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Abstract: Tactile-feeding wading birds, such as wood storks and white ibises, require high densities 

of prey such as small fishes and crayfish to support themselves and their offspring during the 

breeding season. Prey availability in wetlands is often determined by seasonal hydrologic pulsing, 

such as in the subtropical Everglades, where spatial distributions of prey can vary through time, 

becoming heterogeneously clumped in patches, such as ponds or sloughs, as the wetland dries out. In 

this mathematical modeling study, we selected two possible foraging strategies to examine how they 

impact total energetic intake over a time scale of one day. In the first, wading birds sample prey 

patches without a priori knowledge of the patches’ prey densities, moving from patch to patch, 

staying long enough to estimate the prey density, until they find one that meets a predetermined 

satisfactory threshold, and then staying there for a longer period. For this case, we solve for a wading 

bird’s expected prey intake over the course of a day, given varying theoretical probability 

distributions of patch prey densities across the landscape. In the second strategy considered, it is 

assumed that the wading bird samples a given number of patches, and then uses memory to return to 

the highest quality patch. Our results show how total intake over a day is impacted by assumptions of 

the parameters governing the spatial distribution of prey among patches, which is a key source of 

parameter uncertainty in both natural and managed ecosystems. Perhaps surprisingly, the foraging 

strategy that uses a prey density threshold generally led to higher maximum potential prey intake 

than the strategy for using memory to return to the best patch sampled. These results will contribute 

to understanding the foraging of wading birds and to the management of wetlands. 

Keywords: prey density probability distribution; heterogeneous landscape; threshold for foraging; 
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foraging using memory 

 

1. Introduction 

Stephen Gourley’s contributions to theoretical ecology are many and wide-ranging. These include 

representations of foragers on the landscape, such as herbivore foraging (snow-shoe hare [1–3] and the 

patchy spatiotemporal distribution of a wetland bird [4]. The topic of our present paper, wading bird 

foraging in patchy landscapes, follows similar themes. 

Unlike the large-scale distribution of patches used by migratory geese described in [1], we 

consider a smaller spatial scale of a local set of patches that a wading bird can access and forage 

within a short time period of one day. Tactile feeding wading birds forage on high concentrations of 

prey, such as small fishes and crayfish that form in spatially dynamic wetlands. The general process 

of concentration involves growth and spatial expansion of prey populations across an inundated 

landscape during the wet season, followed by spatial contraction of wetlands during the dry season, 

when prey become isolated in drying patches as the patches disconnect from the greater landscape. In 

this way, the spatial distributions of both hydrology and prey are seasonally pulsed. These dynamics are 

typical of many seasonal wetlands, such as the Everglades in Florida (USA), and the Pantanal in Brazil. 

One important aspect is that sufficient prey is continuously available and consumed to meet 

energetic demands of both the adult and its clutch of offspring over long breeding periods. Prey must 

therefore be successfully located and delivered to chicks each day to ensure their survival. To meet 

these needs, wading birds often form large breeding colonies in the vicinity of foraging hotspots, 

which we term ‘patches’. They often make use of cues from other birds and of memory to locate and 

retrieve prey [5,6]. Within a given day, prey availability may be relatively constant in a given patch; 

however, across the patches there could be considerable variation in the prey densities. On a given 

day, a wading bird forager will have a choice among many potential patches to acquire prey. We are 

interested in understanding how variations in spatial foraging strategy, i.e., how to choose how long 

to stay in patches of varying prey density; can impact total daily energetic consumption. In particular, 

can different patch selection behaviors, such as choosing to stay within or abandon a patch, result in 

more or less efficient consumption? We assume that during periods of high energetic needs, such as 

raising offspring, the forager can obtain greater intake than what is available on average across the 

landscape by preferentially selecting among locally concentrated prey patches. However, the specific 

pattern of remaining in or abandoning particular patches that result in the greatest overall yield needs 

to be determined. 

The concepts mentioned above have been examined theoretically by ecologists over several 

decades, because foraging on a landscape with a heterogeneous array of patches is ubiquitous. For 

example, ecologists have developed theory for how a forager might maximize its intake of prey 

during a given time period or, alternatively, minimize the time spent foraging to acquire a desired 

amount of prey. For foraging in a set of patches within a time period such as a day, Charnov’s (1976) [7] 

marginal value approach suggests that a forager should depart from its current patch and seek to add 

a new patch to its “itinerary”, when the prey availability at the current patch falls below the average 

level of other patches that could be reached. That implies the concept of a ‘giving up density’ or 

GUD; that is, an available prey density at which the forager will leave a given patch to search for 

another. Charnov’s theory considers there to be depletion of prey over the time scale of interest, such 
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as foraging for seeds in a small patch. In our case, a patch exploited by a wading bird might be a 

pond whose stock of prey is large, such that the prey densities on the time scale of a single day, or at 

least during the time interval that an individual utilizes it, can be reasonably assumed not to change 

appreciably. Part of the reason is also that prey densities can actually increase as the area of 

inundated habitat contracts with wetland drying, despite rapid depletion by foraging. We are not 

accounting for these complex landscape dynamics here, and simply assume no change in prey 

density over a day. Thus, the time scale of estimation of prey density by the forager and the decision 

to remain in or abandon a patch is relatively brief, and the important scale considered in this study is 

across space, that is, among patches, rather than through time. However, we do acknowledge that 

time-dynamic prey availability is a critical aspect of wading bird ecology, which can be addressed in 

future studies. 

We examine strategies in which the forager starts a day with no a priori knowledge about the 

prey densities of available patches. That is, it has no memory from previous days and does not follow 

cues from other wading birds. It may however have a general expectation about the possible prey 

densities across the patches over the whole landscape in relation to its needs. We consider two 

general strategies to which such expectations could lead. The first strategy is “threshold-based”, in 

which the forager learns about prey densities upon arrival at the patch. It remains in the patch if 

conditions of prey on the landscape; i.e., high densities in shallow and accessible patches, would 

enable the forager to encounter and obtain sufficient intake to meet its target energetic threshold. 

Otherwise, it moves on to another patch. The second strategy is “memory-based”, allowing the bird 

to store memory of prey densities over a short sampling time over a series of patches, and then return 

to the patch with the highest value. In both of the strategies, sampling is assumed to be made in swift 

bouts, small portions of the day. We are interested in comparing how the reward, that is, total 

potential daily energetic consumption, may vary with strategy and landscape conditions and the 

details of how the wading bird employs either strategy. The first approach follows that of Stephens 

and Krebs [8] in which a GUD can be assumed, which we translate to a ‘giving up time’, or GUT, 

following [9], assuming that some minimum time is required to assess patch quality. The second 

approach considers a cognitive ability of the wading bird to assess and remember spatial variation in 

prey density across the landscape over short sampling periods, and to decide which are most suitable. 

Although wading bird cognition is still not well understood, some studies suggest a role in foraging 

on spatially complex prey landscapes [10]. The difference between these two strategies is that the 

first case is regulated more by an expectation of the foraging bird, while the second reflects actual 

availability of prey determined by the landscape; however, both cases represent complex interactions 

between forager and landscape, determining energetic intake for the forager. 

Here we develop a mathematical model for a wading bird forager, employing these two foraging 

strategies during the dry season, which is a critical time for reproduction and rearing of offspring. 

