
MBE, 19(8): 8215–8258.
DOI: 10.3934/mbe.2022383
Received: 14 May 2022
Revised: 25 May 2022
Accepted: 26 May 2022
Published: 06 June 2022

http://www.aimspress.com/journal/MBE

Research article

Review of chaotic mapping enabled nature-inspired algorithms

Zheng-Ming Gao1,*, Juan Zhao2 and Yu-Jun Zhang2

1 School of computer engineering, Jingchu university of technology, Jingmen 448000, China
2 School of electronics and information engineering, Jingchu university of technology, Jingmen

448000, China

* Correspondence: Email: gaozming@jcut.edu.cn; Tel: +867242355622; Fax: +867242355622.

Abstract: Chaotic maps were frequently introduced to generate random numbers and used to replace
the pseudo-random numbers distributed in Gauss distribution in computer engineering. These
improvements in optimization were called the chaotic improved optimization algorithm, most of them
were reported better in literature. In this paper, we collected 19 classical maps which could all generate
pseudo-random numbers in an interval between 0 and 1. Four types of chaotic improvement to original
optimization algorithms were summarized and simulation experiments were carried out. The classical
grey wolf optimization (GWO) and sine cosine (SC) algorithms were involved in these experiments.
The final simulation results confirmed an uncertainty about the performance of improvements applied
in different algorithms, different types of improvements, or benchmark functions. However, Results
confirmed that Bernoulli map might be a better choice for most time. The code related to this paper is
shared with https://gitee.com/lvqing323/chaotic-mapping.

Keywords: chaotic maps; nature-inspired algorithms; benchmark functions; simulation experiments;
chaotic improvements

1. Introduction

Inspired by the living existence that evolved from their ancestors lived millions of years ago,
scientists and engineers have proposed a lot of nature-inspired algorithms [1], however, most of the
algorithms including their improvements were not able to find all the solutions of the existed problems
due to the No Free Lunch (NFL) rule [2]. And to verify the capability of algorithms, we also formulate
many functions to test them, most of them nowadays become classical in literature and so we called

8216

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

them benchmark functions [3]. After thorough study of verification experiments, the algorithms were
soon applied to solve the real-world engineering problems, for instance, prediction of routing scheme
for softwarized vehicular networks [4], adaptive routing for edge software-defined vehicular
networks [5], satellite-terrestrial networks storage strategy planning [6]. However, we soon
confirmed that there still did not exist an efficient algorithm that could solve all of the problems we
met. Therefore, new algorithms even their improvements were remaining under demand.

Literal reviews claimed that the nature-inspired algorithms could be classified into four types
based on the source of the inspiration: evolutionary algorithms, swarm-based, human-based, and
physics-based ones [7]. The exact number of the proposed nature-inspired algorithms might be not
known causing its current prosperousness in artificial intelligence [8], however, the improvement of a
given algorithm might be also difficult to tell in number. It could be relevant to all aspects of an existed
algorithm regarding the improvements. For instance, the particle swarm optimization (PSO) algorithm,
which was proposed in 1995 [9], became popular soon after its birth and various kinds of
improvements were raised by scientists and engineers all over the world. In the traditional PSO
algorithm, the individuals update their positions according to their velocities, random weighted
distance between them and their best trajectories, and the global best candidates in each iteration.

In a detailed study of the improved PSO algorithms, first of all, the continuous domain definition
was considered to be not able to meet the request of problems in the digital world. And consequently,
the discrete binary version of the PSO algorithm was proposed [10]. The weight of the velocity was
soon added and better performance was astonishingly achieved [11]. Inertia weights were then
evaluated to remove the constant characteristics of this weight parameter [12]. Some improvements
reconsider the involvement of the three parts and decreased them linearly to increase the convergence
ratio, and therefore, the neighborhood operator improved PSO algorithm [13] was proposed.

Except for the parameters involved in the original algorithm, the participation of individuals in
swarms might be another interesting hotspot. A fixed number of successful or failed operations in
optimization might be introduced to guarantee convergence [14]. While in the fully informed PSO
algorithm [15], all of the individuals were introduced to play roles in the updating of their positions,
discarding the original concept of performance of the velocity, historical best, and global best candidate.
Eliminating the historical trajectory with cଵ = 0 [16] or replacing the global best candidates with the
worst ones in each iteration [17] might be other tries.

Furthermore, the velocities or positions of individuals in swarms might also be reinitialized during
iterations [18]. The multiple updating disciplinary [19] might also be introduced. For instance, in the
bare-boned PSO algorithm [20], half of the individuals in swarms were updated according to the global
best candidates in iteration and another half of them with traditional way. The probability might be
defined by the number of tunnels for individuals to follow, such as in the heterogeneous PSO [21].

Let alone the hybridization of famous algorithms [22], the randomness involved in the algorithms
was another hot spot in the design of improvements. Traditional pseudo-random numbers are equally
selected from the given domain, therefore, the distribution of weights was Gauss distribution, the
random steps were equally chosen from the distribution. However, the population number in swarms
was not expected to be large in number under the control of current computer hardware. And few
samples could not follow the statistics of Gauss distribution. It might decrease the capability in
exploration and exploitation [23]. Considering the Levy flight [24] could generate some long steps
after several rounds of small steps, it could be used to increase the performance of algorithms in
optimization. The overall better performance demonstrated in the literature proved that such kind of

8217

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

improvement could indeed improve the capability of the original algorithm [25]. Another common
improvement was to replace the randomness in Gauss distribution with chaos. Because of the pseudo
randomness generated by Gauss distribution in computer engineering, the random numbers were
believed not well with smaller population size. However, the population size could not be set with
larger numbers under the constraints of our real-world computer hardware. Considering the chaos are
derived from non-linear dynamic systems, they would perform more chaotically in generating numbers.
In fact, almost all of the existed algorithms have been improved with chaos, as shown in Table 1.

Table 1. History of nature-inspired algorithms and their chaotic improvements.

