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Abstract: Glioblastoma is one of the most dangerous tumors for patients in clinical practice at present, 
and since glioblastoma originates from the brain, it will have a serious impact on patients. Therefore, 
more effective clinical therapeutic targets are still needed at this stage. Kinesin family member 15 
(KIF15) promotes proliferation in several cancers, but its effect on glioblastoma is unclear. In this 
study, differentially expressed gene analysis and network analysis were performed to identify critical 
genes affecting glioma progression. The samples were divided into a KIF15 high-expression group 
and KIF15 low-expression group, and the association between FIK15 expression level and clinical 
characteristics was summarized and analyzed by performing medical data analysis; the effect of KIF15 
on glioblastoma cell proliferation was detected by employing colony formation and MTT assays. The 
effect of KIF15 on tumor growth in mice was determined. It was found that KIF15 was a potential 
gene affecting the progression of glioblastoma. In addition, KIF15 was highly expressed in 
glioblastoma tumor tissues, and KIF15 was correlated with tumor size, clinical stage and other clinical 
characteristics. After the KIF15 gene was knocked out, the proliferation ability of glioblastoma was 
significantly inhibited. KIF15 also contributed to the growth of glioblastoma tumors in mice. Therefore, 
we found KIF15 to be a promising clinical therapeutic target. 

Keywords: glioblastoma; kinesin family member 15 (KIF15); proliferation; clinical characteristics; 
therapeutic target 

1. Introduction

Glioblastoma originating in the brain has been found to be one of the most dangerous types of
tumors in clinical studies for many years [1,2]. However, glioblastoma has a very strong metastatic 
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capacity, and distant metastasis will occur before radiotherapy or chemotherapy, so the effect of 
chemotherapy or radiotherapy is limited. According to the latest data, the prognosis of glioblastoma 
remained very poor from 2000 to 2022, with little change. When patients are diagnosed with 
glioblastoma, the 1-year survival rate is less than 65%, and the 5-year survival rate is nearly 5% [3–5]. 
In addition, glioblastoma also continuously infiltrates the surrounding normal brain tissue with a high 
degree of infiltration, and the high heterogeneity of glioblastoma cells brings great resistance to treatment; 
so, up to now, there is still a lack of a feasible treatment [6] in clinical practice. Over these years, 
glioblastoma has shown unprecedented strength in response to the application of targeted approaches [7]. 
More and more undiscovered therapeutic targets have been successfully identified, such as KPNB1 and 
EGFR [8,9]. However, we still need more favorable molecular therapeutic targets to fight the disease. 

There are many proteins in the driver protein superfamily, among which there is a relatively 
conservative motor protein [10]. Many kinin proteins exhibit ATP-dependent activity, and these 
proteins can travel along microtubule orbits [11,12]. Up to 45 kinase peptides have now been identified 
in normal mammalian cells [13]. These drivers play different but important roles in different cellular 
processes in various cells in the human body, including mitosis, cytokinesis and bipolar spindle 
assembly [14–16]. KIF15, also known as kinesin-12, is a tetramer spindle motor protein of the kinesin 
superfamily, which is involved in a variety of microtubule functions [17]. Previous studies have 
shown that KIF15 is expressed in neurons during nerve development in zebrafish, thereby affecting 
the growth of nerve cell axons. In addition, the KIF15 protein is also closely related to the migration 
of cortical astrocytes [18,19]. 

In the process of tumor genesis, KIF15 has been considered to have some influence on the 
generation and proliferation of some tumors; for example, KIF15 is related to the proliferation and 
metastasis of breast cancer cells [20] and tamoxifen resistance. It was also found that KIF15 is highly 
expressed in pancreatic cancer tissues and can promote the proliferation of cancer cells through the 
MEK-ERK signaling pathway [21]. Moreover, KIF15 is associated with the generation and metastasis 
of lung adenocarcinoma and can lead to a poor prognosis of the tumor. KIF15 has been found to play 
an important role in the proliferation and metastasis of many types of tumor cells, but the role of KIF15 
in glioblastoma remains unclear. 