The prey densities across the landscape are represented using simple mathematical distribution 

functions. 

2. Materials and methods 

2.1. Environment 

The environment of the foraging wading bird is assumed to consist of potential foraging patches 
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that are sufficiently numerous that the forager can move among patches with a large range of prey 

availabilities. We assume here that prey availability is equivalent to prey density, although 

acknowledge that availability can be impacted by a complexity of factors such as water depth. It is 

convenient for this theoretical study, in the absence of accurate empirical knowledge concerning prey 

densities across the landscape, to represent the range of potential prey conditions among foraging 

sites by an analytic probability density. The gamma distribution is flexible enough to describe a wide 

range of distributions with only two parameters, ν and α, 

�(��������) =
��

�(�)
���∗��������(��������)���,                  (2.1) 

where �������� is the prey density, � and v are rate and shape parameters, and Γ(�) is the 

gamma function. For example, for v = 1 (α = 0.16, 0.24), and v = 2 (α = 0.32, 0.48) the probability 

density function �(��������) has the forms shown in Figure 1. The v = 1 case is a negative exponential 

function such that the great majority of patches have prey biomass densities less than 10 g m-2, although 

some patches have at least 15 g m-2. The cases in which v = 2 are qualitatively different in that the 

probability density is unimodal. In both cases, parameter α affects the rate of decline of the tail of 

the distribution.  

 

Figure 1. Gamma probability density with v = 1, α = 0.16 (thick solid), v = 1, α = 0.24 (thin 

solid), v = 2, α = 0.24 (thick dashed), and v = 2, α = 0.48 (thin dashed). These distributions 

are among those used below. 

2.2. Assumptions on foraging 

It is assumed here that the wading bird forages over the course of a single day using one or the 

other sampling strategies mentioned above (described in detail later), on a landscape of foraging 

patches with prey density varying among patches following the gamma distribution. The basic 

assumptions are as follows. 
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1) The wading bird has a target daily energetic requirement, preyneeded, which it attempts to fulfill 

through cumulative prey acquisition through feeding among patches, within a specified time. It may 

not meet this quota if the prey densities that it encounters are too low.  

2) The wading bird has no a priori knowledge of the prey availability of the patches that it visits, 

such as memory from previous days. However, the effect of within-day memory will be studied as 

part of the second assumed strategy. 

3) The wading bird feeds in every patch it visits, continuously, for as long as it is there, even though 

it may decide to leave the patch after deciding that prey density is too low. 

4) There is an upper time limit, T minutes, for total foraging time within a day, and thus an upper 

limit on patches visited. The forager visits patches, given other rules below, until it reaches a desired 

intake of prey. 

5) The time to travel from one foraging site to the next, �����������, is included as part of total time, 

T. This is counted for each patch visited and is assumed the same for each patch. The wading bird 

does not consume food during travel, thus travel time counts against the total time spent actively feeding. 

6) In strategy 1, upon arriving at a patch, the wading bird undertakes a short decision-making period, 

tmin, during which it samples prey through feeding, estimates the prey availability of the patch, and 

then decides whether to stay or leave the patch, based on a defined threshold, preythreshold. In strategy 2, 

the wading bird samples a pre-determined number of patches for short periods, and then returns to 

the patch with highest density. 

7) The prey density within a given foraging site is not depleted while the forager is present in the patch. 

8) There are no interactions (e.g., competition, information transfer such as using cues) with other 

wading birds. Also, risk of predation is not included. 

This set of assumptions simplifies the complex interactions that actually exist between wading 

bird foraging behavior and dynamic wetland environments in the real world; however, most can 

easily be relaxed in the future as necessary. Given these conditions, the wading bird’s general 

foraging strategy consists of the overall objective of at least meeting the daily requirement, preyneeded, 

and if met, a secondary objective of minimizing the time spent foraging, which is determined by 

whether or not to continue foraging after preyneeded is reached. If preyneeded is not met, the wading bird 

forages for the whole time period, T, obtaining what prey intake it can over that period. Strategy 1 of 

the wading bird is to sample a succession of foraging patches until it arrives at a patch in which the 

prey density exceeds a threshold value, preythreshold, (we will use that term rather than GUD here) at 

which point the wading bird stays until either it acquires its limit, preyneeded, or it reaches the time 

limit, T. In the case of strategy 2, the wading bird visits a predetermined number of patches before 

returning to the best patch has visited, to optimize overall energetic intake. This represents a tradeoff 

between opportunity for finding a high-quality patch and time spent feeding within it. 

2.3. Foraging strategy 1. Sampling until prey density threshold is reached 

The wading bird follows the sampling approach until it finds a patch that it considers 

satisfactory and then stays in that patch. 

2.3.1. Calculation of probability of exceeding the preythreshold 

Since �(��������) is the probability of encountering a patch with a given prey density, the 
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cumulative probability of �(��������), Q, integrated from 0 to preythreshold, is the probability that a 

foraging patch chosen at random will have a prey density that is less than �������������. Therefore, 

we define the probability, P, of exceeding the threshold in a random visit as one minus the 

cumulative probability (Figure 2), 

� = 1 − � �(��������)���������

�������������

�

                                                               

=  1 − �
��

Γ(�)
���∗��������(��������)���

�������������

�

���������. 

For the gamma distribution v = 1, since Γ(1) = 1, this can be shown to be 

� = 1 − (1 − ���∗�������������) =   ���∗������������� . 

For v = 2, since Γ(2) = 1, this is 

� = 1 − 1 +  ���∗������������� +  � ∗ ���������������∗�������������                          

=  ���∗������������� +  � ∗ ����������������∗������������� 

In both cases, P is equal to 1 when ������������� = 0  and decreases toward zero as 

������������� increases. This decrease is slower for smaller values of α. 

Table 1 illustrates various scenarios of visits to patches in which the wading bird succeeds in the 

1st, 2nd, …, or Nth patch to find prey density greater than the threshold density. The probabilities of 

success being achieved for any of these cases are listed in column six, where Q = 1 – P. Columns 

three and four are the cumulative times spent traveling to patches and the times spent in patches of 

lower density than �������������. Column five is the total time available for foraging in the patch in 
which ����������� � �������������, although the wading bird may choose to stay in that patch only 

as long as it takes to reach ����������. 

 

Figure 2. Hypothetical distribution of prey densities in available patches on the 

landscape for ν = 1, α = 0.32. The probability density distribution function is f(x). 

Threshold density represents the prey density at which the wading bird decides to stay in 

the pond and P is the possibility to find a pond above threshold in the next search. 
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Table 1. Description of possible foraging scenarios of strategy 1. The table shows the 

time cost and chance of success for each case in which the wading birds find the patch 

with prey density above ������������� at 1st through Nth trial or fails to achieve success 

within N trials. 