Original [26] Chaotic improvements
Name Authors Year Classification Chaotic map Authors Year
GA JH Holland 1992 Evolutionary Logistic [27] Debolina G 2021
HS ZW Geem 2001 Evolutionary Multiple [28] B Alatas 2010
ABC D Karaboga 2007 Swarm-based Logistic [29] L Ding 2015
FA XS YANG 2008 Swarm-based Multiple [30] AH Gandomi 2013
GSA E Rashedi 2009 Physics-based Multiple [31] JH Jiang 2020
BA XS YANG 2010 Swarm-based Multiple [32] AH Gandomi 2014 [33]
SMO JC Bansal 2014 Swarm-based
GWO S Mirjalili 2014 Swarm-based Multiple [34] A Farshin 2017
PPA SL Tilahun 2015 Swarm-based Logistic [35] W Zhu 2014
WOA S Mirjalili 2016 Swarm-based Multiple [36] G Kaur 2018
GSO V Muthiah 2016 Swarm-based
CSA A Askarzadeh 2016 Swarm-based Multiple [37] Rizk M 2018
IPO MH

Mozaffari
2016 Physics-based

ABO X Qi 2017 Physics-based
FFA H Shayanfar 2018 Swarm-based Multiple [38] M Mitic 2015
QSA J Zhang 2018 Human-based
SSFO HY Sang 2019 Swarm-based
AOA L Abualigah 2020 Physics-based
JS JS Chou 2021 Swarm-based
ALSO N Kumar 2021 Swarm-based

Therefore, we focused our attention and collected most of the chaotic mappings in literature and
tried to verify its better performance. The main contribution of this paper would be:
1) A collection of 19 popular chaotic mappings and all of them could generated random numbers within
an interval of 0 and 1.
2) A brief review of the chaotic improvements and four types of improvements were summarized.
3) Applying in improving the well-known grey wolf optimization (GWO) and sine cosine (SC)
algorithms, detailed comparison and simulation experiments were carried out.

The rest of this paper would be arranged as follows: in Section 2, all of the chaos we found which
could generate chaos in [0, 1] would be listed. Literature review of the chaotic improvements would
be reviewed in Section 3. Some chaotic improvements and the experiments would be shown in
Section 4. Discussions would be made and conclusions would be drawn in Section 5.

8218

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

2. The chaos

The chaos is a kind of deterministic random-like method, most of them are derived from non-
linear dynamic systems [39]. Chaos is also a kind of pseudo randomness, however, since they are
derived from the chaotic system, most of them would be bounded, irregular and sensitive to the initial
conditions [40]. Meanwhile, the values would spread all around the domain with a given route from
the initial values. The chaos could be used to eliminate the uncertainty of pseudo randomness and
therefore, better stability could be wanted.

To replace the pseudo randomness in computer engineering, the chaos should be in an interval
between 0 and 1. Consequently, some transformation would be wanted to change the original values if
the original chaos were limited in other domains except [0, 1], the following chaotic maps could all
generate chaos satisfying the requirements with or without some extra functions.

2.1. CM1: Bernoulli map

Bernoulli map is a famous map to generate chaos, its formulation might be shown as follows [41]: 𝑥௡ାଵ = ൜1.75𝑥௡ − 0.5 𝑥௡ ൐ 01.75𝑥௡ + 0.5 𝑥௡ ൑ 0 (1)

Where 𝑥௡ represents the current chaos with 𝑛 − th iteration and 𝑥௡ାଵ represents the chaos at the
next iteration.

To generate pseudo randomness in the interval between 0 and 1, chaos generated by the Bernoulli
map might be transformed with double and absolute functions. A brief view of the values versus five
hundred iterations would be shown in Figure 1.

Note that there are five hundred of iterations for the Bernoulli map. For convincement, all of the
following chaotic maps would be also iterated five hundred times for comparison.

Figure 1. Chaos generated by Bernoulli map.

8219

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

2.2. CM2: Chebyshev map

Chaos generated by Chebyshev map could be obtained from an equation formulated as follows [32]: 𝑥௡ାଵ = cos ቀ ௡௖௢௦௫೙ቁ (2)

Chaos generated by the Chebyshev map fluctuates in the interval between -1 and 1. Therefore, to
replace the pseudo randomness in computer engineering, the final chaos should be transformed with
absolute function, as shown in Figure 2.

Figure 2. Chaos generated by Chebyshev map.

2.3. CM3: Circle map

Circle map [32] is formulated with the sine function: 𝑥௡ାଵ = ቂ𝑥௡ + 𝑏 − ௔ଶగ sin(2𝜋𝑥௡)ቃ 𝑚𝑜𝑑(1) (3)

Where mod (1) is the mathematical function to find the remainder number after dividing by 1. If a
= 0.5 and b = 2, the Circle map would generate chaos in the interval of 0 and 1, as shown in Figure 3.

2.4. CM4: Gauss map

Gauss map is also called Mouse map [32]:

𝑥௡ାଵ = ൝ 0 𝑥௡ = 0ଵ௫೙ − ቔ ଵ௫೙ቕ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)

8220

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 3. Chaos generated by Circle map.

Figure 4. Chaos generated by Gauss map.

Where ⌊𝑥⌋ = 𝑥 − 𝑥 𝑚𝑜𝑑 (1) represents the integer part of the float number. Gauss map directly
generates chaos in [0, 1] domain, seen from Figure 4.

8221

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

2.5. CM5: Hybrid map

The hybrid map is a new kind of chaos generator [42], the Hybrid system is formulated as follows: 𝑥௡ାଵ = ൜𝑏(1 − 𝜇ଵ𝑥௡ଶ −1 ൏ 𝑥௡ ൑ 01 − 𝜇ଶ𝑥௡ 0 ൏ 𝑥௡ ൏ 1 (5)

Where 𝜇ଵ = 1.8, 𝜇ଶ = 2.0, b = 0.85. The chaos generated by the Hybrid map falls within -1 and 1.
Therefore, the absolute function should be introduced to constraint the chaos to fall in the [0, 1] domain,
as shown in Figure 5.

Figure 5. Chaos generated by Hybrid map.

2.6. CM6 ICMIC map

The iterative chaotic map with infinite collapses (ICMIC) map is a one-dimensional chaotic map [43],
it is relevant to the sine function and formulated as follows: 𝑥௡ାଵ = sin(௔௫೙) (6)

Due to the definition of the sine function, the ICMIC map also generates chaos fallen in [-1, 1],
the absolute function is also introduced to transform the chaos to fall in [0, 1], seen from Figure 6.

8222

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 6. Chaos generated by ICMIC map.

2.7. CM7 Intermittency map

Intermittency map is an extension of the Bernoulli shift in which the piecewise linear map
representing the passive interval is replaced by the following equation [32,39]:

𝑥௡ାଵ = ቊ𝜀 + 𝑥௡ + 𝑐𝑥௡௠ 0 ൏ 𝑥௡ ൑ 𝑑௫೙ିௗଵିௗ 𝑑 ൏ 𝑥௡ ൏ 1 (7a)

Where 𝜀 is a small number and 𝑐 is calculated as follows: 𝑐 = ଵିఌିௗௗ೘ (7b)

Intermittent map generates chaos whose values are in [0, 1], yet spread in a weird distribution,
seen from Figure 7.

2.8. CM8 Iterative map

The iterative map is similar to the ICMIC map, as shown in the following equation:

𝑥௡ାଵ = sin(௔గ௫೙) (8)

The iterative map also generates chaos in [-1, 1], so it should be transformed by the absolute
function. The distribution of chaos could be seen in Figure 8.