After this study and discussion, we found that KIF15 is an important gene affecting the 
development of glioblastoma. Interestingly, we found that KIF15 is highly expressed in human 
glioblastoma tissues, and we explored the correlation between KIF15 expression level and 
clinicopathological features of glioblastoma patients. We have also shown that downregulation of 
KIF15 expression can reduce the proliferation of mouse glioblastoma cells and inhibit tumor growth. 
Therefore, we provide a new therapeutic target for the treatment of glioblastoma—KIF15. 

2. Materials and methods 

2.1. Bioinformation analysis 

DEG (Differential Expression Analysis) analysis of young and old rhesus macaques: The 
differential expression of differentially expressed genes (DEGs) in Grades 2 and 3 which were studied 
by using the edgeR software package. The nominal significance threshold P < 0.05 and fold change 
(FC) > 1 were used to identify the DEGs. Multiple test adjustments were made to the P values by using 
the Benjamini-Hochberg method to estimate the false discovery rate (FDR). Using two online 
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resources, namely, DAVID (https://david.ncifcrf.gov/) and g: Profiler (https://biit.cs.ut.ee/gprofiler/), 
evaluation of the DEG functional category (GO and KEGG) enrichment degrees was performed. 
Multiple test adjustments were made to the P values by using the Benjamini-Hochberg method to 
estimate the error detection rate (FDR). 

Network analysis: Using string analysis (String: Functional Protein Association Networks (string-
db.org)), we have constructed 429 DEG networks that have changed at Levels 3 and 4 compared to 
Level 2. The network is represented by the cell wall. CytoHubba software was used to analyze the hub 
genes in the network. 

2.2. Antibodies, primers and shRNA plasmids 

Rabbit anti-KIF15 (for immunohistochemistry (IHC) assays, 1∶50 dilution; for immunoblot 

assays, 1∶500 dilution; PA5-57305, Invitrogen, USA) and mouse anti-β-actin (1∶1000 dilution; 

ab8226, abcam, Cambridge, UK) were employed. Rabbit anti-Ki67 (for IHC assays, 1∶50 dilution; 

for immunoblot assays, 1∶1000 dilution; ab16667, abcam, Cambridge, UK) and rabbit anti-

proliferating cell nuclear antigen (PCNA) (for IHC assays, 1∶50 dilution; for immunoblot assays, 1∶

500 dilution; ab92552, abcam, Cambridge, UK) were also employed. 
The quantitative PCR primer sequences of KIF15 are as follows: forward, 5’-

AAGCAGGTAACATAAATCG-3’, and reverse, 5’-AATCCCGTAGTAAGAAGGT-3’. The qRT-PCR 
primer sequences of GAPDH are as follows: 5’-CGACCACTTTGTCAAGCTCA-3’ and 5’-
GGTTGAGCACAGGGTACTTTATT-3’. 

Ready-to-package AAV shRNA plasmids targeted by KIF15 (pAV-KIF15-shRNA, Catalog 
number: SH813982) were bought from the Addgene plc. The shRNA sequences targeted by KIF15 
were as follows: sense and 5’-AACCAACCAAGTAATGAAGGTGA-3’. 

2.3. Human tissue samples and analysis 

Sixty-two human glioblastoma tissue samples and corresponding adjacent tissue samples were 
collected from patients receiving routine treatment in Tianjin Lake Hospital. Tumor cells were then 
isolated from the mice. The clinicopathological characteristics of the patients, including age and 
clinical stage, were collected as shown in Table 1. The study has been approved by the Ethics 
Committee of Hubin Hospital in Tianjin. 

