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Abstract: Harris Hawks Optimization (HHO) algorithm is a kind of intelligent algorithm that 
simulates the predation behavior of hawks. It suffers several shortcomings, such as low calculation 
accuracy, easy to fall into local optima and difficult to balance exploration and exploitation. In view 
of the above problems, this paper proposes an improved HHO algorithm named as QC-HHO. Firstly, 
the initial population is generated by Hénon Chaotic Map to enhance the randomness and ergodicity. 
Secondly, the quantum correction mechanism is introduced in the local search phase to improve 
optimization accuracy and population diversity. Thirdly, the Nelder-Mead simplex method is used to 
improve the search performance and breadth. Fourthly, group communication factors describing the 
relationship between individuals is taken into consideration. Finally, the energy consumption law is 
integrated into the renewal process of escape energy factor E and jump distance J to balance 
exploration and exploitation. The QC-HHO is tested on 10 classical benchmark functions and 30 
CEC2014 benchmark functions. The results show that it is superior to original HHO algorithm and 
other improved HHO algorithms. At the same time, the improved algorithm studied in this paper is 
applied to gas leakage source localization by wireless sensor networks. The experimental results 
indicate that the accuracy of position and gas release rate are excellent, which verifies the feasibility 
for application of QC-HHO in practice. 

Keywords: swarm intelligence optimization; Harris Hawks Optimization algorithm; Hénon chaotic 
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1. Introduction 

Meta-heuristic (MH) optimization algorithms are extremely popular in engineering applications, 
because of superiority about simple concepts, easy implementation, no requirement for gradient 
information as well as capability of bypassing local optima, which can be treat as competitive solutions 
for various of problems covering different research fields, such as pattern recognition, target tracking, 
artificial intelligence and system control. By imitating social behaviors, biological principles or 
physical phenomena in nature, meta-heuristic algorithms can be categorized into 3 categories: 
evolution-based, physics-based and swarm-based approaches. A large number of scholars and 
researchers have successively proposed a variety of algorithms with specific strategies, for example, 
inspired by foraging behavior of Escherichia coli in human intestine, Passino [1] summarized the 
Bacterial Foraging Optimization (BFO) algorithm. Kennedy and Eberhart [2] proposed Particle Swarm 
Optimization (PSO) algorithm to find the optimal solution through cooperation and information 
sharing among individuals in the group. Differential Evolution (DE) algorithm based on differential 
simple mutation operation and one-to-one competitive survival strategy was presented by Storn and 
Price [3] in 1995. Moreover, Whale Optimization Algorithm (WOA) mimicking hunting behavior 
along with helix-shaped movement of humpbacks and Ant Colony Optimization (ACO) algorithm 
inspired by social intelligence of ants in finding the closest path from the nest to a source of food 
both attract considerable attention [4,5]. Besides, there are so many applications of meta-heuristic 
optimization algorithms for practical purposes. Yıldız wt al. [6] incorporated the chaotic maps in the 
elementary Lévy flight distribution and dubbed it as Chaotic Lévy Flight Distribution (CLFD) 
algorithm to address physical world engineering optimization problems. Wansasueb integrated Grey 
Wolf Optimizer (GWO), Genetic Algorithm (GA), Population Base Increment Learning (PBIL) and 
Water Cycle Algorithm (WCA) to form a new meta-heuristic named as Ensemble of Genetic 
algorithm (E-GGWP-W) to optimize design issue of composite wing [7–11]. Winyangkul et al. [12] 
presented multi-objective topology and sizing optimization of a morphing wing structure. Kumar et 
al. [13] enhanced 5 MH algorithms based on random migration search phase and simulated 
annealing-based selection for solving size and topology optimization of the trusses. Sparrow Search 
Algorithm (SSA) is employed to manage the operation of microgrid for minimizing either the total 
operating cost or the total emission [14]. Long et al. [15] proposed a novel hybrid seagull 
optimization algorithm (HSOA) based on cosine function and differential mutation strategy for 
estimating the parameters of photovoltaic models. 

Harris Hawks Optimization (HHO) algorithm is a new kind of swarm intelligence algorithm 
proposed by Ali Asghar Heidari in 2019, which imitates the cooperative behavior of Harris hawks 
during predation [16]. The entire optimization process consists of three phases: exploration, 
exploitation and conversion. It enjoys the characteristics of simplicity in structure, concision in control 
parameters and excellent capability in global search. However, it suffers the shortcomings of low 
optimization accuracy, slow convergence speed and easy to fall into local optima. In order to settle the 
aforementioned issues, experts in different fields carried out a range of improvement method and put 
them into application. Tang et al. [17] promoted the convergence speed and accuracy of algorithm by 
introducing Tent Chaotic Map and elite hierarchy strategy into Chaos Elite Harris Hawks Optimization 
(CEHHO). Yin et al. [18] made use of nonlinear control parameter strategy and random inverse 
learning method to improve HHO (NOL-HHO). Attiya et al. [19] proposed an improved HHO 
algorithm (HHOSA) based on simulated annealing to solve problem of task scheduling in cloud 
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computing. Ismael et al. [20] proposed Harris Hawks Optimization algorithm based on Opposition-
Based Learning (HHOA-OBL) for hyperparameter estimation and feature selection. Qu et al. [21] 
used information exchange mechanism and nonlinear escape energy factors to improve population 
diversity and performance of algorithm. Ma et al. [22] mended fitness function through maximum 
likelihood estimation to get the solution for nonlinear equations about indoor positioning relate to 
difference of arrival time. Turabieh et al. [23] optimized HHO by controlling distribution of 
population and realized prediction of students’ potential. ElSayed and Elattar [24] combined HHO 
with sequential quadratic programming to achieve optimal coordination for directional overcurrent 
relays of power. The Adaptive Harris Hawks Optimization (ADHHO) is proposed by Song for 
parameter identification of photovoltaic systems [25]. The persistent-trigonometric-differences 
mechanism and improved energy factor are helpful for balancing exploration and exploitation. With 
the help of comprehensive learning, equilibrium optimizer and terminal replacement mechanism, an 
improved algorithm named as comprehensive Learning Harris Hawks-Equilibrium Optimization 
(CLHHEO) is presented by Zhong for solving constrained optimization problems [26]. Hu et al. [27] 
used Specular Reflection Learning to improve HHO (HHOSRL) algorithm for assessing COVID-19. 
Dynamic Multi-Swarm Differential Learning Harris Hawks Optimizer (DMSDL-HHO) that divides 
population into many sub-swarms and introduces differential mutation operator candidate pool 
strategy is applied to the dispatch problem of hydropower stations [28]. Luo et al. [29] enhanced 
automatic epilepsy diagnosis method by using time-frequency analysis and Improved Harris Hawks 
Optimization (IHHO) with a hierarchical mechanism. Bardhan et al. [30] proposed ELM-IHHO by 
integrating the standard HHO algorithm with mutation-based search mechanism and Extreme 
Learning Machine for predicting soil compression index. Choi et al. [31] proposed an unsupervised 
intelligent system named as HHO-SVM for predicting the performance of a truck-haulage system 
using a combination of HHO and Support Vector Machine. Golafshani et al. [32] extended multi-
layer neural network and radial basis function neural network by HHO to develop predictive models 
for the compressive strength of concretes containing supplementary cementitious materials.  