8223

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 7. Chaos generated by Intermittency map.

Figure 8. Chaos generated by Iterative map.

2.9. CM9 Liebovitch map

Liebovitch map was unique, it has two separators in the domain (0, 1) [32], as formulated as follows:

𝑥௡ାଵ = ൞ 𝛼𝑥௡ 0 ൏ 𝑥௡ ൑ 𝑃ଵ௉ି௫೙௉మି௉భ 𝑃1 ൏ 𝑥௡ ൑ 𝑃ଶ1 − 𝛽(1 − 𝑥௡) 𝑃ଶ ൏ 𝑥௡ ൑ 1 (9a)

8224

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Where, α ൏ β and defined as follows: 𝛼 = ௉మ௉భ ሾ1 − (𝑃ଶ − 𝑃ଵ)ሿ (9b)

𝛽 = ଵ௉మିଵ ሾ(𝑃ଶ − 1) − 𝑃ଵ(𝑃ଶ − 𝑃ଵ)ሿ (9c)

Liebovitch map would generate chaos mostly distributed in (0, 0.2) and (0.8, 1) domains, seen
from Figure 9.

Figure 9. Chaos generated by Liebovitch map.

2.10. CM10 Logistic map

The logistic map is a classic chaotic map derived from nonlinear dynamics of biological
population evidencing chaotic behavior [32]: 𝑥௡ାଵ = 𝑎 𝑥௡(1 − 𝑥௡) (10)

Initially, 𝑥଴ ് ሼ0, 0.25, 0.5, 0.75, 1ሽ. Logistic map directly generates chaos whose values are in
[0, 1] domain, seen from Figure 10.

8225

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 10. Chaos generated by the Logic map.

2.11. CM11 Kent map

Kent map is a famous map used to generate pseudo-random numbers [44], it is defined as follows:

𝑥௡ାଵ = ൝ ௫೙௠ 0 ൏ 𝑥௡ ൑ 𝑚ଵି௫೙ଵି௠ 𝑚 ൏ 𝑥௡ ൏ 1 (11)

Kent map generates chaos in (0, 1), seen from Figure 11.

2.12. CM12 Piecewise map

Piecewise map consists of four linear pieces and is formulated as follows:

𝑥௡ାଵ =
⎩⎪⎨
⎪⎧ ௫೙ௗ 0 ൑ 𝑥௡ ൏ 𝑑௫೙ିௗ଴.ହିௗ 𝑑 ൑ 𝑥௡ ൏ ଵଶଵିௗି௫೙଴.ହିௗ ଵଶ ൑ 𝑥௡ ൏ 1 − 𝑑ଵି௫೙ௗ 1 − 𝑑 ൑ 𝑥௡ ൏ 1 (12)

Obviously, 0 ൏ d ൏ 0.5, and 𝑥௡ ∈ ሾ0, 1), it could also be derived from Figure 12.

8226

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 11. Chaos generated by Kent map.

Figure 12. Chaos generated by Piecewise map.

2.13. CM13 Piecewise Linear map

Piecewise Linear map also consists of two piecewise linear segments [40], it is defined as follows:

𝑥௡ାଵ = ൝ ௫೙ଵିఒ 0 ൏ 𝑥௡ ൑ 1 − 𝜆௫೙ି(ଵିఒ)ఒ (𝑑 ≡ 1 − 𝜆) ൏ 𝑥௡ ൏ 1 (13)

8227

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

There are two linear segments in the Piecewise Linear map, which generate chaos in (0, 1), as
shown in Figure 13.

Figure 13. Chaos generated by Piecewise Linear map.

2.14. CM14 Quadratic map

The quadratic map is decoded from shared codes [41], it is a new kind of Mandelbrot map [45]
and formulated as follows: 𝑥௡ାଵ = 𝑏 − 𝑎𝑥௡ଶ (14)

Where 𝑎 = 4, 𝑏 = 0.5. Quadratic map generates chaos fallen in [-0.5, 0.5]. To replace the pseudo-
random numbers, double and absolute functions would be introduced, the final chaos values could be
seen in Figure 14.

2.15. CM15 Sine map

Sine map is another iteration form with sine function [32], its formulation is: 𝑥௡ାଵ = 𝑎 ⋅ sin(𝜋𝑥௡) (15)

8228

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 14. Chaos generated by Quadratic map.

Figure 15. Chaos generated by Sine map.

To be simple, a = 1, and we can obtain the chaos as shown in Figure 15.

2.16. CM16 Singer map

Singer map is a one-dimensional system defined as follows [32]: 𝑥௡ାଵ = 𝜇(7.86𝑥௡ − 23.31𝑥௡ଶ + 28.75𝑥௡ଷ − 13.3𝑥௡ସ) (16)

8229

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Where 0.9 ൏ 𝜇 ൏ 1.08. The Singer map generates chaos whose values could be directly treated as
pseudo-random numbers, seen from Figure 16.

Figure 16. Chaos generated by Singer map.

2.17. CM17 Sinusoidal map

Sinusoidal map [32] is a combination of Sine map and Quadratic map, as shown in the follows
equation: 𝑥௡ାଵ = 𝑎 ⋅ 𝑥௡ଶ ⋅ sin(𝜋𝑥௡) (17)

The sinusoidal map also directly generates pseudo-random numbers, as shown in Figure 17.

2.18. CM18-19 Tent map

There appeared two kinds of Tent maps in literature. One of them is similar to the well-known
Logistic map and is defined by the following equation [32]:

𝑥௡ାଵ = ൝ ௫೙଴.଻ 𝑥௡ ൏ 0.7ଵ଴ଷ (1 − 𝑥௡) 𝑥௡ ൒ 0.7 (18)

We called this Tent1 map, labeled CM18 for future applications, it could also directly be used to
replace the pseudo-random numbers, as shown in Figure 18.

8230

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 17. Chaos generated by Sinusoidal map.

Figure 18. Chaos generated by Tent 1 map.

Another kind of Tent map is introduced by the following iterated function [44]:

𝑥௡ାଵ = ቐ 𝜇𝑥௡ 𝑥௡ ൏ ଵଶ𝜇(1 − 𝑥௡) 𝑥௡ ൒ ଵଶ (19)

When μ = 2 − ε, this Tent map could generate chaos, we called this map Tent2 map, labeled

8231

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

CM19 for future purpose, its values could be seen from Figure 19.

Figure 19. Chaos generated by Tent 2 map.

3. A brief review of chaotic improvements in literature

The chaotic map has been introduced to improve nature-inspired algorithms for many years.
Scientists and engineers all around the world were still trying to improve the existed algorithms with chaos.