Success at nth 

trial 

Illustration Transition time Time spent in 

low quality 

patches 

Time spent in the high 

quality patch 

Chance 

to 

happen 

1st 

 

����������� 0 � − (����������� + ����)

+ ���� 

P 

2nd 

 

2 ∗ ����������� ���� � − 2(�����������

+ ����) + ���� 

P*Q 

3rd 

 

3 ∗ ����������� 2 ∗ ���� � − 3(�����������

+ ����) + ���� 

P*Q*Q 

Nth 

 

� ∗ ����������� (� − 1) ∗ ���� � − �(�����������

+ ����) + ���� = ���� 

P*Q(N-1) 

Never find 

patch>threshold 

 

� ∗ ����������� � ∗ ���� � − �(�����������

+ ����) = 0 

QN 

2.3.2. Calculation of time needed to exceed preythreshold 

The next step is to account for the time constraints on total foraging time within a day. As 

mentioned, foraging is partitioned into discrete bouts at separate patches, and each bout requires 

discrete time periods to travel to and sample each patch, ttransition and tmin, respectively. Thus, a limited 

number of patches, N, can be visited in a day. Based on ���� and �����������, and the total foraging 

hours allowed in a day, T, we calculated this maximum number of patch visits as: 

� = ������� ������� �� ����ℎ�� �� ����� =
�

���� + �����������
 

We then apply this constraint to the probability of encountering a given prey density in a patch, 

described in Section 2.3.1, by taking the cumulative probability across n patches sampled within a 

day, as follows. Since daily foraging involves n-1 bouts of feeding below the threshold and a single 

bout of feeding above, the cumulative probability of encountering a prey density above the given 

acceptable threshold can be expressed as: 

∑ ������
��� = 1 − ��. 

Thus, the expectation for failure to find an acceptable patch within a day is QN. 

Based on Table 1 and Appendix 1, we can also calculate the average time spent to find a patch 

above threshold, given that the bird finds the patch within the daily time available for foraging. 
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������� ���� �� ���� ����ℎ ����� �ℎ���ℎ��� �������� �ℎ�� �ℎ� ����ℎ �� �����                  

=
∑ ����� ����� �� �ℎ� ���� ���� �ℎ� ����ℎ �� ��� ������ ∗ ��ℎ���� �� ���� �� ��� �������

���

����� �ℎ���� �ℎ�� ����� ���� � ����ℎ����� �ℎ������ ���ℎ�� � ������
 

=
∑ {�(����������������)�����}������

���

����                                                        

=
∑ (����������������)�������∑ ����������

���
�
���

����                                                 

= �(����������� + ����) �
������

�
− ���� − ����(1 − ��)� (1 − ��)��                           

= (����������� + ����) �
������

�
− ���� (1 − ��)�� − ����                                    

= (����������� + ����) �
�

�
−

���

(����)
� − ����                                         (2.2) 

This represents average time spent to find a patch above threshold, if indeed it finds such a 

patch above threshold within an upper limit of N trials. In this case, the wading bird spends only the 

short decision-making period, tmin, in each patch, and then leaves promptly if the prey density does 

not meet the threshold. The decision to remain within or abandon a patch depends on whether the 

wading finds a foraging patch that satisfies its requirement that �������� > preythreshold. 

For a general probability density function, �(��������), of prey densities in available patches 

across a landscape, and a probability of reaching the cumulative probability threshold, P, the 

expected potential prey intake over the course of a day for a prey threshold, �������������, is 

���� �������� ����� ���� ������                                                                                               

=  ���� ∗ ��
������

�
� ���� ∗ ∫ �(��������)��������������������

�������������

�
+ �� �1 +

������

��
� +

����(1 − ��)� ∗ ��� ∫ �(��������)�����������������
�

�������������
�,            (2.3) 

See derivation in Appendix 2, Supplementary Information. The parameter Cons is the rate at 

which the wading bird captures and consumes prey, given a certain prey density. This value depends 

on particular species and circumstances. Although this is a value that has been measured for some 

wading birds in some circumstances, here we will choose an arbitrary value that produces reasonable 

prey intake rates. We also assume that it is constant, which assumes that a wading bird will continue 

to feed at the same rate through time; that is, it will have ceased foraging by the time it would have 

become satiated. 

The first term on the right-hand side of Eq (2.3) represents the expected prey intake from 

patches visited before the wading bird finds a patch that has prey density exceeding the 

�������������, and feeds for intervals of tmin in each of those patches. The factor (1 − ��) �⁄ = 1 

when P = 1 and approaches N when P → 0. Because P = 1 only when ������������� = 0, this first 

term of Eq (2.3) only contributes to expected prey intake when P < 1. In the limit that P → 0, which 

corresponds to ������������� being high such that the probability of reaching it is small, the prey 
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intake approaches ���� ∗ ���� ∗ � ∗ (���� ���� ������� ���� ��� ��������� ����ℎ��). That is, 

the prey intake is the maximum number of patches, N, that can be visited during the time T, each for 

time tmin, and where the expected intake in each patch is the mean of the densities over the landscape. 

For 0 < P < 1, the first term of Eq (2.3) represents values of prey intake corresponding to the number 

of patches visited and the mean prey density in the distribution below the probability threshold P. 

The second term is the expected prey intake from a patch with prey density > ������������� that has 

been reached. The two sub-terms within the braces of the second term represent components of prey 

intake during the time that the wading bird samples that patch (second sub-term) and the time for the 

remainder of the available time for foraging in that day (first sub-term). The wading bird may not 

need to spend that entire time T if it consumes enough prey to meet its and its offspring’s needs 

before the day ends. In that case the forager will likely cease foraging after it has reached 

����������, or somewhat above that if it wants more than its minimum needs, at some time less than T. 

Therefore, time minimization would be the objective and the forager will simply stop foraging when its 

prey intake reaches that point. 

2.3.3. Calculations of expected prey intake 

Here equations for the expected prey intake are shown. The calculations of the integrals 

involved in computing the mean prey density encountered by the forager across foraging patches that 

vary in prey density, as defined by theoretical probability distributions, are given in detail in 

Appendix 1, where f(��������)’s are gamma distributions with v = 1 and 2.  

v = 1: 

���� �������� ����� ���� ������                                                                                                                           

= ���� ∗ �
������

�
� �������� ∗ � �

�

�� −  ���∗������������� �
�������������

�
+

�

���� + ���� ∗ �� �1 +
������

��
� +

��������(1 − ��)� ∗ ��� ∗ � ����∗������������� �
�������������

�
+

�

����               (2.4) 

v = 2: 

���� �������� ����� ���� ������                                                                                                              

= ���� ∗ �
������

�
� �������� ∗ �� �−���∗������������� �

(�������������)�

�
+

�∗�������������

�� +
�

��� + �
�

���� +

���� ∗ �� �1 +
������

��
� + ��������(1 − ��)� ∗ ��� ∗ �� �+���∗������������� �

(�������������)�

�
+

�∗�������������

�� +
�

����                                                                                                                      (2.5) 

These equations will be used to in calculations shown in Section 3. 

2.4. Foraging strategy 2. Sampling of patches combined with memory with a day 

In this strategy the forager uses memory within a day as part of its foraging strategy. It samples 

a predetermined number of patches and then returns to the one that it remembers as having the 
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highest prey density. It then forages in that patch for the remainder of time in the day, or until it 

reaches, or exceeds to desired level, its goal of prey intake, preyneeded (Figure 3). 

In order to model this strategy, it is first necessary to calculate the mean of the maximum prey 

density that a forager is likely to encounter for any number of trials. This can be done mathematically. 