As mentioned above, many scholars have applied variants of original HHO inspired by previous 
work in practical application, demonstrating the excellent performance and optimization capability of 
HHO. However, the original HHO still has potential for further improvement of convergence speed 
and solution accuracy. Moreover, there are serval defects belong to all or part of aforementioned 
algorithms. Firstly, the improved means for original HHO are not comprehensive, only focus on 2-3 
aspects. There are opportunities to promote HHO in future. Secondly, significance of population’s 
initial distribution is neglected, which directly affect the quality of subsequent optimization. Thirdly, 
there are some subjective factors in settings of parameters and constants, the reasons are not clearly 
stated，universality and robustness of the system may be reduced. Fourthly, according to a certain 
trigonometric function, individual takes movement in fixed pattern, it leads to the decrease of 
ergodicity and accuracy of search. Fifthly, the energy factor E used by the former studies does not 
accord with the law of physical consumption for animals. Finally, the influence between individuals 
in population is not taken into the consideration. 

This paper takes efforts to improve original HHO and avoid above-mentioned problems as far as 
possible. First, change the generation mode of initial population. Chaos is a quite unique phenomenon 
caused by nonlinear effect, which has the characteristics of sensitivity to initial value, non-periodicity, 
long-term unpredictability and universality. So, chaos can exhibit the phenomenon of randomness and 
connection to the “random process” in system. Generating initial population by Hénon Chaotic Map 
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based on conception of chaos can promote population’s randomness and ergodicity in distribution. 
Second, improve the population diversity and local search capability of HHO. Quantum computing 
uses quantum bits code to store data, for the same size of population, compared with other methods, 
quantum code can contain much more information. So, introducing quantum correction in exploitation 
phase under certain condition can make use of features of quantum computing to promote diversity 
and increase the opportunities of taking precise movement of individual, under the premise of size of 
population is no changed. Third, enhance global search ability of HHO. Modified Nelder-Mead 
simplex method is widely used to solve parameter estimation and similar statistical problems, which 
requires only one or two function evaluations per iteration and quickly produces satisfactory results in 
first few iterations. So, modified Nelder-Mead simplex method is used to boost search performance 
and breadth in exploration phase, empower individual to move in wide range as needed in the search 
space, reducing the probability of falling into local optima. At the same time, it will not excessively 
increase computational complexity. Fourth, group communication factor belong to BFO can express 
relationship between individuals effectively. Attraction and repellent power are introduced into the 
search process as parameters can optimize function evaluation, and then, population regeneration will 
be more accurate. Final, when animal is running or jumping, with energy consumption, muscle cells 
will produce lactic acid, then muscles show fatigue. At this time, the speed or jumping distance will 
be declined, animal need to stop and have a rest. Integrate the conception of cycle about “run—
consume physical strength—stop to take rest—restore energy” into update of escape energy factor E 
can better balance exploitation and exploration of HHO in accordant with biological laws. 

The improved HHO studied in this paper is named as Quantum Correction Harris Hawks 
Optimization (QC-HHO) algorithm. It is tested by 10 classic benchmark functions and 30 CEC2014 
benchmark functions, experimental results are recorded. In order to provide accurate and reliable 
conclusion, Wilcoxon rank-sum test with 5% degree is carefully performed. Compared with other 
optimizers, it can be generalized that the QC-HHO outperforms others in most cases. Moreover, for 
the application of gas leakage source localization, QC-HHO can provide excellent experimental result, 
search accuracy and speed are satisfactory. 

2. Introduction of Harris Hawks Optimization algorithm 

Harris Hawks Optimization algorithm is a meta-heuristic algorithm derived from Harris hawk’s 
predation action. This section briefly describes the basic principles and mathematical models of it. 

2.1. Exploration phase 

The exploration phase of HHO algorithm is global search process. When hawks find the target 
prey in the air, all individuals coordinate their action to find a favorable position around the prey and 
form siege. 

In initial state, the individual Hawk appears in a certain position belong to search space according 
to the principle of randomness, then gradually moves to the optimal solution. Set q as a random number 
located between 0 and 1, when q < 0.5, each individual will take movement by reference the position 
of other ones and prey. As q ≥ 0.5, the Harris hawk will stay in a tree that is in the scope of activity 
of population. The mathematical model can be described as follows: 
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In Eq (2.1), X(t) is position of population after the tth round of iteration. Xrand is location of a 
random individual in population. XPrey is position of the optimal solution, Xm is the average position of 
population. r1, r2, r3 and r4 are the random numbers in the interval of (0,1). Ub and lb are the upper 
and lower bounds of search space respectively, N is population size. 