IHC was performed to observe the possible relationship between KIF15 presentation level and 
glioblastoma development. That is, the resulting sample was fixed in 4% PFA (Polyfluoroalkoxy,) for 
up to 30 minutes, after which we sealed it with 2% BSA (Bovine Serum Albumin Solution) for up 
to 20 minutes. KIF15, Ki67 and PCNA antibodies were cultured at room temperature for nearly 2 
hours. Diamobenzidine was used as a color substrate and cultured for 1.5 hours. 

KIF15 mainly exists in the cytoplasm of glioblastoma cells. The scoring method was as 
follows: 1 = 1–25% staining cells; 2 = stained cells 26–50%; 3 = 51–100% color cells. Color intensity 
has been divided as follows: 0 (no color), 1 (low color), 2 (medium color) and 3 (strong color). The 
expression level of KIF15 was determined by using a staining index: staining intensity score × staining 
cell percentage score. A color index < 4 indicated low expression, and a color index of 4 or > 4 
indicated high expression. The experimental results were analyzed by Double-blind method. 
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Table 1. Relationship between MUC21 expression and clinicopathological characteristics 
of LUAD (adenocarcinoma of lung) patients (N = 47). 

Feature 
All  
n = 62 

KIF15 expression 2 P
Low High  

 
n = 20 n = 42  

Age (year)  1.586 0.208
< 55 38 10 28  
≥ 55 24 10 14  

Gender  1.168 0.280
Male 40 11 29  
Female 22 9 13  

Tumor lateralization  0.712 0.399
Subtentorial 42 15 27  
Supratentorial 20 5 15  

Recurrence  8.062 0.005*
Yes 50 12 38  
No 12 8 4  

IDH1 mutations  0.102 0.750
No 42 13 29  
Yes 20 7 13  

2.4. Cell culture and transfection 

Human glioblastoma cell lines U87 and U251 were purchased from ATCC in 2018 and frozen 
and thawed at the Tianjin Institute of Neurosurgery. U87 and U251 were grown in humid air in a 5% 
carbon dioxide incubator in Dulbeco’s Modified Eagle’s Medium, which was supplemented with 10% 
FBS, 100 µg/mL penicillin, 100 µg/mL streptomycin and 0.25 µg/mL dimycin B.  

KIF15 shRNA plasmid was transfected into U87 or U251 cells by using LiPO-2000 (#11668019, 
Invitrogen, Carlsbad, CA, USA). In animal experiments, KIF15 stabilized knockout U87 cells by 
screening for shRNA lentivirus infection. 

2.5. Quantitative PCR assay 

Total mRNA was extracted from human glioblastoma cells by using the TRIzol reagent 
(#15596026, Invitrogen, Carlsbad, CA, USA). RNA was then reversed by using m-MLV reverse 
transcriptase (#M1701, Promega, Madison, Wisconsin, USA). 

cDNA was synthesized via the reverse transcription of total mRNA by using a cDNA synthesis 
system. Quantitative PCR was performed by using a SYBR Ex Taq kit (#638319, Takara, Japan) to 
normalize the KIF15 expression level to the GAPDH expression level. 

2.6. Immunoblot assays 

Patients’ glioblastoma tumor cells or tissues were decomposed by using a RIPA buffer (#9800, Cell 
signaling pathway, Danfoss, MA). SDS-PAGE was used to analyze the total protein. And then, we used 5% 
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milk, which was used as a buffer; then, we encapsulated it and incubated it with primary antibodies. 
KIF15, Ki67, PCNA and β-actin were detected at room temperature for 2 hours. The PVDF 
(polyvinylidene fluoride) membrane was then correlated with HRP (Horseradish Peroxidase) and 
incubated again for up to 45 minutes. Finally, an ECL (Enhanced chemiluminescence) kit was used 
for Western blotting detection. ImagePro software was used for the experimental calculations. 

2.7. Colony formation assay 

We then used about 500 U87 or U251 cells, which were successively added to 6-well culture 
plates and transfected with KIF15 shRNA plasmid; then, these transferred cells were cultured at 37 ℃. 
The medium was replaced every 2 days and kept fresh. After 14 days, the cells were fixed with 
PFA for 30 minutes, stained with 0.1% crystal violet at room temperature for 30 minutes and then 
washed with PBS (Phosphate Buffered Saline) reagent. We then counted and analyzed the colony 
count manually. 