We call the number of sampling trials n trials. Then, out of the n trials, the highest prey density is 

recorded. For example, if the wading bird decides to sample five patches before returning to 

whichever has highest prey density, then n trials = 5, and the wading bird will return to and continue 

to feed in the patch until it either reaches preyneeded or the time T is exceeded. The question is, what is 

the optimal number of patches sampled? 

 

Figure 3. Illustration of foraging strategy 2. The bird will visit the several patches and 

then come back to the best patch (that with highest prey density) it found during the daily 

searching. The red arrows are transitions to the next patch which requires �����������. The 

blue arrow shows the last transition to the best patch. 

2.4.1. Calculation of sample maximum out of n numbers of samples 

Royston [11] calculated the expected value of the rth largest order statistic when the sample size 

is n 

�(�, �) =
�!

(� − 1)! (� − �)!
� � ∗ �(�) ∗ ���(�) ��� ∗ {1 − ���(�)}�����

�

�

 

where ���(�) is cumulative probability distribution function of �(�). 

Based on this, we set r = 1 and x = �������� to calculate expected sample maximum when the 

birds sampled n numbers of the ponds. 

�������� ������ �������                                                      

= � � �������� ∗ �(��������) ∗ �� �(��������)���������

�

�

�

���

���������

�

�

 

= � ∫ �������� ∗ �(��������) ∗ {���(��������)}������������
�

�
                        

= [�������� ∗ ���(��������)]�
� − ∫ {���(��������)}����������

�

�
                      

= ����(�)                                                          (2.6) 
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Equation (2.6) is used to calculate the Expected sample maximum for each value of n from 1 

to 15 samples. In addition to the analytic calculation, we also performed simulations. For each of 

these values of n we performed 200 repetitions of sampling to find the average highest prey density 

that a forager will encounter for any value of n trials. Given that information, the expected prey 

intake can be calculated. First, the possible times that the forager will spend sampling are noted, and 

we define the sampling time as 

����� ���� ����� ������ �ℎ� �������� = � ∗ (���� +  �����������), 

while the time to return to the best patch is 

���� ���� �� ������ �� �ℎ� ���� ����ℎ = ������� = �����������. 

An alternative assumption besides ������� = ����������� is that the birds made a number of 

transitions along a linear path before returning to the best patch, in which case  ������� =

�����������(���)

�
. 

2.4.2. Calculation of the mean expected prey intake 

Based on this result, the expected prey intake from the best patch can be calculated as follows. 

�������� ������ ���� �ℎ� ���� ����ℎ                                                       

= (� − � ∗ (���� +  �����������) − ������� + ����) ∗  ���� ∗ ����(�). 

Next, the average patch quality below that with ����(�). is calculated as 

���� ∗ ���(����(�))�� ∗ � ���������(��������)���������

����(�)

�

 

Based on this, the expected prey intake from the rest of the sampled patches can be shown to be 

                        �������� ������ ���� �ℎ� ���� �� �ℎ� ������� ����ℎ 

=  ���� ∗ � ∗ ���� ∗ ���(����(�))�� ∗ � ���������(�������)���������

����(�)

�

 

From the above equations, the total expected intake with strategy 2 is 

                       �������� ����� ���� ������ ���ℎ �������� 2 

                       = ���� �����(�){� − �(���� +  �����������) − ������� + ����} +

                        ��������(����(�))�� ∫ ���������(�������)���������
����(�)

�
�                    (2.7) 

3. Results 

The above mathematical expressions for prey intake for strategies 1 and 2 are used to calculate 

the prey intake as a function of both the prey threshold and the shape of the prey probability density. 
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Parameter values used in the calculations are shown in Table 2. This is a theoretical study, and the 

values chosen here were only assumptions, but could be refined in later studies when empirical data 

are available. The combinations of parameters for the gamma prey density distributions are, (v = 1, 

α = 0.16, 0.24) and (v = 2, α = 0.32, 0.48), which are shown in Figure 1, are not entirely arbitrary, as 

prey densities of the general types represented seem plausible. 

Table 2. Parameter values used in model. 

Parameter Definition Value 

tmin Minimum time needed to estimate prey density 20, 40 minutes 

ttransition Time needed to travel between patches 20, 40 minutes 

treturn Time needed to return to the best patch 20, 40 minutes 

T Total time available for foraging in a day 600 minutes 

Cons Rate at which encountered prey are consumed 0.175 g minutes-1 

N T/(tmin+ttransition) = Maximum numbers of patches wading 

birds can visit 

15 ponds 

preyneeded Prey intake needed during day to feed self and offspring  

������������� Threshold quality during the searching  

v, α Parameters from gamma distribution (1, 0.16), (1, 0.24), 

(2, 0.32), (2, 0.48) 

3.1. Foraging strategy 1; prey threshold density 

3.1.1. Expected time needed to exceed preythreshold 

The average time spent to find a patch above threshold for a wading bird, given that it is able to 

do so within N trials (ν = 1, α = 0.16), is shown in Figure 4A, as calculated from Eq (2.2). Figure 4B 

shows the changes of probability of finding a patch above threshold within N trails as a function of 

threshold density. The average time to find a patch above threshold for this case does not exceed 300 

minutes. However, the probability of finding a patch above threshold approaches 0 as the threshold 

density increases. 
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Figure 4. The time to reach the prey density threshold as a function of the prey threshold 

and the chance to find a patch above threshold within a daily foraging time. Here (v = 1, 

α = 0.16), tmin = 20, and ttransition = 20. (A) The average time to find a patch above threshold 

as a function of preythreshold, if the birds were able to find the patch within N trials. (B) The 

probability that the birds find a patch (such as pond) above threshold of preythreshold. Since 

there is a time limit in daily foraging, the graph in A is logistic. However, although average 

time to find a patch above threshold does not increase indefinitely, the chance to find a 

patch above threshold approaches to 0 as the threshold increases. 

3.1.2. Estimation of mean expected prey intake for strategy 1 

Prey intake was calculated for the four different gamma distributions, (v = 1, α = 0.16), (v = 1, 

α = 0.24), (v = 2, α = 0.32) and (v = 2, α = 0.48) as shown in Figure 1 and represented analytically by 

Eqs (2.4) and (2.5). The purpose of using both v = 1 and 2 was to compare the negative exponential 

form of v = 1 with the unimodal form of v = 2. In comparing the curves of v = 1 and 2, we doubled 

the value of α for v = 2 compared to v = 1, so that the expected prey intake for ������������� = 0, as 

well as the expected mean prey density, ν/α, arethe same for paired (v = 1, α = 0.16) and (v = 2, α = 0.32) 

and for paired (v = 1, α = 0.24) and (v = 2, α = 0.48) prey density distributions. The results for the 

four cases are shown in Figure 5. Note that these curves represent potential prey intake over a full 

day. Of course, the wading bird may decide to stop foraging when desired after its prey intake for the 

day reaches preyneeded. 

The dashed horizontal line in Figure 5A represents an estimate of daily energy needed, 

preyneeded, by an American White Ibis to support both itself and two nestlings, roughly 598 Kcal/day, 

which translates into about 602 grams wet weight of prey (based on [12]). In the case represented in 

Figure 5, the foraging wading bird is able to surpass that minimum needed intake by different 

amounts, over different ranges of �������������, depending on the values of v and α. The effect of 

the parameter in the exponential terms of the gamma distributions, α, clearly has an effect on 

potential prey intake, with smaller values of α leading to larger prey intake, even if the mean prey 

density, ν/α, is the same for two cases. 