2.2. Exploitation phase 

The exploitation phase is a process of local search. When the prey is surrounded, the hawks will 
take attack. The HHO algorithm simulates escape behavior of prey and hunting strategy of hawks 
through different combinations of escape energy factor E and random numbers r ∈ (0,1). r is 
escape opportunity for prey. r < 0.5 means that the escape is successful, but r ≥ 0.5 denotes an 
unsuccessful escape. 
1) Soft besiege 

As |E| ≥ 0.5 and r ≥ 0.5, prey is energetic and try to escape by jump, but eventually it is 
caught, a mathematical formula is as follows: 

 Prey( 1) ( ) ( ) ( )X t X t E J X t X t+ = Δ − ⋅ ⋅ −  (2.3) 

 Prey( ) ( ) ( )X t X t X tΔ = −  (2.4) 

 52 (1 )J r= ⋅ −  (2.5) 

In Eq (2.3), ΔX(t) represents the distance between optimal solution and current individual after 
the tth time of iteration, r5 is a random number between 0 and 1. J is jumping distance of prey during 
running for life. 
2) Hard besiege 

As |E| < 0.5 and r ≥ 0.5, prey is lack of physical strength and captured directly, formula is as 
follows: 

 Prey( 1) ( ) ( )X t X t E X t+ = − ⋅ Δ  (2.6) 

3) Soft besiege with progressive rapid dives 
As |E| ≥ 0.5 and r < 0.5, prey is energetic and has chance to escape, hawk will make a more 

intelligent soft encirclement, the implementation is as follows: 

 Prey Prey( ) ( ) ( )Y X t E J X t X t= − ⋅ ⋅ −  (2.7) 
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In Eq (2.8), D is the dimension of problem, S is a D-dimensional random vector, and LF is the 
Levy flight function as follows: 
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In Eqs (2.10) and (2.11), ru and rv are random numbers between 0 and 1, β is a constant numbered 
as 1.5. 
4) Hard besiege with progressive rapid dives 

As |E| < 0.5 and r < 0.5, prey has insufficient physical energy, but it still has a chance to escape. 
In order to reduce the average distance from prey, hawks form a new hard encirclement, the strategy 
is as follows: 

 Prey Prey( ) ( ) ( )mY X t E J X t X t= − ⋅ ⋅ −  (2.12) 

 ( )Z Y S LF D= + ×  (2.13) 
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2.3. Conversion phase between exploration and exploitation 

The HHO algorithm controls the conversion between global search and local search through the 
escape energy factor E, which is defined as follows: 

 02 1 tE E
T

 = ⋅ ⋅ − 
 

 (2.15) 

In Eq (2.15), T is the maximum rounds of iterations, E0 as (-1,1) is the initial value of the energy 
in iterations. When |E| ≥ 1, the HHO algorithm enter into the exploration phase, which represents 
individuals in population move towards the prey within whole search space. When |E| < 1, search will 
convert into the exploitation phase. 
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3. Description of QC-HHO algorithm 

In order to overcome the shortcomings of original HHO, as well as improving the searching 
performance, this section will propose the optimization methods in 5 aspects include Hénon Chaotic 
Map, quantum correction, modified Nelder-Mead simplex method, group communication factor and 
amended escape energy factor E. 

3.1. Hénon chaotic map 

This section will give the definition and mathematical model of the Hénon Chaotic Map, as well 
as compare the distribution of initial population generated by random number and Hénon Chaotic Map. 

High-quality initial population can help to improve the accuracy and speed of convergence. If the 
distribution of initial population is far from the target solution, it is impossible to effectively solve the 
problem [33]. Therefore, in the process of initialization, the initial values should be distributed as 
evenly as possible in the solution space in order to get better results. The original HHO algorithm is 
initialized by random numbers, which cannot guarantee the diversity and ergodicity of population. 

As complex behavior of nonlinear systems, chaos exhibits phenomenon that is similar to 
randomness. This feature can be used to improve the performance of the algorithm [34]. Hénon Chaotic 
Map is proposed by Michel Hénon in 1976, who is a French mathematician [35]. It is discrete-time 
dynamic system which can generate chaotic phenomenon in 2-Dimensional space, the mathematical 
expression is as follows: 

 
2

1

1

1n n n

n n

x a x y
y b x

+

+

 = − ⋅ +


= ⋅
 (3.1) 

In Eq (3.1), when a takes 1.4, b takes 0.3, system will enter into chaotic state. The initial state of 
Harris hawk population is as follows: 

 { } { } { }, 1, 2, , , 1, 2, ,j
iX x i N j D= ∈ ∈   (3.2) 

In Eq (3.2), N is scale of population, D is dimension of problem. Figure 1 shows the initial population 
generated by two methods. (a) is the population generated by random numbers, and (b) is generated by 
Hénon Chaotic Map. It can be seen that (b) is better than (a) in both ergodicity and randomness. 
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Figure 1. Initialization of population. 

3.2. Quantum correction 

This section uses quantum bits code and quantum rotation gate to improve the population 
diversity and local search capability of HHO. In 1981, quantum computing was proposed by Richard 
Feynman who is an American theoretical physicist. The basic unit of information in storage is called 
as a quantum bit. Each quantum bit may represent 1 or 0, even the superimposed state of 0 and 1, 
which can be expressed by a linear superposition of two orthogonal basis vectors: 

 0 1α βΨ = +  (3.3) 

α and β are probability amplitudes, which represent the linear probability of individual states |0⟩ 
and |1⟩ respectively and satisfy following conditions: 

 2 2 1α β+ =  (3.4) 

One quantum bit can be expressed as α
β . n quantum bits can describe 2n state at the same time. 

Therefore, for the same size of population, compared with other methods, quantum code can contain 
more information. Because evaluating optimization algorithm through fitness function have to use a 
certain value, it is necessary to perform a measurement for each quantum bit that will collapse into a 
certain value. The mathematical formula is as follows: 

 ( )
2

2

0 ,
, 0,1

1 ,

r
r

r

α

α

 ≤Ψ = ∈
>

 (3.5) 

For the purpose of enhancing the population diversity and search accuracy, the position X of 
individual in population is converted into a quantum bit that can be updated by quantum rotation gate, 
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the process is as follows: 
1) Obtain parameter P that is the ratio of individual position X to search space. 