3.1. Ways of chaotic applications in improvements

The existed algorithms have been tried to improve their capability in every aspect we could find.
First of all, since all of the individuals in swarms must be initialized at the beginning, the positions

of individuals should be spread all over the domain of the given problem, they should be distributed
as equally as possible. Every optimum, either being global or local, should be gained access by some
individuals to be found as soon as possible. Therefore, the traditional pseudo-random number might
also be not the best choice. This kind of effort has been made, for example, in some kind of chaotic
PSO algorithm [46]. However, our early simulation experiments on some benchmark functions
optimized by the chaotic Slime mould (SM) algorithm [47] proved that the chaotic initialization might
decrease the capability of algorithms in optimization sometimes.

The second kind of chaotic application in improving the existed algorithms is to replace the
pseudo-randomness numbers reasonably. Most of the efforts were made on this kind of improvement.
Every random number falling within the interval between 0 and 1 might be replaced by chaos.
Considering the number of randomnesses, every randomness could be tried to replace by every kind
of chaotic map one by one, as jobs executed in the chaotic bat algorithm [32], the chaotic whale
optimization (WO) algorithm [36]. Results might also be fluctuated according to the characteristics of
different chaotic maps, even the positions of randomness in mathematics.

The third kind of chaotic application to improve the capability of algorithms might be to define a

8232

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

chaotic domain near the global best candidates in iterations. This is an efficient way to find whether
the global best candidate being approaching the optimum or not. For every global best candidate in
iterations, the current best position might be used to generate a random domain, several rounds of other
chaotic approaches might be carried out to find whether there was another best position or not. This
kind of operation increased the time complexity and meanwhile increased the convergence ratio
dramatically. Most of our human attention was paid to this kind of improvement, such as the chaotic
PSO algorithm [46], chaotic grey wolf optimization (GWO) algorithm [39].

A new kind of chaotic application was proposed most recently. Almost in all of the swarm-based
algorithms, there always existed a controlling parameter to balance the ratio of exploration and
exploitation for individuals during iterations. For example, chaotic parameter f in chimp optimization
algorithm (ChOA) [48], or the control parameter a in the GWO algorithm [2]. All of these kinds of
parameters were declined linearly from the maximum to minimum or zero. In 2019, a new kind of
non-linear chaotic decreased way was proposed by Saxena et al. [49], the new control parameter a was
defined as a combination of the traditional parameter and chaos following the β distribution. However,
although simulation experiments verified its capability in optimization, the overall results were not
promising as a whole.

3.2. Performance of chaotic applications in improvements

For the above four types of chaotic applications, the first kind of improvements had been already
proved to be incapable frequently in literature. While the rest kinds of improvements were not
deterministic, sometimes the chaotic enabled algorithms would perform better, sometimes they did not.

Due to the chaotic characteristics of chaos, chaotic mapping enabled improvement has been
popular in literature for decades. Almost all of the algorithms have been tried to be improved with
chaotic mapping, as shown in Table 2.

Table 2. Algorithms and their chaotic improvements.

Algorithms Chaotic map Performance
Particle swarm optimization Piecewise Linear map [46] Better
Ant Colony optimization Logistic map [50] Better
Artificial bee colony Logistic map [51] Better
Salp swarm Logistic map [52] Better
Sine cosine algorithm Logistic map [53] Better
Cuckoo search Logistic map [54] Better
Social spider optimization Logistic map [55] Better
Grey wolf optimization Ten chaotic maps [39] Some better some worse
Bat algorithm More maps involved [32] Some better some worse
Whale optimization Ten chaotic maps [36] Some better some worse
Harris hawks optimization Nine maps [56] Some better some worse

4. Applications of chaotic improvements

In Section 3, we found that there were four types of chaotic applications to improve the

8233

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

performance of the existed algorithms. Some of them had already proved to be incapable for most
times. Yet some of them were frequently reported to perform better or worse in literature. In
Section 2, we collected 19 chaotic maps and all of them could generate chaos in the interval
between 0 and 1. Some of them, for example, Logistic and Piecewise maps, were frequently used
in applications. Some of them seldom appeared in literature regarding nature-inspired algorithms.
In this section, we would carry out some simulation experiments to verify their suitability and
capability. For simplicity, the GWO [57] and sine cosine (SC) [58] algorithms were introduced to
be representatives of the swarm-based nature-inspired algorithms, and the convergence rate would
be the only metrics to be balanced.

4.1. Experimental setup

Simulation experiments would be carried out to verify the capability of algorithms. There are 19
chaotic maps, four types of improvements, and two famous algorithms being involved in this paper.

Due to the randomness being involved in every nature-inspired algorithm, the results would be
changed every time we got. To reduce the influence of randomness, Monte Carlo methods were always
introduced to average the results and verified the capability of algorithms in optimization. In this
experiment, 100 Monte Carlo simulation experiments would be carried out and the final results would
be their average.

For simplicity, we improved the GWO and SC algorithms with different kinds of chaotic maps.
And all of the benchmark functions in Table 3−6 were introduced to carry on simulation experiments.

Table 3. Unimodal benchmark functions.

No. Name Equations
Optimum
Values Location

1) Ackley 1 𝑓(𝑥) = −20𝑒ି଴.଴ଶඨ∑ ௫೔మ೏೔సభௗ − 𝑒∑ ୡ୭ୱ(ଶగ௫೔)೏೔సభ ௗ + 20 + 𝑒
0 𝑥௜ = 0

2) Exponential 𝑓(𝑥) = 1 − 𝑒ି଴.ହ ∑ ௫೔మ೏೔సభ 0 𝑥௜ = 0

3) Sargan 𝑓(𝑥) = ෍ 𝑑 ቌ𝑥௜ଶ + 0.4 ෍ 𝑥௜𝑥௝ௗ
௝ୀଵ,௝ஷ௜ ቍௗ

௜ୀଵ 0 𝑥௜ = 0

4) Schwefel 2.20 𝑓(𝑥) = ෍|𝑥௜|ௗ
௜ୀଵ 0 𝑥௜ = 0

Table 4. Multimodal benchmark functions.

No. Name Equations
Optimum
Values Location

5) Alpine 1 𝑓(𝑥) = ෍|𝑥௜ sin(𝑥௜) + 0.1𝑥௜|ௗ
௜ୀଵ 0 𝑥௜ = 0

Continued on next page

8234

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

No. Name Equations
Optimum
Values Location

6) Cosine Mixture 𝑓(𝑥) = 𝑑10 + ෍ 𝑥௜ଶௗ
௜ୀଵ − 110 ෍ cos (5𝜋𝑥௜)ௗ

௜ୀଵ 0 𝑥௜ = 0

7) Griewank 𝑓(𝑥) = ෍ 𝑥௜ଶ4000ௗ
௜ୀଵ − −cos ෑ ൬𝑥௜√𝑖൰ + 1 0 𝑥௜ = 0

8) Rastrigin 𝑓(𝑥) = ෍ሾ𝑥௜ଶ − 10 cos(2𝜋𝑥௜) + 10ሿௗ
௜ୀଵ 0 𝑥௜ = 0

Table 5. Unimodal benchmark functions with planes.