7700 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7687-7718. 

 

Figure 5. Results of threshold strategy under the given distribution of patch. (A) Prey 

intake as a function of �������������  for four different gamma distribution 

representations of the distributions of prey densities across the available patches. In all 

cases the times needed for sampling a patch and for traveling between patches are tmin = 

20, ttransition = 20, and other parameters are as in Table 2. The horizontal dashed line 

represents the preyneeded. (B) Comparison between the results of Eqs (4) and (5) and 

average of repeating simulation based on random sampling under (v = 2, α = 0.32). 

It is also useful to compare the effects of differences in the times needed to sample prey density 

in a patch and travel between patches. In Figure 6, the results of changing tmin = 20, ttransition = 20 to 

tmin = 40, ttransition = 40, are compared for the above cases (ν = 1, α = 0.16) and (ν = 2, α = 0.32). 

Figure 6 shows that both cases have significant decreases of prey intake when the time cost of 

searching for new patches and for estimating prey density in the patches visited increases. This 

indicates that time cost of the searching can be one of the main factors that change the daily expected 

prey intake of wading birds.  

 

Figure 6. Comparison of expected prey intake as a function of ������������� when tmin 

= 20, ttransition = 20, and when tmin = 40, ttransition = 40. The graph shows the results of two 

different distributions: (v = 2, α = 0.32) and (v = 1, α = 0.16). 



7701 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7687-7718. 

More thorough comparisons can be made of the effects of the gamma function parameters on 

the maximum possible prey intake. We compared maximum expected prey intake under the 

distributions with the same mean quality (prey density) and different α values. The maximum 

expected prey intake increased as α decreased for the same mean prey density, termed ‘quality’ in 

Figure 7A. This indicates that when the mean prey density value is the same, birds will be more 

successful when α is smaller. It is also the case that α has a strong effect on the maximum expected 

prey intake than does ν (Figure 7B). 

 

Figure 7. Maximum expected daily intake of threshold strategy under the given 

distribution. (A) Maximum expected daily intake under the given mean prey density 

(quality) of distribution and α values. (B) Maximum expected daily intake under different 

v and α values. 

3.2. Foraging strategy 2; use of memory with a day 

3.2.1. Expected sample maximum under the given numbers of sample size 

In examining foraging strategy 2, first we test how successful Eqs (2.6) and (2.7) are in 

predicting the best sample size and expected prey intake by comparing their predictions with 

simulations. Based on Eq (2.6), the expected patch sample number that maximizes prey intake is 

calculated. In addition, we conducted 200 simulations of each sample size to find the maximum 

value of the sample to calculate the average sample maximum of the simulation. Figure 8 shows that 

the results of the average of the replicated simulations agree with the theoretical expectation based 

on Eq (2.6). 
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Figure 8. Expected highest prey density, preymax, encountered by the modeled forager 

from sample sizes of patches from 1 to 20. The prey density distribution for this case is 

the gamma distribution with (v = 1, α = 0.24). 

3.2.2. Estimation of prey intake of strategy 2 

Based on calculated ����(�), Eq (2.6), mean expected daily prey intake was then estimated 

according to Eq (2.7). We also conducted 200 simulations that used random sampling from the given 

distribution then calculate the intake according to the strategy 2 assumptions. Figure 9 shows that the 

results of the simulations compared to the expected value from the Eq (2.7) for (v = 1, α = 0.24). 

 

Figure 9. Mean expected prey intake for the strategy 2 when tmin = 20, ttransition = 20, and 

tmin = 40, ttransition = 40 for (v = 1, α = 0.24). The theoretical values from Eq (2.7) are 

shown as solid curves. The averages of 200 simulations for each case are shown as 

dashed curves. 
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Based on the success of the comparison of simulations with the analytic curve in Figure 9 for 

the particular case of (v = 1, α = 0.24), Eq (2.7) appears to provide an accurate estimate of the results 

of strategy 2. Thus, we can further investigate the changing foraging efficiency of this strategy using 

the equation. Figure 10A shows that the maximum expected yield from strategy 2 varied according 

to the values of v and α. The ordering of the expected prey intakes followed the same ordering of 

values of ν and α as for strategy 1 (Figure 5), with (ν = 1, α = 0.16) leading to the largest prey intakes, 

even though the distribution with (ν = 2, α = 0.32) has the same mean prey density. However, the 

results show that the number of patches visited that produce the highest expected prey intake are 

somewhat closer in number between the four curves, lying between n = 4 and 5 for this case of 

���� = 20 and ����������� = 20. 

 

Figure 10. Expected prey intake under the various distributions of patch quality. (A) 

Expected prey intake according to number of visited patch under the 4 different prey 

density distributions. It shows that wading birds are getting maximum expected prey 

intake at between n = 4 and 5 under various distribution when the time costs for 

transition and investigation are fixed at 20 minutes. (B) Maximum expected prey intake 

with memory strategy under various v and α values. (C) Distributions with various α 

values when the mean of the distribution is fixed to 15. (D) Maximum expected prey 

intake with various α values with changing mean quality (prey density) of the patches. 

This memory-based strategy shows slightly lower maximum expected prey intake compared to 

those of strategy 1 (threshold strategy) for identical v and α values. The results of the simulation 
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indicate that when v becomes larger and α becomes smaller, the maximum expected prey intake 

increases (Figure 10B). However, this may be caused by changing the mean of the distribution. The 

mean of the gamma distribution is �/�. Thus, increased value of v and decreased α will cause larger 

mean of the distribution. When we compared maximum expected prey intake under the distributions 

with the same mean prey density, termed ‘quality’ here, and different α values, the maximum 

expected prey intake increased as α decreased (Figure 10D), showing the relative importance of α in 

affecting prey intake even for the same mean. This indicates that when the mean value is the 

same, birds will be more successful for prey distributions with longer tails (smaller α), as shown 

in Figure 10C for a number of values of α for the same value ν. 

4. Discussion 

We have used modeling to study two strategies for foraging by an individual wading bird for 

resources in a heterogeneous wetland environment. This modeling was stimulated in part by the 

decline in wading bird nesting colonies in the Everglades over the past several decades. 

Understanding the probability of foraging success of wading birds on heterogeneously distributed 

patches of prey can help in guiding the regulation of water levels that contribute to foraging success.  

Using modeling, we calculated the expected prey intake for a forager on hypothetical 

landscapes with sets of patches of varying prey densities, where the probability densities of patches 

were described by gamma distributions with different values of parameters v and α. We considered 

two mathematical representations of possible wading bird foraging strategies. The first, strategy 1, 

represented the situation in which the forager samples patches in order to find one that exceeds a 

prey density threshold �����ℎ���ℎ���. Once it has found such a patch, it will continue to forage in 

that patch until it either has acquired some amount of prey intake greater than ���������� or time T 

is reached. The aim of the model was to predict, for different assumptions on the gamma distribution, 

what choice of prey density threshold maximizes potential prey intake. In the second, strategy 2, the 

forager samples a fixed number of patches and then returns to whichever had the highest prey density. 