 ( )X t lbP
ub lb

−=
−

 (3.6) 

For example, position of individual xi ∈ X is (7,9), ub and lb are 15 and 6 respectively. So, the 
value of P is as follow: 

 1 1
9 3

i
i

x lbP
ub lb

−  = =  −  
 (3.7) 

2) Convert a decimal integer IPi
j = ⌊Pi

j × 1000⌋, i = {1, 2,..., N}, j = {1, 2,..., D} into a 10-bit binary 
number BPi

j = b1 b2 ⋯ b10 , N is population size and D is dimension of problem. So Eq (3.7) 
can deduce as follow: 

 [ ]1000 111 333i iIP P= × =  (3.8) 

 
0001101111
0101001101iBP  

=  
 

 (3.9) 

3) Take a random number r ∈ (0,1), calculating αk and βk according to Eqs (3.4) and (3.5) respectively, 
BPi

j will be converted into a quantum bit sequence that contain 10 quantum bits as follows: 

 1 2 10

1 2 10

j
iQB

α α α
β β β
 

=  
 




 (3.10) 

The entire population X={xi
j} can be expressed as {QBi

j}, i ∈ {1, 2,..., N}, j ∈ {1, 2,..., D}. 
Based on assumption of r = 0.4, Eq (3.9) can be expressed as follow: 

 1 0.77 0.89 0.84 0.45 0.32 0.95 0.43 0.55 0.22 0.39
0.63 0.45 0.55 0.89 0.95 0.32 0.90 0.84 0.97 0.92iQB  

=  
 

 (3.11) 

 2 0.68 0.59 0.72 0.55 0.78 0.82 0.50 0.45 0.95 0.39
0.73 0.81 0.69 0.84 0.63 0.57 0.87 0.89 0.31 0.92iQB  

=  
 

 (3.12) 

4) Quantum rotation gate is used to change the distribution domain of α and β, and its form is as follows: 

 
cos sin
sin cos

U
θ θ
θ θ

− 
=  
 

 (3.13) 

θ in Eq (3.13) is rotation angle, and the update process of quantum bit is as follows: 
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For example, set θ as 0.2, after one time of rotation, QBi
j in Eqs (3.11) and (3.12) will be as follow: 

 1 0.63 0.78 0.71 0.26 0.12 0.87 0.24 0.37 0.02 0.20
0.77 0.62 0.71 0.96 0.99 0.50 0.97 0.93 0.99 0.98iQB  

=  
 

 (3.15) 

 2 0.52 0.42 0.57 0.37 0.64 0.69 0.32 0.26 0.87 0.20
0.85 0.91 0.82 0.93 0.77 0.72 0.95 0.96 0.49 0.98iQB  

=  
 

 (3.16) 

5) According to the quantum state updated by Eqs (3.14) and (3.5), the quantum bit QBi
j is collapsed 

into individual position X ' = {xi
j}', the fitness of function f(X ') is calculated, as well as update XPrey(t). 

So, QBi
j in Eqs (3.15) and (3.16) can be convert to BPi as follow: 

 
1001101111
1111001101iBP  

=  
 

 (3.17) 

6) If the count of rotations does not reach the maximum m, return to Step 4). 
Since the measurement, collapse and rotation of the quantum bit will increase the time 

consumption, in order to balance the accuracy and efficiency of optimization, the quantum rotation 
operation is only performed in the situations that adopting soft besiege strategies or hard besiege 
strategies, meanwhile, the curve convergence state is as smooth state. Compared with HHO, this 
method gives the search agent more opportunities to take delicate movement, so it is more likely to get 
the better results. 

3.3. Modified Nelder-Mead simplex method 

Nelder-Mead technique is proposed by John Nelder and Mead Roger in 1965, it is a kind of 
heuristic search method with simplex concept that can converge to a non-stable point for the problem 
that can be solved by an alternative method. It is usually used for the nonlinear optimization problem 
of which derivative is unknown and issues for finding the minimum or maximum value of objective 
function in a multi-dimensional space [36]. 

The NM method constructs an initial simplex containing a given point, and then the point with 
the worst value of function is replaced by way of reflection, expansion and contraction. If three 
methods mentioned above are all failed, contraction reduce the radius of the simplex to small enough. 
The modified NM method is introduced in global search phase to enhance search ability of HHO. The 
steps are as follows:  
1) Set XNM-Optimal is the optimal point in population, XNM-Suboptimal is the suboptimal point, and XNM-Worst 
and XNM-Subworst are the worst point and the point that is next to the worst point respectively. 
2) Generate a group of new positions XNM-Elite [17] with parameters of XNM-Optimal, XNM-Suboptimal, XNM-

Subworst and XNM-Worst, the formula is as follows: 
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3) Let XNM = {XNM-EliteT, XNM-Optimal, XNM-Suboptimal, XNM-Worst, XNM-Subworst} denote the list of points in 
the simplex. 
4) Sort the points XNM in the simplex from lowest function value to highest one. Update XNM-Optimal, 
XNM-Subworst, XNM-Worst at each step in the iteration. 
5) Set reflected point XNMr and expanded point XNMe as follows: 

 -worst2NMr m NMX X X= ⋅ −  (3.19) 

 ( )-worst2NMe m m NMX X X X= + ⋅ −  (3.20) 

In Eqs (3.19) and (3.20), Xm is the average position of population in Eq (2.2). 
6) If f(XNMr) < f(XNM-Optimal), XNM-Worst is replaced according to follow rules: 

a. If f(XNMe) < f(XNMr), accept XNMe, named as “Expansion”. 
b. Otherwise, accept XNMr, named as “Reflection<2>”. 