No. Name Equations
Optimum
Values Location

9) Chung Reynolds 𝑓(𝑥) = ൭෍ 𝑥௜ଶௗ
௜ୀଵ ൱ଶ

 0 𝑥௜ = 0

10) Csendes 𝑓(𝑥) = ෍ 𝑥௜଺ ൬2 + sin 1𝑥௜൰ௗ
௜ୀଵ 0 𝑥௜ = 0

11) Holzman 2 𝑓(𝑥) = ෍ 𝑖𝑥௜ସௗ
௜ୀଵ 0 𝑥௜ = 0

12) Schwefel 𝑓(𝑥) ൭= ෍ 𝑥௜ଶௗ
௜ୀଵ ൱ఈ

 0 𝑥௜ = 0

Table 6. Unimodal benchmark functions with Valleys.

No. Name Equations
Optimum
Values Location

13) Bent Cigar 𝑓(𝑥) = 𝑥ଵଶ + 10଺ ෍ 𝑥௜ଶௗ
௜ୀଶ 0 𝑥௜ = 0

14) Quartic 𝑓(𝑥) = ෍ 𝑖𝑥௜ସௗ
௜ୀଵ 0 𝑥௜ = 0

15) Schwefel 1.2 𝑓(𝑥) = ෍ ቌ෍ 𝑥௝௜
௝ୀଵ ቍଶௗ

௜ୀଵ 0 𝑥௜ = 0

16) Zakharov 𝑓(𝑥) = ෍ 𝑥௜ଶௗ
௜ୀଵ + ൭12 ෍ 𝑖𝑥௜ௗ

௜ୀଵ ൱ଶ + ൭12 ෍ 𝑖𝑥௜ௗ
௜ୀଵ ൱ସ

 0 𝑥௜ = 0

8235

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

4.2. Type 1: Chaotic mapped initialization

For the first kind of improvements, results were shown from Figures 20 to 23.
We can find that although different chaotic maps might generate different kinds of chaos when they

are introduced to improve the algorithms at the initialization stage, some of the chaos might perform
better, some of them not. For Ackley 1 function, almost all of the chaos introduced to improve the
algorithms at the initialization stage performed better than the original. For the Alpine 2 function, all of
the chaotic mapped SCA performed better than before, however, only Chebyshev, Tent1, Piecewise,
Intermittency, Sine, Gauss, Logistic, ICMIC maps could result in better performance than before.

Optimizing the Chung Reynolds function, only a few of the chaotic maps perform worse than
before. However, in a different way for SC algorithm (Liebovitch map performed worse) and the GWO
algorithm (Logistic, Chebyshev, Kent, and Liebovitch performed worse).

Similar conclusions could be made on the Bent Cigar function. All of the chaotic maps could
yield better performance for the SC algorithm, while for the GWO algorithm, the Hybrid, Chebyshev,
Tent2 map would perform worse in improvement.

Based on the results above, we cannot conclude that when the chaotic maps were introduced to
improve the randomness at the initialization stage, they would perform better or worse. Different
chaotic maps and benchmark functions need to be specially reviewed and verified. It was really hard
to predict even for an experienced person. Nevertheless, the chaos introduced at the initialization stage
would improve the capability of optimization with a large probability.

4.3. Type 2: Chaotic mapped randomness

The pseudo-random numbers are always replaced by chaos to reduce the influence of traditional
pseudo-randomness.

However, since there always existed more than one random number involved in the algorithms,
every randomness might be involved to be replaced like the work in chaotic bat algorithm [32].
Furthermore, more chaotic maps might be also introduced to replace each random number respectively.

In this paper, only the first random number was replaced by chaos, the rest of the random numbers
remained unchanged, results were also averaged from 100 Monte Carlo simulation experiments, and
were shown in Figures 24−27.

Convergence ratio curves of different kinds of equations showed that there might be no strict
discipline that could be followed in this kind of experiment, the improvements were random for all of
the chaos and benchmark functions.

4.4. Type 3: Chaotic mapped iterations

The most popular improvements introduced were to carry on several rounds of iterations with
chaos. In this kind of experiment, we might choose extra rounds of iterations as chaoticMaxIter = 10.

During the main iteration carrying out by individuals, their positions were updated, and then the
best candidate was found. Extra chaoticMaxIter iterations were carried out with chaos, when a better
position was achieved, then this new best candidate would be treated as the global best candidate in
the current iteration. Otherwise, if chaoticMaxIter iterations were carried to the end and no better
position was found, the current best candidate still took the position and led the individuals to the next

8236

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

iteration of swarms.
Due to the extra chaotic exploration and exploitation around the best candidate, who might be the

global or local optimum, consequent better results were promised. However, the final results as shown
in Figures 28−31 didn’t fully support this conclusion.

For Sargan and Holzman’s 2 functions, most of the chaotic maps would increase the capability of
optimization, only a few of them failed to do so. However, 18/19 chaotic maps failed to increase the
SC algorithm in optimizing the Griewank function, the dramatically complex landscape and optima
might be the reason. And 13/19 chaotic maps failed to increase the SC algorithm in optimization of
Schwefel 1.2 function, the valley shape might be a reason.

Statistically speaking, this kind of improvement could indeed increase the algorithms as a whole,
but not all of the chaotic maps could increase or decrease the capability of algorithms in optimization.
Confirmative conclusions could be drawn based on the first glance of the benchmark functions or
chaotic maps, simulation experiments remain indeed to verify whether a given chaotic map could
improve a selected algorithm or not.

4.5. Type 4: Chaotic mapped controlled parameters

The controlled parameter balancing the exploration and exploitation ratio was mostly declined
from the maximum to minimum values linearly, for instance, the energy parameter E in the Harris
hawk optimization (HHO) algorithm [59], a in the SC algorithm or GWO algorithm. Sometimes other
distributions might be also introduced, such as the exponential function in the equilibrium optimization
(EO) algorithm [60], arctanh [61], or cosine [62] functions in the slime mould (SM) algorithm. In the
SCA and GWO algorithms, the controlled parameters were declined linearly from 2 to zero versus
iterations with randomness. The randomness could also be replaced by chaos to improve capability,
steadiness, and suitability.

This kind of improvement was just proposed recently with a specific seldom applied chaotic map
in β distribution [49]. In this experiment, 19 classical chaotic maps were introduced to replace the β
ddistributed chaos, results were shown from Figures 32 to 35.