The aim of the model was to predict what number of predetermined patches to visit maximum 

potential prey intake.  

A few different comparisons could be made concerning landscapes and strategies regarding 

maximum expected potential prey intake. The two different strategies could be compared for similar 

landscapes. The choices of prey threshold and predetermined patches within each strategy, and the 

effects of the two shapes of the gamma distributions describe the prey density distributions. In all 

cases unimodal peaks in potential prey intake existed. Interestingly, differences existed in the 

magnitude of the peaks for the two types of gamma functions, negative exponential (ν = 1) and 

unimodal (ν = 2), even for identical means, ν/α, with landscape of type ν = 1 producing higher peaks 

of potential expected prey intake amount. This may be related to the negative exponential having a 

longer tail, which made reaching high density prey densities more likely. Perhaps more puzzling, 

strategy 1 for the prey density threshold led to systematically higher prey intakes than strategy 2, in 

which the wading bird used memory, for the same prey density distribution (compare Figures 5A 

and 10A). We are not sure if this can be called a general conclusion, but it invites some further study. 

A number of simplifying assumptions were made that allowed analytic solutions and facilitated 

interpretation, but which limit the models’ applications to real systems. One assumption is that we 

used the models to determine the maximum possible prey intake. It is not clear that would always be 
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the strategy of a wading bird, which may instead minimize time spent foraging. We believe that the 

strategies that maximize potential prey intake probably also are similar to ones that minimize time 

spent foraging, if the wading bird ceases foraging when it reached some value above the minimum 

needed prey intake, preyneeded. Our Eqs (2.2) and (2.3) would allow that calculation, but it is beyond 

the scope here due to space and time constraints, so that will be considered in future work. The 

models also made a number of other simplifying assumptions to keep the analysis within bounds. 

Some of those can be relaxed in the future, but some, such as ignoring interactions with other wading 

birds, would require further knowledge. Modifications of our models to study a discrete number of 

patches rather than analytic distributions will be necessary to apply the models to real systems, such 

as the Everglades, which will require more information about the actual patch distributions and 

densities. One additional thing we should note is that our analysis is for the mean expected prey 

intake. We are considering the visits to patches to be a stochastic process, so every actual foraging 

scenario would be different and produce results different from the mean. We did not try to 

incorporate that in our analysis. However, the standard deviation around the mean can be calculated, 

which we include in Appendix 3 of the Supplementary Information. We have not explored this in 

detail, but the figures in Appendix 3 show that the variation among scenarios is substantial. This means 

that wading birds need to have some resilience to fluctuations in energy intake from day to day. 

We realize that the theory and modeling of foraging in a heterogeneous environment is an 

enormous field, which has occupied many ecologists for over fifty years; the papers [13–20] are an 

arbitrarily chosen assortment that represents only a tiny sampling of paper in the general area. 

Therefore, the topics of our work have been studied in great detail in many places. However, we 

have not found any previous papers that are close in enough ways to ours that we could try to make 

comparisons, so we will not do that here. That attests to the many variations there are on the general 

problem of foraging in a heterogeneous environment. 

We have also not made comparisons with field data to try to test the predictions of the two 

strategies modeled. Despite that great amount of empirical study on wading birds in the field, we 

could not find sufficient data on the movements of wading birds among different foraging patches to 

make comparisons. Wading bird ecologists have certainly assumed that these birds use some sort of 

sampling strategy. For example, Kushlan [21] wrote; “…wading birds need to sample potential 

patches to decide where to forage. … The energy penalty for wrong choices may be rather severe, 

because of the relatively high costs incurred by large birds in moving from place to place. Thus, 

there is probably considerable pressure for wading birds to sample foraging patches efficiently.” 

Many other observations support the hypothesis that some wading bird species, especially those that 

require high densities of prey, follow sampling strategies. However, due to the challenges of tracking 

individual wading birds in the field within a day, not to mention data on the prey densities in the patches 

that they visit, relevant data for testing our models are difficult to obtain. We know of no information on 

the pattern of movement of tactile-feeding wading birds among foraging patches such as ponds and 

depressions where fish and crayfish prey are concentrated. Useful experimental data do exist, however, 

such as Gawlik’s [22] experimental pond studies that provide data on giving-up prey densities of 

different wading bird species. We hope that our modeling can stimulate studies in natural systems. For 

example, although it may be difficult to follow individual wading birds around during the course of a day, 

sufficient numbers of observations at particular foraging sites on how long individual wading birds bird 

stay can be synthesized in the sense of pattern- oriented modeling to infer such patterns. 
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Appendix 

Appendix 1. The conditional expected value of a patch’s prey density given that patch’s prey density 

is above (or below) a given threshold 

Here we show examples using gamma probability distributions for the hypothetical sampling 

distribution of prey densities among patches. 
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A.1.1. The probability that, in an individual encounter, a patch will be above threshold given that the 

sampling distribution is Gamma(ν,α) 

Based on given distribution function (Eq (1)) and v and � values, we can calculate P and Q. 

� = � �(��������)���������

�

�������������

                                               

=  
��

Γ(�)
� ���∗�������� ∙ (��������)���

�

�������������

���������. 

For the gamma distribution v = 1, since Γ(1) = 1, this can be shown to be 

� = ���∗������������� 

For v = 2, since Γ(2) = 1, this is 

� =  ���∗������������� +  � ∗ ����������������∗������������� 

In both cases, P is equal to 1 when �����ℎ���ℎ��� = 0  and decreases toward zero as 

�����ℎ���ℎ��� increases. This decrease is slower for smaller values of α. 

A.1.2. Calculations of expected prey intake of patches above and below threshold 

Here we present some integrals needed to calculate the mean prey density encountered by the 

forager over foraging sites (patches) with prey densities in various ranges within the total range of 

prey densities. The general equation for a conditional mean, where the pdf is f(x) 

� � ∙ �(�)��
�����

����

� �(�)��
�����

����

�  

We will evaluate this for the gamma distribution with v = 1 and 2. Note that the expected prey 

density given that a patch is above the threshold (μabove) is 

������ = ��� � �������� ∙ �(��������)���������

�

��������������

 

And the expected prey density given that a patch is below the threshold (μbelow) is 

������ = Q�� � �������� ∙ �(��������)���������
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v = 1 

Expected prey density given that a patch is above the threshold 
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Expected prey density given that a patch is below the threshold 

= ��� � �(��������)�����������������

�������������

�

         

=  
�

�Γ(1)
� �����������∗(��������)���������

�������������

�

 

=
��

�
�−���∗�������� �

��������

�
+

1

��
��

�

�������������

.            

Thus the expected prey density given that a patch is above the threshold 

������ =  
�

�
����∗������������� �

�������������

�
+

1

��
�� 

and the expected prey density given that a patch is below the threshold 

������ =
�

�
�

1

��
− ���∗������������� �

�������������

�
+

1

��
��. 

v = 2 

Expected prey density above threshold in the patch 

= ��� � �(��������)�����������������

�

�������������

              

=  
��

�Γ(2)
� (��������)����∗(��������)���������

�

�������������

 

                     =
��

�
�−���∗�������� �

(��������)�

�
+

2 ∗ ��������

��
+

2

����
�������������

�

. 