7) If f(XNM-Optimal) ≤ f(XNMr) < f(XNM-Subworst), XNM-Worst is replaced by XNMr, named as “Reflection<1>”, 
8) If f(XNM-Subworst) ≤ f(XNMr), perform “Contraction” by follow rules: 

a. If f(XNMr) < f(XNM-Worst), calculate the contracted point XNMc1 as follows: 

 ( )1 0.5NMc m NMr mX X X X= + − ×  (3.21) 

If f(XNMc1) < f(XNMr), XNM-Worst is replaced by XNMc1, named as “Outside contraction”, otherwise, 
continue with Step 9). 

b. If f(XNMr) ≥ f(XNM-Worst), set the contracted point XNMc2 as follows: 

 ( )2 worst 0.5NMc m NM mX X X X−= + − ×  (3.22) 

If f(XNMc2) < f(XNM-Worst), accept XNMc2, named as “Inside contraction”, otherwise, continue with 
Step 9). The individual Xworst corresponding to XNM-Worst in population is updated.  
9) Update list of XNM: 

 ( ) (1)( ) (1)
2

NM NM
NM

X i Xv i X −= −  (3.23) 

Calculate f(v(i)), i = 2, 3,..., 8. The simplex at the next iteration is {XNM(1), v(2),..., v(8)}, named 
as “Shrink”. 
10) Go back to Step 4), until the stop condition is met. 
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11) If f(XNM-Optimal) < f(XPrey(t)), set Fitness(t) = f(XNM-Optimal), and update XPrey(t) as XNM-Optimal. 
Take an example, set cost function as: 

 2 2 2( , ) 100 ( ) (1 )f x y y x x= × − + −  (3.24) 

For convenience of understanding and expressing the procedure of NM method, the simplex in 
this example contains only 3 points, XNM = {XNM-Optimal, XNM-Worst, XNM-Subworst}, initial values of them 
are [-2.9723, 0.1679], [-1.9723, 0.1679] and [-2.9723, 1.1679]. From Step 1) to Step 3) are skipped, 
after 19 times of iteration, data are shown in Table 1. 

Table 1. Data of Nelder-Mead simplex method. 

Iteration 
No. 

f(XNM-Optimal) f(XNM-Subworst) f(XNM-Worst) f(XNMe) f(XNMr) f(XNMc1) f(XNMc2) Action 

1 
1394.21 5893.56 7526.89 — — — — Sort 

1394.21 5893.56 31.09 31.09 749.80 — — Expansion 

2 
31.09 1394.21 5893.56 31.09 749.80 — — Sort 

31.09 1394.21 3.54 3.54 21.96 — — Expansion 

3 
3.54 31.09 1394.21 3.54 21.96 — — Sort 

3.54 31.09 8.22 3.54 8.22 — — Reflection<1> 

4 
3.54 8.22 31.09 3.54 8.22 — — Sort 

3.54 1.25 86.88 3.54 1.39e+4 — 188.77 Shrink 

5 
1.25 3.54 86.88 3.54 1.39e+4 — 188.77 Sort 

1.25 3.54 71.21 3.54 1675.13 — 71.21 
Inside 
contraction 

...... ...... 

12 
0.07 0.19 0.26 3.54 3.10 — 0.19 Sort 

0.07 0.19 0.14 3.54 0.26 0.14 0.19 
Outside 
contraction 

...... ...... 

19 
0.0103 0.0263 0.0263 3.5432 0.0263 0.1447 0.0263 Sort 

0.0103 0.0263 0.0084 0.0331 0.0084 0.1447 0.0263 Reflection<2> 
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As shown in Table 1, each iteration possesses 2 lines of data, the top line is the status of f(XNM) 
after execution of Step 4), the bottom one is the result of Step 9). 

1) At the 2nd iteration, fit for Step 6a), so action of “Expansion” is executed, XNM-Worst is changed 
and f(XNM-Worst) is 3.54 that is shown in the bottom line of 2nd iteration. 

2) At the 3rd iteration, fit for Step 7), action of “Reflection<1>” is executed, f(XNM-Worst) is changed 
to 3.54. 

3) At the 4th iteration, fit for Step 9), XNM is updated. 
4) At the 5th iteration, fit for Step 8b), action of “Inside contraction” is executed, f(XNM-Worst) will 

be equal to f(XNMc2). 
5) At the 12th iteration, fit for Step 8a), action of “Outside contraction” is executed, f(XNM-Worst) is 

changed as the values of f(XNMc1). 
6) At the 19th iteration, fit for Step 6b), action of “Reflection<2>” is executed, XNM-Worst is equal 

to XNMr. 

3.4. Group communication factor 

Harris hawk is a kind of animals hunting in group. When they encircle prey, there are 2 or 3 hawks 
stop in one tree at most, it means that position of each hawk is affected by another one. Original HHO 
does not take the relationship between individuals into consideration. The attraction and repulsion 
between creatures are introduced into HHO. The attractive force makes hawks to move toward to same 
prey. The repulsive force keeps hawks at a certain distance and not gather in a single position. The 
group communication factor gcf is added to the fitness of cost function in order to generate a new 
fitness for comparison and optimization. The group communication factor gcf of the ith search agent is 
defined as follows: 

 ( ) ( )attract attract repel repel1 1
N N

i k kgcf d exp vd h exp vdω ω= =
  = − ⋅ − ⋅ + − ⋅ − ⋅      (3.25) 

In Eq (3.25), N is population size, dattract is the attraction released by hawk, and ωattract indicates 
the diffusivity of attraction. hrepel and ωrepel are the influence and width of repellent respectively. The 
variable vd is the distance parameter between different variables of the ith search agent, which is 
defined as follows: 

 ( )2

1
D m m

imvd X X== −  (3.26) 

In Eq (3.26), D is the dimension of search agent. Xi
m is the position of the mth variable of the ith 

search agent. 

 | 1,2,gcf i iFitness Fitness gcf i N= + = …  (3.27) 

In Eq (3.27), N is population size, Fitnessgcf is fitness value of function that integrated with group 
communication factor after iteration. Therefore, introduction of gcf improves comprehensiveness and 
completeness of fitness. 
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3.5. Escape energy factor E based on bio-energy consumption 

In HHO algorithm, escape energy factor E reflects the search ability for the optimal solution, 
determines the conversion between global search and local search as well as affects the strategy 
adopted in exploitation phase. As shown in Eq (2.15), the value of E is depended on the random number 
E0, it appears as linear decreasing trend including many times of fluctuation during optimization 
process, which can hardly describe actual change tendency of creatures’ energy. Some scholars 
improved factor E from various of aspects, such as the m-HHO algorithm proposed by Gupta et al. [37] 
set nonlinear energy factor E as follows in order to obtain more opportunities for exploitation. 