Results showed that sometimes this kind of improvement could improve the capability of the
optimization algorithm, but sometimes the chaotic maps would fail to do so. Regarding Schwefeil 1.2
function, all of the chaotic improved GWO algorithms would perform better than the original, while
only six of them could improve the SC algorithm.

4.6. Discussion of the results

Literal researches had been made and four types of classical improvements including a newly
proposed version were concluded. Detailed results of works in this paper might be summarized in
Tables 7 and 8.

Table 7. Summarize simulation experiments on the GWO algorithm.

Chaos
Unimodal Multimodal Unimodal with basins Unimodal with valleys

B
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

CM1 W B B W W W W B B B B B B B B B 11
Continued on next page

8237

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Chaos
Unimodal Multimodal Unimodal with basins Unimodal with valleys

B
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

CM2 W W B W W W W W W B B W B W B W 5
CM3 W B B W B W W B W B B B B B B W 10
CM4 W B B W B B B B W B B B B B B W 12
CM5 W W B W B B B B W B B B B B B W 11
CM6 W B B B W W W W W B B B B W B W 8
CM7 W B W W W W W W W W B W B B B W 5
CM8 W B B W B B B B B B B B B B B W 13
CM9 W B B W B B B B B W B B B B B B 13
CM10 W B B W B B W B W W B B B B B W 10
CM11 W B B B W B N B B B B W B B B W 11
CM12 W B B W W B B W W B B B B B B W 10
CM13 W B B B B B B B B B B B B B B B 15
CM14 W B B W W W W W B W B W B W B W 6
CM15 W B B W W B B W W B B B B B B 10
CM16 W B B W B W W W W B B B B B B W 9
CM17 W W B W W W W W W W W N B W B W 3
CM18 W B B W B B B B W B B B B B B B 13
CM19 W B B W W B B B W B B W B B B W 10
B 0 16 18 3 9 10 9 12 6 13 18 13 19 15 19 5
Note: In the above table, B means better, represents the chaotic improved algorithm would perform better than the
original algorithm; W means worse and the opposite meaning of B; N represents a meanness incensement, that is to say,
we cannot find whether the improvement performs better or worse.

Table 7. Summarize simulation experiments on the SC algorithm.

Chaos
Unimodal Multimodal Unimodal with basins Unimodal with valleys

B
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

CM1 W B B W W B W B B W B B B W B B 10
CM2 W W W W B W W W B W B W W W B B 5
CM3 W B W W B B W W B W B W W W W W 5
CM4 W B W W B W W W B W B W W B W B 6
CM5 B B W W B B W W B W B W W W B W 7
CM6 B W W W B B W W B W B W W W W B 6
CM7 W W W W B W W W B W B W W B W W 4
CM8 W W W W B W W W B W B W W B W B 5
CM9 W W W W W W W W B W B W W W W W 2
CM10 W W W W B W W W B W B W W W W W 3
CM11 W B W B B B W W B W B W B W W B 8
CM12 W B W W B B W W B W B W W W W B 6
CM13 W W B B B W W W B W B B W W W W 6
CM14 W B W B B W W B B W B B B B B B 11
CM15 W W W W B W W W B W B W B W B W 5

Continued on next page

8238

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Chaos
Unimodal Multimodal Unimodal with basins Unimodal with valleys

B
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

CM16 W W W W B W B W B W B W N W W W 4
CM17 W W W W B W W W B W B W W W W W 3
CM18 W W B B B B W W B W W B W B B B 9
CM19 W B W B B B W W B W B W W B W B 8
B 2 8 3 5 17 8 1 2 19 0 18 4 4 6 6 10

We can find that the chaotic maps could increase the capability of the GWO algorithm more than
that of the SC algorithm. Most of the chaotic maps could result in a better performance when they are
applied in improving the GWO algorithm, simulation experiments verified their capability. Only a few
of them, precisely 6/19, such as the ICMIC, Intermittency, Quadratic, Singer, and Sinusoidal maps
could only perform better in less than 10/16 benchmark functions.

On the opposite side, only Bernoulli and Kent map performed better in no less than 10 of 16
benchmark functions. Most of them could not yield better results.

Focusing on the characteristics of benchmark functions, four types including unimodal,
multimodal, unimodal with basin-like or valley-like profiles in their three-dimensional profiles [3] of
benchmark functions were introduced. However, we still cannot draw confirmative conclusions from
the experiment results. For example, from the results of simulation experiments on unimodal
benchmark functions with the GWO algorithm, we can find that none of the chaotic improved GWO
algorithms could perform better in optimizing Ackley 1 function, meanwhile, 16 and 18 of the 19
chaotic maps could perform better in improvement on the Exponential or Sargan function. Regarding
the SC algorithm, most of the chaotic maps failed to do so.

5. Discussion and conclusions

In this paper, we paid attention to the chaotic maps which could generate pseudo-random numbers
in an interval between 0 and 1. Nineteen classical chaotic maps were collected and their improvement
on the famous GWO and SC algorithms were researched.

Four types of benchmark functions, including two main classical characteristics: modality and
uniqueness in profiles, were introduced to carry on the simulation experiments. For the obviousness
and simplicity, only convergence ratio experiments were carried out and the convergent curves were
shown in figures. We can conclude about the study of chaotic improved research that:

A. Although the chaotic maps could be used to replace the pseudo-random number in computer
engineering, they could not increase the performance of algorithms in optimization for sure.

B. Among all of the four types of chaotic improvements, sometimes they could perform better,
yet none of them could perform confirmative better for a given problem.

C. Modality and the unique landscape could influence the performance of optimization algorithms,
however, they are all not the only reason. A detailed study in mathematics might be needed to find the
reason why some of the benchmark functions could be easily optimized, while some of them not.

D. There might be doubtful to apply the chaotic maps in improving optimization algorithms in
engineering. It might be OK for a given problem and algorithm, which might occur in some subjects.
Nevertheless, due to the uncertainty of a specific chaotic map on all improved ways and functions, it
would be unnecessary to establish chaotic improved platforms in computer engineering.

8239

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

E. It might be a little meaningless to investigate the performance of chaos in optimization henceforth.

Acknowledgments

The authors would like to thank the supports of the following projects: the scientific research
team project of Jingchu University of technology with grant number TD202001, and the key research
and development project of Jingmen with grant numbers 2019YFZD009.

Conflict of interest

There is no conflict of interest.