2.8. MTT assay 

The cells were placed into 96-well plates with 1000 grains per well, transfected with the control or 
KIF15shRNA plasmid and cultured for 1 day. These cells were then incubated with MTT for up to 4 
hours, after which the medium was removed. The tumor cells were then washed with PBS reagent. 
These stained cells were extracted by adding 150 µL of dimethyl sulphoxide to each well; the OD 
(optical density) values were measured by using a 570-nm microplate analyzer. 

2.9. Tumor growth assays 

Naked ball/C mice (6–8 weeks, female, 18–22 g, n = 10) were purchased from Beijing Weisheng 
He Experimental Animal Science and Technology Co., Ltd. (Beijing, China). All animal testing 
procedures were approved by our facility’s Animal Care and Use Committee. Regarding the animal 
experiments, our hospital has carried out animal work, and the approval number obtained from the 
relevant institutional review board is LLSP2019-016. Briefly, U87 cells were stably transfected with a 
control or KIF15 shRNA lentivirus. 2 × 106 control cells or KIF15 ablated cells were implanted 
subcutaneously in nude mice. The tumor was isolated 2 weeks later and photographed; its volume was 
measured every 3 days. 

2.10. Statistical analysis 

Graphpad software was used for statistical analysis in this study. All results of this study are 
presented as mean ± standard deviation. The correlation between clinical features and protein levels 
was calculated by conducting χ2 analysis and Fisher’s exact testing. Statistical comparisons were made 
by using the student T-test. An asterisk indicates that P < 0.05. P < 0.05 was considered statistically 
significant. 
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3. Results 

3.1. Identification of KIF15 as a potential gene to affect the progression of glioma 

To explore the pathology of glioma, we first searched the potential genes abnormally expressed 
in glioma tissues by conducting bioinformatics analysis. We first used the dataset GLIOMASdb 
(http://cgga.org.cn:9091/gliomasdb/) for different stages of glioma transcriptome analysis. Analysis of 
the gene expression differences between Grades 2 and 3 glioma and Grades 2 and 4 glioma was 
performed. Interestingly, we found that 485 DEGs were specifically altered between Grades 2 and 3 
gliomas (Figure 1A), and that 1883 genes were specifically altered between Grades 2 and 4 gliomas 
(Figure 1B). 

Furthermore, by analyzing the functions of these DEGs, we found that the biological processes 
of these DEGs are abundant during development and in extracellular tissues (Figure 1C). We found 
that there were 429 gene changes in Grades 3 and 4 (Figure 1D). Following the network analysis 
of 429 genes, we found a KIF15 central gene network (Figure 1E), and that the information on the 
expression level analysis of KIF15 was upregulated in Grade 4 compared with Grades 2 and 3 (Figure 1E). 
So, we hypothesized that KIF15 is a candidate gene for glioma. 

 

Figure 1. New DEGs in glioma tissues were identified based on bioinformatics analysis, 
and KIF15 was identified as a potential gene affecting the progression of glioma. (A) 
Volcanic map showing genetic changes in Grade 2 gliomas compared to Grade 3 gliomas. 
The red and blue dots indicate the upregulation and downregulation of genes in Grade 3 
glioma (P < 0.05, fold change > 2). (B) Volcanic map showing genetic changes in Grade 2 
gliomas and Grade 4 gliomas. The red and blue dots indicate the upregulation and 
downregulation of gene expression in Grade 4 glioma (P < 0.05, fold change > 2). (C) Venn 
diagram showing the overlapping DEG for Grades 2 and 3 and for Grades 2 and 4. There 
were 429 DEGs in Grades 2 and 3 and Grades 2 and 4. (D) Network analysis showing the 
interaction of 429 DEGs co-existing at Level 2 to Level 3 and Level 2 to Level 4. The red 
circle shows the top 5 HUB genes in the network, including KIF15. (E) Box plots showing 
KIF15 expression levels in Grades 2 and 3 gliomas (left) and KIF15 expression levels in 
Grades 2 and 4 gliomas (right). 
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3.2 KIF15 expression is largely upregulated in human glioblastoma tissues 

