287.



8285

We conclude with the remark that it would be very desirable to generate very efficient programs
to compute the crest factor for typical nonlinear PDEs. It is well known that, due to the non-linearity
of some PDEs, it is generally difficult to achieve accurate, let alone sharp, analysis of their solutions.
Hence constructing efficient numerical and software programs for computing the crest factor would be
very welcome. Some interesting results addressing this topic are in the papers [30, 31].

Conflict of interest

The authors declare there is no conflict of interest.

References

1. P. Voke, L. Kleiser, J. P. Chollet, Direct and Large-Eddy Simulation I: Selected papers from the
First ERCOFTAC Workshop on Direct and Large-Eddy Simulations, The University of Surrey,
Guildford, UK, 27-30 March 1994, Springer Science and Business Media, Springer, Dordrecht,
1994. https://doi.org/10.1007/978-94-011-1000-6

2. R. R. Singh, Basic Electrical Engineering, McGraw Hill, Chennai, 2018.

3. M. P. Norton, D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers,
Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9781139163927

4. M. Chasin, Musicians and Hearing Aids. A Clinical Approach, Plural Publishing, San Diego, 2022.

5. M. J. Griffin, Handbook of Human Vibration, Academic Press, London, 1990.

6. C. Jannot, Analysis and Management of Sleep Data, in Biomedical Signal Processing and
Artificial Intelligence in Healthcare, pp. 207–240, Ed. W. A. Zgallai, Elsevier, London, 2020.
https://doi.org/10.1016/B978-0-12-818946-7.00008-1

7. R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.

8. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition,
Appl. Math. Sci., 68, Springer, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3

9. J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, 2001.

10. A. V. Babin, M. I. Vishik, Attractors for evolution equations, Nauka, Moscow, 1989.

11. M. V. Bartuccelli, J. D. Gibbon, Sharp constants in the Sobolev embedding theorem and a
derivation of the Brezis-Gallouet interpolation inequality, J. Math. Phys., 52 (2011), 093706.
https://doi.org/10.1063/1.3638056

12. M. V. Bartuccelli, Sharp constants for the L∞-norm on the torus and applications to dissipative
partial differential equations, Differ. Integral Equ., 27 (2014), 59–80.

13. M. V. Bartuccelli, C. R. Doering, J. D. Gibbon, S. A. Malham, Length Scales in Solutions
of the Navier-Stokes equations, Nonlinearity, 6 (1993), 549–568. https://doi.org/10.1088/0951-
7715/6/4/003

14. C. R. Doering, J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts
in Applied Mathematics, Cambridge University Press, Cambridge, 1995.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8273–8287.

http://dx.doi.org/https://doi.org/10.1007/978-94-011-1000-6
http://dx.doi.org/https://doi.org/10.1017/CBO9781139163927
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818946-7.00008-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-0645-3
http://dx.doi.org/https://doi.org/10.1063/1.3638056
http://dx.doi.org/https://doi.org/10.1088/0951-7715/6/4/003
http://dx.doi.org/https://doi.org/10.1088/0951-7715/6/4/003


8286

15. S. A. Gourley, M. V. Bartuccelli, Length scales in solutions of a scalar reaction-diffusion equation
with delay, Phys. Lett. A, 202 (1995), 79–87. https://doi.org/10.1016/0375-9601(95)00334-Y

16. R. Dascaliuc, C. Foias, M. S. Jolly, Relations between the Energy and enstrophy on the
global attractor of the 2-D Navier-Stokes equations, J. Dyn. Differ. Equ., 17 (2005), 643–736.
https://doi.org/10.1007/s10884-005-8269-6

17. R. A. Fisher, The wave of advance of advantageous gene, Ann. Eugenics, 7 (1937), 335–369.
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

18. A. Kolmogorov, I. Petrovsky, N. Piskunov, Étude de l’équation de la diffusion avec croissance de
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