 
2

start end end2( - )
( )

tE E E exp(- ) E
mi T

= × +
×

 (3.28) 

In Eq (3.28), t is count of iteration, T is the maximum number of iterations, mi is the nonlinear 
modulation index, and Estart and Eend are the initial and final energy parameter values respectively. 

Although m-HHO get better results in exploration phase, the universality and robustness of 
algorithm are reduced because of abandoning random parameter. So HHO and m-HHO are both not 
in line with the energy consumption and recovery of prey during escape or actual situation of 
predator and prey. Prey’s physical fitness decreases rapidly with the increase of running distance in 
escape. It can recover to a certain extent through a short rest. QC-HHO separates the change process 
of E in HHO into several groups, each group contains corresponding data of E in iteration, that is as 
following formula: 

 1 _ , [50,100], {1,2,..., }iE Saw r i r i r= − ∈ ∈  (3.29) 

 
( )( )1 1

1

4 , {1, 2,..., }_   _
2 _j
rE Part E Saw

max abs E Saw
Tj
r

 × ∈ − =
 

 (3.30) 

 { }1 1 , {1,2,...,_ }j
TE PE jart
r

= ∈  (3.31) 

 0 1E E E= ×  (3.32) 

 0.5 1
1.5

EJ −= +  (3.33) 

In Eq (3.29), r is a random number in the interval of [50, 100] that means the size of each group. In 
Eq (3.30), j determines the frequency of physical recovery of prey in escape, namely, how many times 
of rest the prey takes for. E1_Partj is the escape energy factor of each group in whole search process. In 
Eq (3.32), E0 is in the interval of [-1, 1] that is as same as it of HHO in Eq (2.15). In Eq (2.5) relate to 
HHO, jump distance of prey is irrelevant to energy. However, according to Eq (3.33), the more energy the 
prey has, the longer distance it can jump. 
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Figure 2. Curve of escape energy factor E. 

As shown in Figure 2, (a) is the change trend of escape energy factor E of original HHO, which 
is relevant linear, (b) is the curve of E in m-HHO algorithm, and (c) is E of QC-HHO algorithm. It can 
be seen that the fluctuation of E in each group is getting smaller and smaller. The energy of prey is 
recovery after short break when it is exhausted. The physical consumption of prey in the process of 
being chased is decreasing, the upper limit of physical will be lower and lower as time goes on. That 
is conform to the feature of bio-energy. 

4. Pseudo code and spatiotemporal complexity analysis of algorithm 

4.1. Pseudo code and flow chart of QC-HHO 

This section describes the application of methods mentioned in former sections as form of pseudo 
code, the corresponding flow chart is shown in Figure 3. 

Input: N is population size, T is maximum number of iterations 
Output: Position of prey and corresponding fitness value 
Execute Eqs (3.1) and (3.2) to initialize the population Xi(i = 1, 2, . . . , N). 
Initialize the parameters of Nelder-Mead simplex method 
While (stopping condition is not met) do 

Check state for convergence curve 
Execute Eq (3.27) to calculate the fitness values integrating with the group communication 

factor gcf 
for (each hawk Xi) do 



7621 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7606−7648. 

Execute Eq (3.25) to calculate the group communication factor gcf 
Execute Eq (3.32) to update the escape energy factor E 
Execute Eq (3.33) to update the jump strength J 
if1 the state of convergence curve is rapid convergence and iteration is in later stage 

set E = 1 to force the search enter into exploration 
endif1 
if2 (|E| ≥ 1) then exploration phase 

if3 convergence curve is rapid convergence 
Execute Eq (2.1) to update the location 

else 
Execute Eqs (3.18)–(3.23) to use Nelder-Mead simplex method 

endif3 
endif2 
if4 (|E| < 1) then exploitation phase 

if5 (r ≥ 0.5 and |E| ≥ 0.5) then soft besiege 
Execute Eq (2.3) to update the location 

endif5 
if6 (r ≥ 0.5 and |E| < 0.5) then hard besiege 

Execute Eq (2.6) to update the location 
endif6 
if7 (r ≥ 0.5 and it is possible to drop into local optima) 

Execute Eqs (3.6), (3.10), (3.13) and (3.14) to execute quantum correction 
endif7 
if8 (r < 0.5 and |E| ≥ 0.5) then soft besiege with progressive rapid dives 

Execute Eq (2.9) to update the location 
endif8 
if9 (r < 0.5 and |E| < 0.5) then hard besiege with progressive rapid dives 

Execute Eq (2.14) to update the location 
endif9 

endif4 
endfor 

endwhile 
Return XPrey 
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Figure 3. Flow chart of QC-HHO. 

4.2. Analysis of time complexity 

Set the population size of the QC-HHO is N and iteration rounds is T, D is dimension of problem, 
the time complexity of algorithm according to the execution steps of the algorithm is analyzed. 

Step 1, initialization of hawk population, the time complexity is O(2N × D). 
Step 2, initialize the parameters of Nelder-Mead simplex method, the time complexity is O(1). 
Step 3, calculate the convergence trend, the time complexity is O(1). 
Step 4, calculate the function fitness, and the time complexity is O(1). 
Step 5, perform group behavior. 
Step 5.1, calculate the group communication factor gcf, the time complexity is O(N). 
Step 5.2, calculate the escape energy factor E and jump strength J, the time complexity is O(2). 
Step 5.3, judge whether to force search enter into exploration according to the convergence trend, 

make comparison once, make calculation once, the time complexity is O(2). 
Step 5.4, confirm to enter into exploration or exploitation, make comparison once, the time 

complexity is O(1). 
Step 5.5, in exploration phase, compare twice, move once, update parameters of Nelder-Mead 

simplex method, and the time complexity is O(4). 
Step 5.6, in the exploitation phase, compare once to determine the attack strategy, move once, the 

time complexity is O(1). 
Step 5.7, in soft besiege, move once, execute quantum correction, the time complexity is O(20 × 

D + 12). 
Step 5.8, in hard besiege, move once, execute quantum correction, the time complexity is O(20 × 

D + 12). 
Step 5.9, in soft and hard besiege with progressive rapid dives, move once, the time complexity 

is O(1). 
Step 5 will repeat for N times, so its time complexity is O((10 + N + 20 × D + 12) × N). 
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After the above steps, the time complexity of QC-HHO after T iterations is O(T ×((10 + N + 20 
× D + 12) × N)). 