To investigate the possible role of KIF15 in the development and progression of glioblastoma, an 
immunohistochemical method was used to detect the expression level of KIF15 in glioblastoma tissues 
of patients undergoing surgical resection. We found that KIF15 is mainly located in the cytoplasm of 
glioblastoma cells (Figure 2B).  

3.3. KIF15 expression is associated with the prognosis of patients with glioblastoma 

According to our staining conclusions, the histopathological specimens of 62 surgically resected 
patients with glioblastoma were categorized into the low-expression group of KIF15 and high-
expression group of KIF15 according to staining intensity (Figure 2B and Table 1). There were 20 
cases of low KIF15 expression and 42 cases of high KIF15 expression (Table 1).  

We then analyzed the significance of KIF15 in patients with glioblastoma. Each patient’s age, 
gender, tumor size and other characteristics were analyzed. Among them, we found that age and other 
characteristics of patients with low KIF15 expression and high KIF15 expression were not clinically 
significant (Table 1). Interestingly, our results showed that KIF15 expression levels were significantly 
associated with recurrence in patients with glioblastoma (P < 0.05) (Table 1). 

 

Figure 2. KIF15 is highly expressed in human glioblastoma tissues. (A) KIF15 expression 
levels in cancerous and normal tissues are shown (GBM: glioblastoma, *P < 0.05). (B) 
Immunohistochemical tests were performed to show representative images of low and high 
KIF15 expression in glioblastoma tissues (enlarged ×100 and ×200, respectively). (C) 
Immunohistochemical staining showed negative KIF15 expression level in non-adjacent 
tissues (magnified ×100 and ×200, respectively). 
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3.4. Loss of KIF15 reduced the ability of cell proliferation in vitro 

To investigate the molecular mechanism of KIF15 in glioblastoma, we transfected KIF15 shRNA 
plasmid into two human glioblastoma cell lines, U87 and U251, to reduce KIF15 expression. By 
performing quantitative PCR (Figure 3A), we found that the transfection of KIF15 shRNA plasmid 
effectively inhibited its expression in U87 and U251 cells. Similarly, Western blot analysis confirmed 
that the KIF15 expression levels were significantly reduced in both the U87 and U251 cells transfected 
with KIF15 shRNA plasmid (Figure 3B). 

Next, colony formation experiments were performed to determine cell proliferation in the 
glioblastoma. We found that the ablation of KIF15 significantly reduced the number of colonies, as 
confirmed by colony formation experiments (Figure 4A). Similarly, the MTT assay results showed 
that the OD values of U87 and U251 cells at 570 nm were significantly reduced (Figure 4B). Then, 
Western blotting was used to detect the expression levels of Ki67 and PCNA, two markers reflecting 
proliferation ability. Consistent with previous studies, KIF15 downregulation significantly reduced the 
expression levels of Ki67 and PCNA in the U87 and U251 cells (Figure 4C,D).  

 