References

1. X. S. Yang, Nature-inspired optimization algorithms: Challenges and open problems, J. Comput.
Sci., 46 (2020), 101104. https://doi.org/10.1016/j.jocs.2020.101104

2. Z. M. Gao, J. Zhao, An Improved Grey Wolf Optimization Algorithm with Variable Weights,
Comput. Intell. Neurosci., 2019 (2019), 2981282. https://doi.org/10.1155/2019/2981282

3. Z. M. Gao, J. Zhao, Benchmark functions with Python, Riga, Latvia: Golden Light Academic
Publishing, (2020), 3−5.

4. L. Zhao, T. Zheng, M. Lin, A. Hawbani, J. Shang, C. Fan, SPIDER: A social computing inspired
predictive routing scheme for softwarized vehicular networks, IEEE Trans. Intell. Transp. Syst.,
(2021), 1−12. https://doi.org/10.1109/TITS.2021.3122438

5. L. Zhao, W. Zhao, A. Hawbani, A. Y. Al-Dubai, G. Min, A. Y. Zomaya, et al., Novel online
sequential learning-based adaptive routing for edge software-defined vehicular networks, IEEE
Trans. Wireless Commun., 20 (2021), 2991−3004. https://doi.org/10.1109/TWC.2020.3046275

6. L. Zhao, C. Wang, K. Zhao, D. Tarchi, S. Wan, N. Kumar, INTERLINK: A digital twin-assisted
storage strategy for satellite-terrestrial networks, IEEE Trans. Aerosp. Electron. Syst., (2022).
https://doi.org/10.1109/TAES.2022.3169130

7. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51−67.
https://doi.org/10.1016/j.advengsoft.2016.01.008

8. Y. Chen, G. De Luca, Technologies supporting artificial intelligence and robotics application
development, J. Artif. Intell. Technol., 1 (2021), 1−8. https://doi.org/10.37965/jait.2020.0065

9. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 – Inte-
rnational Conference on Neural Networks, 4 (1995), 1942−1948. https://doi.org/10.1109/I
CNN.1995.488968

10. J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997
IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics
and Simulation, 5 (1997), 4104−4108. https://doi.org/10.1109/ICSMC.1997.637339

11. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Conference
on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360), (1998), 69−73. https://doi.org/ 10.1109/ICEC.1998.699146

12. Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, Springer, Berlin,
Heidelberg, (1998), 591−600. https://doi.org/10.1007/BFb0040810

8240

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

13. P. N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Proceedings of the
1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 3 (1999), 1958−1962.
https://doi.org/10.1109/CEC.1999.785514

14. R. C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm
optimization, in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat.
No.00TH8512), 1 (2000), 84−88. https://doi.org/10.1109/CEC.2000.870279

15. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE
Trans. Evol. Comput., 8 (2004), 204−210. https://doi.org/10.1109/TEVC.2004.826074

16. M. E. H. Pedersen, A. J. Chipperfield, Simplifying particle swarm optimization, Appl. Soft Comput.,
10 (2010), 618−628. https://doi.org/10.1016/j.asoc.2009.08.029

17. Y. Chunming, D. Simon, A new particle swarm optimization technique, in 18th Internati-
onal Conference on Systems Engineering (ICSEng’05), (2005), 164−169. https://doi.org/10.
1109/ICSENG.2005.9

18. X. X. Feng, Z. W. Jun, Y. Z. Lian, Dissipative particle swarm optimization, in Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2 (2002), 1456−1461
https://doi.org/10.1109/CEC.2002.1004457

19. Z. M. Gao, J. Zhao, X. R. Li, Y. R. Hu, An improved sine cosine algorithm with multiple updating
ways for individuals, J. Phys.: Conf. Ser., 1678 (2020), 012079. https://doi.org/10.1088/1742-
6596/1678/1/012079

20. J. Kennedy, Bare bones particle swarms, in Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS’03 (Cat. No.03EX706), (2003), 80−87. https://doi.org/10.1109/SIS.2003.1202251

21. A. P. Engelbrecht, Heterogeneous particle swarm optimization, in Swarm Intelligence, Springer,
Berlin, Heidelberg, 6234 (2010). https://doi.org/10.1007/978-3-642-15461-4_17

22. P. J. Angeline, Using selection to improve particle swarm optimization, in 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No.98TH8360), (1998), 84−89. https://doi.org/10.1109/ICEC.1998.699327

23. H. Ullah, B. Ahmad, I. Sana, A. Sattar, A. Khan, S. Akbar, et al. Comparative study for machine
learning classifier recommendation to predict political affiliation based on online reviews, CAAI
Trans. Intell. Technol., 6 (2021), 251−264. https://doi.org/10.1049/cit2.12046

24. H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft
Comput., 23 (2014), 333−345. https://doi.org/10.1016/j.asoc.2014.06.034

25. E. Emary, H. M. Zawbaa, M. Sharawi, Impact of Lèvy flight on modern meta-heuristic optimizers,
Appl. Soft Comput., 75 (2019), 775−789. https://doi.org/10.1016/j.asoc.2018.11.033

26. B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A
new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng.,
158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408

27. D. Ghosh, J. Singh, Spectrum-based multi-fault localization using Chaotic Genetic Algorithm, Inf.
Software Technol., 133 (2021), 106512. https://doi.org/10.1016/j.infsof.2021.106512

28. B. Alatas, Chaotic harmony search algorithms, Appl. Math. Comput., 216 (2010), 2687−2699.
https://doi.org/10.1016/j.amc.2010.03.114

29. L. Ding, H. Wu, Y. Yao, Chaotic artificial bee colony algorithm for system identification of a
small-scale unmanned helicopter, Int. J. Aerosp. Eng., 2015 (2015), 801874.
https://doi.org/10.1155/2015/801874

8241

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

30. A. H. Gandomi, X. S. Yang, S. Talatahari, A. H. Alavi, Firefly algorithm with chaos, Commun.
Nonlinear Sci. Numer. Simul., 18 (2013), 89−98. https://doi.org/10.1016/j.cnsns.2012.06.009

31. J. Jiang, X. Yang, X. Meng, K. Li, Enhance chaotic gravitational search algorithm (CGSA) by
balance adjustment mechanism and sine randomness function for continuous optimization
problems, Phys. A, 537 (2020), 122621. https://doi.org/10.1016/j.physa.2019.122621

32. A. H. Gandomi, X. S. Yang, Chaotic bat algorithm, J. Comput. Sci., 5 (2014), 224−232.
https://doi.org/10.1016/j.jocs.2013.10.002

33. X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010), Springer, Berlin, Heidelberg, 284 (2010), 65−74.
https://doi.org/10.1007/978-3-642-12538-6_6

34. A. Farshin, S. Sharifian, A chaotic grey wolf controller allocator for Software Defined Mobile
Network (SDMN) for 5th generation of cloud-based cellular systems (5G), Comput. Commun.,
108 (2017), 94−109. https://doi.org/10.1016/j.comcom.2017.05.003

35. W. Zhu, H. Duan, Chaotic predator–prey biogeography-based optimization approach for U
CAV path planning, Aerosp. Sci. Technol., 32 (2014), 153−161. https://doi.org/10.1016/j.as
t.2013.11.003