4.3. Analysis of spatial complexity 

The spatial complexity is evaluating indicator of through storage space used by algorithm and 
analyzed according to the procedures. Set the scale of population is N, the number of iterations is T, 
and the dimension of function is D. X[N][D] stores the position of population, XPrey[1][D] saves the 
optimized variable, Fitness keeps the optimal result for fitness of function, gcf is the relationship 
between individuals in population, NM_X[7][1] stores the parameters of Nelder-Mead simplex method, 
NM_X_Fitness[2][1] is fitness of function belong to NM simplex method, P[N][D] keeps ratio of 
individual position X to search space, IP[N][D] stores decimal integer of P, BP[10] are binary data of 
individual, QB[N][D][2][10] stores quantum bits of population, X’[N][D] stores the position of 
population after quantum correction. Therefore, the spatial complexity of QC-HHO algorithm is: 
O(N × D × 20) + 4 × O(N × D) + 2 × O(D) + O(21). 

5. Test and analysis 

This section makes use of 10 classic benchmark functions and 30 CEC2014 benchmark functions 
to test the performance of QC-HHO on the platform of intel i7-4790, 8GB DRAM and MatLab 2012b, 
and presents the experimental results and analysis. 

5.1. Comparison on classic benchmark functions  

This section is to evaluate the performance of QC-HHO, taking comparison between QC-HHO 
and BFO [1], PSO [2], DE [3], HHO [16] as well as other 4 improved HHO algorithms including 

CEHHO [17], ADHHO [25], CLHHEO [26], DMSDL-HHO [28] on classic benchmark functions. 
Classic benchmark functions are grouped into three categories: F1−F4 are uni-modal functions 

that used to evaluate the capability of exploitation. F5−F8 are multi-modal functions, F9 and F10 are 
fixed-dimensional multi-modal functions. F5−F10 have more than one local optima, the number of 
variables increases exponentially, which are used to evaluate the ability of exploration and avoiding 
the local optima. The figures, names, variable number, variable boundary and theoretical optimal 
solution of functions are shown in Table 2. 

Table 2. Information of benchmark function. 

Figure Function No. Function Name 
Number of 
Variables 

Boundary 
Optimal 
Solution 

 
F1 Sphere 30 [-100, 100] 0 

 
F2 Schwefel 1.2 30 [-100, 100] 0 

Continued on next page



7624 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7606−7648. 

Figure Function No. Function Name 
Number of 
Variables 

Boundary 
Optimal 
Solution 

 
F3 Schwefel 2.21 30 [-100, 100] 0 

 
F4 Quartic with Noise 30 [−1.28, 1.28] 0 

 
F5 Schwefel 30 [−500, 500] −418.9829 × 5 

 
F6 Rastrigin 30 [−5.12, 5.12] 0 

 
F7 Ackley 30 [−32, 32] 0 

 
F8 Penalized 1.1 30 [−50, 50] 0 

 
F9 Goldstein-Price 2 [−2, 2] 3 

 
F10 Shekel 5 4 [0, 10] −10.1532 

In detail, for the tests on classic benchmark functions, the termination criterion is the maximum 
number of iterations T is 500, the number of populations is 30, the rounds of runs on each function 
is 30, the maximum number m of quantum rotations is 3, means and standard deviations are collected 
as support for evaluation and shown in Tables 3 and 4. 

Table 3. Comparison between QC-HHO and other 4 popular optimization algorithms on 
classic benchmark functions. 

Function No. metrics BFO PSO DE HHO QC-HHO 

F1 
mean 5.67E-05 3.89E-01 1.01E-13 1.13E-97 0.00E+00 

std 8.46E-06 1.29E-01 7.61E-14 2.48E-97 0.00E+00 

F2 
mean 2.66E-04 3.54E+01 8.50E-11 5.89E-79 0.00E+00 

std 4.50E-05 1.46E+01 9.14E-11 1.81E-78 0.00E+00 

Continued on next page
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Function No. metrics BFO PSO DE HHO QC-HHO 

F3 
mean 4.34E-03 2.61E+00 0.00E+00 3.11E-50 0.00E+00 

std 5.68E-04 1.29E+00 0.00E+00 6.55E-50 1.01E-101 

F4 
mean 2.50E-04 3.55E+00 5.63E-03 1.97E-04 4.23E-05 

std 2.16E-04 8.49E+00 1.48E-03 2.05E-04 4.18E-05 

F5 
mean -2.01E+03 -2.74E+03 -1.12E+04 -1.26E+04 -1.44E+04 

std 4.40E+02 3.61E+02 5.75E+02 1.68E+00 1.85E-12 

F6 
mean 1.11E-02 9.82E+01 6.92E+01 0.00E+00 0.00E+00 

std 1.72E-03 1.26E+01 3.88E+01 0.00E+00 0.00E+00 

F7 
mean 5.85E-03 2.56E+00 1.18E-07 8.88E-16 8.88E-16 

std 4.33E-04 1.13E+00 4.96E-08 0.00E+00 0.00E+00 

F8 
mean 1.56E+00 3.43E+00 9.76E-15 1.03E-05 1.57E-22 

std 7.01E-03 1.10E+00 9.85E-15 1.33E-05 5.57E-48 

F9 
mean 8.40E+00 3.00E+00 3.73E+00 3.00E+00 3.00E+00 

std 1.14E+01 5.91E-04 2.57E-15 2.29E-07 4.38E-02 

F10 
mean -7.91E-01 -4.15E+00 -1.17E+01 -5.05E+00 -9.97E+00 

std 5.20E-01 2.40E+00 2.89E-06 1.64E-02 1.56E+00 

As shown in Table 3, the performance of QC-HHO is significantly better than the other 4 classic 
optimization algorithms, especially for F1, F2, F3, F6, the theoretical optimal solution can be found. 
For uni-modal functions F1−F4, compared with the other algorithms, the means and standard 
deviations of QC-HHO are not only good at final result, but are more stable. In terms of multi-modal 
functions and fixed-dimensional multi-modal functions, the mean of F5, F7, F9, QC-HHO is similar 
to HHO and superior to BFO and DE. For F10, QC-HHO obtains satisfactory results, and have a slight 
advantage over HHO. 