Expected prey density below threshold in the patch 

= ��� � �(��������)�����������������

�������������

�

              

=  
��

�Γ(2)
� (��������)����∗(��������)���������

�������������

�

 

                   =
��

�
�−���∗�������� �

(��������)�

�
+

2 ∗ ��������

��
+

2

����
�

�������������

, 

which becomes the expected prey density above threshold in the patch 

������ =  
��

�
����∗������������� �

(�������������)�

�
+

2 ∗ �������������

��
+

2

���� 

and the expected prey density below threshold in the patch 

������ =
��

�
�

2

��
− ���∗������������� �

(�������������)�

�
+

2 ∗ �������������

��
+

2

����. 
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A.1.3. Calculations of the expected potential prey intake from threshold strategy  

If we apply result from A1.1. and A1.2 to Eq (2.3) of the main text, we can compute the 

potential expected prey intake (consumption) by the forager across foraging patches. 

���� ������ = ���� ∙ �(1 − ��) ∙ ���� ∙ ������ + �� �1 −
(1 − ��)

��
� + ����(1 − ��)� ∙ ������� 

For gamma distributions with v = 1 and 2.  

v = 1 

Expected daily prey intake 

���� ������ = ���� ∙ �(1 − ��)���� ∙
�

�
�

1

��
− ���∗������������� �

�������������

�
+

1

��
��

+ �� �1 −
(1−��)

��
� + ����(1 − ��)� ∙

�

�
����∗������������� �

�������������

�
+

1

��
��� 

v = 2 

Expected daily prey intake 

���� ������ = ���� �(1 − ��)����

∙
��

�
�

2

��
− ���∗������������� �

(�������������)�

�
+

2 ∗ �������������

��
+

2

��
�� 

+ �� �1 −
(1−��)

��
� + ����(1 − ��)�

∙
��

�
����∗������������� �

(�������������)�

�
+

2 ∗ �������������

��
+

2

��
��� 

Appendix 2. Derivation of model 

The goal is to calculate the mean intake of prey by a wading bird in a single day by visiting up 

to N prey patches, which is the maximum. The wading bird samples a patch for time tmin to decide 

whether or not to stay. If the prey density exceeds a threshold, preythreshold, which is assumed to 

happen with probability, p, it will stay. Otherwise, it will move to another patch at random, which is 

assumed to take time ttransition. The probabilities and times associated with the various possibilities are 

shown in Table 1 from the manuscript. 

A.2.1. Estimating the total daily fish intake of strategy 1 

The chance to find a patch with prey density above the threshold is the sum of all the ‘chances 
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to happen’ in Table 1; 

� + �� + ��� + ��� + ��� … + ��(���) = � �����

�

���

=
�(1 − ��)

1 − �
=

�(1 − ��)

�
= 1 − ��. 

The chance that the bird never finds a patch with prey density above the threshold in a day is 

��. Therefore, the probability of all cases together is 

�ℎ���� �� ���� �� ���� � ���� ����ℎ + �h���� �� ���� � ���� ����ℎ = �� + � �����

�

���

= �� + (1 − ��) = 1 

Figure 2 in the main text of the manuscript shows a hypothetical distribution of patch densities. 

The integral over the area to the right of the prey threshold, P, is the probability of a wading bird 

visiting a patch with prey density above the threshold. 

Based on this, we can calculate average above and below threshold 

�������� ���� ������� ����� �ℎ���ℎ��� �� �ℎ� ����ℎ = ��� � ��(�)��
�

�������������

 

�������� ���� ������� ����� �ℎ���ℎ��� �� �ℎ� ����ℎ = ��� � ��(�)��
�������������

�

 

According to Table1from the manuscript, and the above expected prey densities; we can 

calculate the expected daily food intake wading birds. The cases refer to those shown in Table 1. 

���������������

= (���������������ℎ��������ℎ���ℎ���)(�������� ���� ������� �� ����ℎ ����� �ℎ���ℎ���)

+ (������������ℎ�����ℎ������ℎ���ℎ���)(�������� ���� ������� �� ����ℎ ����� �ℎ���ℎ���) 

���������������������1 = 0 ∙ Q�� � �(�)���
�

�

+ {� − (����������� + ����) + ����} ∙ ��� � �(�)���
�

�

≡ �� 

���������������������2

= ���� ∙ ��� � �(�)���
�

�

+ {� − 2(����������� + ����) + ����} ∙ ��� � �(�)���
�

�

≡ �� 

���������������������3

= 2 ∙ ���� ∙ ��� � �(�)���
�

�

+ {� − 3(����������� + ����) + ����} ∙ ��� � �(�)���
�

�

≡ �� 

����������������������

= (� − 1) ∙ ���� ∙ ��� � �(�)���
�

�

+ {� − �(����������� + ����) + ����} ∙ ��� � �(�)���
�

�

≡ �� 

��������������������������������������ℎ������ℎ���ℎ���

= ����� ∙ ��� � �(�)���
�

�

+ 0 ∙ ��� � �(�)���
�

�

≡ ����� 
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Then the expected prey, or food, intake by the wading birds is the sum of the intakes of food for 

all of the cases, where each is multiplied by the probability of that case occurring; 

���������������������� = �����(��) + ��(�) + ��(��) + ��(���) + ��(���) … + ��(�����)       

= �����(��) + � ��(�����)

�

���

 

Based on above equations, we can say in general for food intake for case n ≥ 1. 

�� = (� − 1) ∙ ���� ∙ ��� � �(�)���
�

�

+ {� − �(����������� + ����) + ����} ∙ ��� � �(�)���
�

�

 

Note that it is assumed that the wading bird spends the time tmin that it samples the patch that is 

above threshold, the remaining time at its disposal during the day, which is � − �(����������� +

��������). This can be rewritten as 

�� = (� − 1) ∙ ���� ∙ ��� � �(�)���
�

�

+ {� − �(����������� + ����)} ∙ ��� � �(�)���
�

�

+ ����

∙ ��� � �(�)���
�

�

 

Therefore, it is possible to write the food intake that would occur for the nth case as 

��(�����) = (� − 1) ∙ � ∙ ���� ∙ ���� ∙ ��� � �(�)���
�

�

+ {� − �(����������� + ����)} ∙ � ∙ �(���)

∙ ��� � �(�)���
�

�

+ ������(���) ∗ ��� � �(�)���
�

�

. 

Summing over all N cases, we obtain 

∑ ��(�����)�
��� = ∑ (� − 1)� ∙ �������� ∙ ��� ∫ �(�)���

�

�
�
��� + ∑ {� − �(����������� + ����)}� ∙�

���

�(���) ∙ ��� ∫ �(�)���
�

�
+ ∑ ���� ∙ � ∙ �(���) ∙ ��� ∫ �(�)���  

�

�
�
���                 (A1) 

The first term on the right-hand side of Eq (A1) can be manipulated as follows, 

�(� − 1) ∙ � ∙ �������� ∙ ��� � �(�)���
�

�

�

���

= �� � ∙ � ∙ �(���)

�

���

− � ��(���)

�

���

� ���� ∙ ��� � �(�)���.
�

�

 

We next employ the following identities, 

� � ∙ � ∙ �(���)

�

���

=
(1 − ��)

�
− ��� 
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� ��(���)

�

���

= (1 − ��). 