36. G. Kaur, S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275−284.
https://doi.org/10.1016/j.jcde.2017.12.006

37. R. M. Rizk-Allah, A. E. Hassanien, S. Bhattacharyya, Chaotic crow search algorithm for
fractional optimization problems, Appl. Soft Comput., 71 (2018), 1161−1175. https://doi.org
/10.1016/j.asoc.2018.03.019

38. M. Mitić, N. Vuković, M. Petrović, Z. Miljković, Chaotic fruit fly optimization algorithm,
Knowledge-Based Syst., 89 (2015), 446−458. https://doi.org/10.1016/j.knosys.2015.08.010

39. M. Kohli, S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization
problems, J. Comput. Des. Eng., 5 (2018), 458−472. https://doi.org/10.1016/j.jcde.2017.02.005

40. A. Erramilli, R. P. Singh, P. Pruthi, Chaotic maps as models of packet traffic, Teletraffic Sci. Eng.,
1 (1994), 329−338. https://doi.org/10.1016/B978-0-444-82031-0.50040-8

41. Chaotic Maps, 2021. Available from: https://www.mathworks.com/matlabcentral/fileexchang
e/7370-chaotic-maps.

42. Y. Hu, J. Gong, Y. Jiang, L. Liu, G. Xiong, H. Chen, Hybrid map-based navigation method for
unmanned ground vehicle in urban scenario, Remote Sens., 5 (2013), 3662−3680.
https://doi.org/10.3390/rs5083662

43. D. He, C. He, L. G. Jiang, H. W. Zhu, G. R. Hu, Chaotic characteristics of a one-dimensional
iterative map with infinite collapses, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 48 (2001),
900−906. https://doi.org/10.1109/81.933333

44. I. Fister, M. Perc, S. M. Kamal, I. Fister, A review of chaos-based firefly algorithms: Perspectives
and research challenges, Appl. Math. Comput., 252 (2015), 155−165.
https://doi.org/10.1016/j.amc.2014.12.006

45. G. Pastor, M. Romera, F. Montoya, A revision of the Lyapunov exponent in 1D quadratic maps,
Physica D, 107 (1997), 17−22. https://doi.org/10.1016/S0167-2789(97)00057-2

46. T. Xiang, X. Liao, K. Wong, An improved particle swarm optimization algorithm combined with
piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637−1645.
https://doi.org/10.1016/j.amc.2007.02.103

8242

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

47. J. Zhao, Z. M. Gao, B. L. Jia, The improved slime mould algorithm with piecewice map, in 2020
International Symposium on Computer Engineering and Intelligent Communications (ISCEIC),
(2020), 25−29. https://doi.org/10.1109/ISCEIC51027.2020.00013

48. M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338.
https://doi.org/10.1016/j.eswa.2020.113338

49. A. Saxena, R. Kumar, S. Das, β-chaotic map enabled grey wolf optimizer, Appl. Soft Comput., 75
(2019), 84−105. https://doi.org/10.1016/j.asoc.2018.10.044

50. H. Li, S. Wang, M. Ji, An improved chaotic ant colony algorithm, in Proceedings of the 9th
international conference on Advances in Neural Networks, Springer, Berlin, Heidelberg, (2012),
633−640. https://doi.org/10.1007/978-3-642-31346-2_71

51. B. Wu, S. Fan, Improved artificial bee colony algorithm with chaos, in Computer Science for
Environmental Engineering and EcoInformatics, Springer, Berlin, Heidelberg, 158 (2011), 51−56.
https://doi.org/10.1007/978-3-642-22694-6_8

52. A. A. Ateya, A. Muthanna, A. Vybornova, A. D. Algarni, A. Abuarqoub, Y. Koucheryavy, et al.,
Chaotic salp swarm algorithm for SDN multi-controller networks, Eng. Sci. Technol. Int. J., 22
(2019), 1001−1012. https://doi.org/10.1016/j.jestch.2018.12.015

53. X. Liang, Z. Cai, M. Wang, X. Zhao, H. Chen, C. Li, Chaotic oppositional sine–cosine method for
solving global optimization problems, Eng. Comput., 38 (2022), 1223–1239.
https://doi.org/10.1007/S00366-020-01083-Y

54. S. I. Boushaki, N. Kamel, O. Bendjeghaba, A new quantum chaotic cuckoo search algor-
ithm for data clustering, Expert Syst. Appl., 96 (2018), 358−372. https://doi.org/10.1016/j.e
swa.2017.12.001

55. S. Aggarwal, P. Chatterjee, R. P. Bhagat, K. K. Purbey, S. J. Nanda, A social spider optimization
algorithm with chaotic initialization for robust clustering, Procedia Comput. Sci., 143 (2018),
450−457. https://doi.org/10.1016/j.procs.2018.10.417

56. A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based chaotic harris hawks
optimizer: Algorithm and internet of vehicles application, Appl. Soft Comput., (2021), 107574.
https://doi.org/10.1016/j.asoc.2021.107574

57. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46−61.
https://doi.org/10.1016/j.advengsoft.2013.12.007

58. S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge Based
Syst., 96 (2016), 120−133. https://doi.org/10.1016/j.knosys.2015.12.022

59. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization:
Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849−872.
https://doi.org/10.1016/j.future.2019.02.028

60. A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel
optimization algorithm, Knowledge Based Syst., 191 (2019), 105190.
https://doi.org/10.1016/j.knosys.2019.105190

61. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for
stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300−323.
https://doi.org/10.1016/j.future.2020.03.055

62. Z. M. Gao, J. Zhao, S. R. Li, The improved slime mould algorithm with cosine controlling
parameters, J. Phys.: Conf. Ser., 1631 (2020), 012083. https://doi.org/10.1088/1742-
6596/1631/1/012083

8243

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Appendix

Figure 20. Convergence with iterations for Ackley 1 function.

8244

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 21. Convergence with iterations for Alpine 1 function.

8245

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 22. Convergence with iterations for Chung Reynolds function.

8246

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 23. Convergence with iterations for Bent Cigar function.

8247

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 24. Convergence with iterations for Exponential function.

8248

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 25. Convergence with iterations for Cosine Mixture function.

8249

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 26. Convergence with iterations for Csendes function.

8250

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 27. Convergence with iterations for Quartic function.

8251

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 28. Convergence with iterations for Sargan function.

8252

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 29. Convergence with iterations for Griewank function.

8253

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 30. Convergence with iterations for Holzman 2 function.

8254

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 31. Convergence with iterations for Schwefel 1.2 function.

8255

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 32. Convergence with iterations for Schwefel 2.20.

8256

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 33. Convergence with iterations for Rastrigin function.

8257

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 34. Convergence with iterations for Schwefel function.

8258

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8215−8258.

Figure 35. Convergence with iterations for Zakharov function function.

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