Figure 3. After KIF15 deletion, the expression level of KIF15 in human glioblastoma cells 
U87 and U251 was significantly decreased. (A) Quantitative PCR showed that the 
expression level of KIF15 shRNA was significantly decreased after transfection in U87 
and U251 cells. (B) Western blot analysis showed that KIF15 shRNA could effectively 
inhibit KIF15 expression in both the U87 and U251 cells after transfection. The results are 
expressed as mean ± standard deviation, and all results were obtained from three 
independent experiments. *P < 0.05 (A: P = 0.032, 0.026, B: P = 0.029, 0.027). 
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Figure 4. KIF15 promotes glioblastoma cell proliferation in vitro. (A) U87 and U251 cells 
were transfected with control or KIF15 shRNA plasmids and colony formation analysis was 
performed. Colony formation experiments showed that KIF15 ablation resulted in impaired 
cell proliferation. (B) MTT assay results showing that KIF15 ablation resulted in impaired cell 
proliferation. (C) Western blotting results showing the Ki67 expression levels in the control or 
KIF15-deficient U87 and U251 cells. (D) Western blotting results showing PCNA expression 
levels in the control or KIF15-knockout glioblastoma cells. Results are expressed as mean ± 
standard deviation, and all results were obtained from three independent experiments. *P < 
0.05. (A: P = 0.043, 0.045, B: P = 0.032, 0.037, C: P = 0.036, 0.034, D: P = 0.048, 0.043). 

3.5 KIF15 depletion blocked tumor growth of glioblastoma in mice 

Subsequently, we investigated the correlation between KIF15 and glioblastoma tumor growth 
promotion in vivo. To test our hypothesis, we infected U87 cells with the control or KIF15 shRNA 
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lentivirus and injected them subcutaneously into nude mice. After 14 days, tumors were isolated from 
the mice every 72 hours, photographed and measured. See Figure 5A. Meanwhile, the tumor growth 
curves for the mice were calculated (Figure 5A). As expected, the volume of tumor isolated in the 
KIF15 knockout group was significantly smaller than that in the control group (Figure 5A). 

In addition, immunohistochemical tests showed that KIF15 was effectively silenced in tumor 
tissues in the KIF15 knockout group (Figure 5B). Western blotting further detected Ki67 expression 
levels in tumor tissues of the control group and the KIF15-deficient group. Interestingly, a decrease in 
Ki67 expression was detected in the tumors of the KIF15 ablation group, suggesting that KIF15 
deletion leads to a significant reduction in tumor cell proliferation (Figure 5C). Overall, all results 
suggest that KIF15 is involved in the development of glioblastoma in vivo. 

 

Figure 5. KIF15 promotes the growth of glioblastoma in mice. (A) U87 cells infected with the control 

or KIF15 shRNA lentivirus were subcutaneously implanted into nude mice. The tumor was isolated 2 

weeks later and the tumor volume was measured every 3 days (n = 5 for each group). Tumor growth 

curves were calculated and analyzed based on the mean volume of five tumors in the KIF15 deletion 

group and control group. (B) Western blot analysis revealed the KIF15 expression levels in the 

control and KIF15-ablated tumors isolated from mice. (C) Western blot analysis revealed the Ki67 

expression levels in the control and KIF15-knockout tumors isolated from mice. Results are 

expressed as mean ± standard deviation, and all results were obtained from three independent 

experiments. *P < 0.05. (A: P = 0.033, B: P = 0.031, C: P = 0.028). 

4. Discussion 

The growth rate of glioblastoma is fast, as about 80% of patients have a course of disease that is less 
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than 6 months, and only 10% of patients have a course of disease that is more than 1 year [22,23]. In 
recent years, for glioblastoma, a highly malignant disease, conventional clinical treatment 
procedures such as surgical resection, radiotherapy and chemotherapy have not seen significant 
progress, so the 5-year overall survival of patients has remained at a low level [24]. In recent years, 
molecular targeted therapy has made great progress in various tumors. Based on current research 
results, most researchers believe that it can play a great role in the treatment of glioblastoma [24,25]. 
At present, several targeted therapy drugs, including EGFR and VEGF, have been proved to have 
positive treatment effects for glioblastoma in clinical therapeutic effect experiments [26]. In this study, 
we found that KIF15 was highly expressed in human glioblastoma tissues. Our data further 
demonstrate the association between KIF15 expression and clinical features. 