Therefore, the first term can be rewritten as 

�(� − 1)��(���)���� ∙ ��� � �(�)���
�

�

�

���

= �� � ∙ ��(���)

�

���

− � ��(���)

�

���

� ���� ∙ ��� � �(�)���
�

�

= �
(1 − ��)

�
− ��� − (1 − ��)� ���� ∙ ��� � �(�)���

�

�

= �
(1 − ��)(1 − �)

�
− ���� ���� ∙ ��� � �(�)���

�

�

= �
�(1 − ��)

�
− ���� ���� ∙ ��� � �(�)���.

�

�

 

Using similar operations, the second term of Eq (A1) can be written as, 

�{� − �(����������� + ����)}��(���) ∗ ��� � �(�)���
�

�

�

���

= �� � ��(���)

�

���

− (����������� + ����) � ���(���)

�

���

� ∙ ��� � �(�)���
�

�

= ��(1 − ��) − (����������� + ����) �
(1 − ��)

�
− ����� ∙ ��� � �(�)���

�

�

= ��(1 − ��) −
�

�
�

(1 − ��)

�
− ����� ∙ ��� � �(�)���

�

�

= ��(1 − ��) − � �
(1 − ��)

��
− ���� ∙ ��� � �(�)���

�

�

= �� − � �
(1 − ��)

��
�� ∙ ��� � �(�)���

�

�

= � �1 +
(�� − 1)

��
� ∙ ��� � �(�)���

�

�

. 

There is one final term in Equation (1). It can be rewritten as follows; 

� ����������(���) ∙ ��� � �(�)���
�

�

�

���

= ���� � ��(���) ∙ ��� � �(�)���
�

�

�

���

= ����(1 − ��) ∙ ��� � �(�)���
�

�

 

Putting these three terms together, we obtain 
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� �����(���)�

�

���

= �(� − 1)��(���)���� ∙ ��� � �(�)���
�

�

�

���

+ �{� − �(����������� + ����)}��(���) ∙ ��� � �(�)���
�

�

�

���

+ � ������(���) ∙ ��� � �(�)���
�

�

�

���

= �
�(1 − ��)

�
− ���� ���� ∙ ��� � �(�)���

�

�

+ � �1 +
(�� − 1)

��
� ∙ ��� � �(�)���

�

�

+ ����(1 − ��) ∙ ��� � �(�)���
�

�

= �
�(1 − ��)

�
− ���� ���� ∙ ��� � �(�)���

�

�

+ �� �1 −
(1−��)

��
� + ����(1 − ��)� ∙ ��� � �(�)���

�

�

 

Therefore, the daily food intake can be written 

���������������������� = �����(��) + � �����(���)�

�

���

= ������� ∙ ��� � �(�)���
�

�

+ �
�(1 − ��)

�
− ���� ���� ∙ ��� � �(�)���

�

�

+ �� �1 +
(�� − 1)

��
� + ����(1 − ��)� ∙ ��� � �(�)���

�

�

= �
�(1 − ��)

�
− ��� + ���� ���� ∙ ��� � �(�)���

�

�

+ �� �1 +
(�� − 1)

��
� + ����(1 − ��)� ∙ ��� � �(�)���

�

�

= �
�(1 − ��)

�
� ���� ∙ ��� � �(�)���

�

�

+ �� �1 +
(�� − 1)

��
� + ����(1 − ��)� ∙ ��� � �(�)���

�

�

 

Then we multiply this value with Cons, which is parameter of conversion of prey density in a 

patch to the uptake of prey by the wading bird. 

To conclude, we can find an expression for the mean expected daily food intake. 

���������������

= ���� ��
(1 − ��)

�
� ���� ∙ � �(�)���

�

�

+ �� �1 +
(�� − 1)

��
� + ����(1 − ��)� ∙ ��� � �(�)���

�

�

� 
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Appendix 3. Simulation for standard deviations of prey intake rate and probability of meeting 

minimum daily nutritional requirements 

The stochastic simulations give reassurance that the analytical solutions for the expected values 

are valid. But more than that, it points out that, though there is clearly an optimal threshold for 

switching foraging behavior suggested by the expected prey consumption, the range of prey 

consumption on any given day can vary widely leading to possibly a great uncertainty in foraging 

success. In fact, if we look at the coefficient of variation there is a local minimum at a threshold 

slightly lower than the optimal determined by the mean intake alone, 12.3 g/m2versus 14.4 g/m2 

respectively. This raises the question of whether a slightly lower threshold that results in a bit more 

certainty in the results of foraging efforts is a preferable objective function than just average rate of 

food consumption. In order to address this question we examine the probability that a bird will meet 

its minimum daily nutritional requirements. 

 

Figure A1. Plot of expected intake and standard deviations as a function of prey threshold. 

 

Figure A2. Plot of mean expected intake and standard deviations as a function of prey 

threshold based on simulation. 
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Following are two sets of figures corresponding to two of the hypothetical patch distributions 

modeled by Gamma probability density functions with shape parameter ν and rate parameter α.  

The top graph in each set is the resulting potential food intake over the course of a day as a 

function of the threshold value that bird uses to decide when to stop searching and remain in a patch 

where the food density exceeds the threshold. This graph consists of 3 lines. The middle line is the 

expected value of the potential food intake for that day. The top and bottom (dotted lines) are the 

expected values plus or minus one standard deviation.  Each of these lines are actually a series of 

points generated by 10,000 realizations of a stochastic simulation of the search process, incrementing 

the threshold values each time by 0.3 g/m2. In other words, we start at a threshold near 0 g/m2 run 

10,000 realizations of the process, increment the threshold to 0.3 g/m2 run another 10,000 trials then 

increase the threshold to 0.6 g/m2 and so on. Just adding or subtracting the standard deviation is not 

entirely accurate since negative food intake values are nonsensical, but we use a Normal distribution 

approximation to illustrate the overall variation possible in the output of the search procedure. 

The second, lower graph in each set is the probability (again based on an assumption of 

Normality) of the consumer successfully meeting its minimum necessary food intake level for each 

value of the threshold corresponding to those given on the first graph. We illustrate 7 different 

minimum necessary food intake level in each set.  Higher minimums result in lower probabilities of 

success and the peak success is closely tied to the optimal threshold values. However, at very low 

minimum necessary food intake levels the consumer can not only be successful at the optimal 

threshold but also by setting the threshold arbitrarily high so that it can meet its nutritional 

requirements by browsing the landscape without consideration of any search criteria. 

 

Figure A3a. Plot of mean expected intake and standard deviations as a function of prey 

threshold based on simulation. Patch prey density is distributed Gamma (α = 0.48, ν = 2). 
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Figure A3b. Probability that a bird will meet its minimum daily nutritional requirements 

100–700 g/d. Gamma (α = 0.48, ν = 2). 

 

Figure A4a. Plot of mean expected intake and standard deviations as a function of prey 

threshold based on simulation. Patch prey density is distributed Gamma (α = 0.24, ν = 2). 
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Figure A4b. Probability that a bird will meet its minimum daily nutritional requirements 

200–800 g/d. Gamma (α = 0.24, ν = 2). 
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