In this study, through bioinformatics analysis, we found that KIF15 may have the ability to interfere 
with the progress of glioblastoma. We further investigated both the clinical features and biological function 
of KIF15 in glioma progression. According to the IHC assay-based analysis of KIF15 expression levels in 
human glioblastoma tissues and the non-tumor adjacent tissues, we noticed the high expression levels of 
KIF15 in tumor tissues. Moreover, the expression levels of KIF15 were obviously associated with clinical 
characteristics, including the tumor size and clinical stage. This clinical analysis further confirmed the 
important role of KIF15 in the progression of glioblastoma. Subsequent experiments confirmed the 
hypothesis that KIF15 acts as a contributor to glioblastoma proliferation. By including IHC assays, we next 
found a reduction in Ki67 and PCNA expression levels in the mouse tumor knockout group due to KIF15, 
confirming the involvement of KIF15 in the regulation of glioblastoma cell proliferation; this suggests that 
KIF15 will be a possible therapeutic target, and that KIF15 inhibitors are of great value for study. 

KIF15 and Eg5 are the two end-added directional motors of spindle sliding [27]. Human Eg5 
inhibitors such as Monastrol and Ispinesib can be used as potential antitumor agents [28]. In addition, 
HR22C16 can target ovarian cancer cells as an Eg5 inhibitor [29]. However, tumor cells can develop 
resistance to Eg5 by upregulating KIF15 as a substitute for Eg5 [27]. KIF15 is highly expressed in a 
variety of cancers, such as breast cancer, lung cancer and pancreatic cancer [21,22]. KIF15 has been 
reported to regulate mitosis and cytokinesis, which may further affect tumor cell proliferation [30]. It 
has been reported that KIF15 is uniformly expressed in glioblastoma stem cells, and even highly co-
expressed in all glioblastoma subtypes. KIF15 may be worthy of further study as a therapeutic target 
for glioblastoma [31]. Interestingly, in vitro and in mice (in vivo), we found that KIF15 deletion leads 
to the impaired proliferation of glioblastoma cells, which may be caused by abnormal cell division. 
Based on our results, the development of KIF15 inhibitors may hold promise against glioblastoma. 
However, the precise molecular mechanism by which KIF15 promotes glioblastoma cell proliferation 
remains to be further studied [32]. 

In recent years, the driver protein motor has been shown to play an important role in cell division 
and become an important target for tumor therapy. Therefore, excitins may affect the proliferation of 
tumor cells and participate in tumorigenesis [33]. In this study, we found that a member of the driver 
superfamily, KIF15 [driver 12], is involved in the regulation of glioblastoma cell proliferation. 
Interestingly, various studies have shown that kinin is involved in the regulation of cancer cell 
proliferation. KIF14 promotes cell proliferation by activating the AKT signaling pathway in colorectal 
cancer [34]. Similarly, KIF20A promotes the malignant phenotype of lung cancer by promoting cell 
proliferation [35]. In addition, KIF26B deletion can inhibit the proliferation and migration of breast 
cancer cells [36]. More recently, in 2020, a new study showed KIF15 as a potential therapeutic 
target and prognostic factor for glioma [37], which is similar to our results. Then, we can announce 
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that we started our own study before this article was published, and that the glioblastoma mentioned 
in our study is different from the glioblastoma mentioned in the published article. Of course, in our 
study, we had in vivo results to back up our conclusions, which were not shown in the published article. 
Whether these proteins have a similar proliferation mechanism to KIF15, and whether they affect 
proliferation by regulating microtubules and spindles, remains to be further studied. 

In conclusion, our results revealed that KIF15 could serve as a potential gene affecting 
glioblastoma progression and the high expression of KIF15 in human glioblastoma tissues. We also 
found the correlation between KIF15 expression levels and the clinical features of glioblastoma 
patients. Furthermore, KIF15 contributed to glioblastoma proliferation in vitro and promoted tumor 
growth in mice. Therefore, we preliminarily discussed the role of KIF15 in the development of 
glioblastoma and provided a new therapeutic target for the treatment of glioblastoma. 
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