Table 4. Comparison between QC-HHO and other improved HHO algorithms on classic 
benchmark functions. 

Function 
No. 

metrics CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

f1 

ave 1.0600E-111 0.0000E+00 2.5300E-196 2.9200E-187 0.0000E+00 

std 5.2400E-111 0.0000E+00 8.8820E-63 0.0000E+00 0.0000E+00 

rank 5 1 3 4 1 

Continued on next page
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Function 
No. 

metrics CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

f2 

ave 2.3400E-89 0.0000E+00 2.2653E-102 9.3000E-116 0.0000E+00 

std 1.2700E-88 0.0000E+00 1.1250E-98 4.9100E-115 0.0000E+00 

rank 5 1 4 3 1 

f3 

ave 8.3500E-58 0.0000E+00 8.9240E-74 4.0400E-74 0.0000E+00 

std 1.9700E-67 0.0000E+00 1.1230E-70 1.5900E-73 1.0100E-101 

rank 5 1 4 3 1 

f4 

ave 1.4900E-04 1.3380E-04 4.2924E-05 4.0479E-05 4.2300E-05 

std 1.2800E-05 1.4544E-04 4.3058E-05 4.3225E-05 4.1800E-05 

rank 5 4 3 1 2 

f5 

ave -1.3506E+04 -1.3803E+04 -1.2730E+04 -1.3511E+04 -1.4443E+04 

std -1.2600E+04 1.7569E+03 5.0093E-04 -1.2691E+04 1.8500E-12 

rank 4 2 5 3 1 

f6 

ave 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

rank 1 1 1 1 1 

f7 

ave 8.8800E-16 8.8800E-16 8.8800E-16 8.8800E-16 8.8800E-16 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

rank 1 1 1 1 1 

f8 

ave 8.4400E-06 4.1151E-13 1.7461E-24 2.8600E-12 1.5700E-22 

std 2.9600E-09 2.7293E-13 3.3065E-07 3.5400E-12 5.5700E-48 

rank 5 3 1 4 2 

f9 

ave 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 

std 1.6400E-07 3.2183E-15 5.9349E-06 7.6682E-07 4.3800E-02 

rank 1 1 1 1 1 

f10 

ave -5.3600E+00 -1.0151E+01 -5.4742E+00 -1.0133E+01 -9.9654E+00 

std 1.1700E+00 8.5892E-15 2.3396E-01 1.0048E-03 1.5600E+00 

rank 5 1 4 2 3 
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As shown in Table 4, theoretical optimal value of F1, F2, F3 are found by QC-HHO and DMSDL 
-HHO that completely suppress other 3 improved HHO algorithms about best value and mean, they 
are both ranked first. stability of DMSDL-HHO in F3 is the best among all 5 algorithms. For F4, QC-
HHO is ranked second and slightly behind CLHHEO, but it is more stable. For F5, the result of QC-
HHO is not only outstanding, but also is more stable substantially. For F6 and F9, 5 optimizers get 
theoretical optimal values without exception. F7, results of 5 algorithms are identical, but they are not 
theoretical optimal value. That is means that model of original HHO is not suitable for this function. 
For F8 and F10, QC-HHO get ranking the second and third. QC-HHO, it can be seen that the capability 
of solving multi-modal problems is not as good as this of uni-modal ones. 

The convergence curves of classic benchmark functions are shown in Figures 4−6. The blue solid 
line with rectangle is the QC-HHO, the purple solid line is CEHHO, the green solid line is ADHHO, 
the black dashed line is DMSDL-HHO and the red dot dashed line is CLHHEO. 

 

Figure 4. Convergence curve of uni-modal classic benchmark functions. 

Figure 4 is convergence curves of uni-modal benchmark functions. Among the 5 improved HHO 
algorithms, QC-HHO has the best final optimal result. Convergence speed of F1 is the fastest, better 
than the other 4 algorithms, and finds the theoretical optimal solution. For F2 and F3, although QC-
HHO is slower in convergence speed in the early phase of search, speed is significantly faster in the 
later phase, and a better result is found through quantum rotation correction in the final phase. For F4, 
QC-HHO fell into the local optima at least 2 times, but all of them successfully jumped out and keep 
searching the search space to find good solutions. 
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Figure 5. Convergence curve of multi-modal classic benchmark functions. 

Figure 5 is comparison of multi-modal benchmark functions. For F5 and F6, QC-HHO has a 
slightly slower convergence rate than ADHHO and CLHHEO, and achieves a jump out of the local 
optima in initial phase of F5. For F7, under the premise of identical final result, the convergence speed 
of QC-HHO is the fastest among 5 algorithms. F8, QC-HHO’s convergence speed is not outstanding, 
and the final result is worse than this of ADHHO. 

 

Figure 6. Convergence curve of fixed-dimensional multi-modal classic benchmark functions. 

Figure 6 shows convergence curves of 5 improved HHO in fixed-dimensional multi-modal 
functions F9 and F10. The final optimization results are at the same order of magnitude, but QC-HHO 
jumps out of local optima for several times. For F9, the final results of all optimizes are as same as 
theoretical optimal value, the only differences between them are convergence rate. QC-HHO takes one 
time of jumping out of local optima to get better result. 

5.2. Comparison on CEC2014 benchmark functions 

This section compares QC-HHO to CEHHO [17], ADHHO [25], CLHHEO [26] and DMSDL-
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HHO [28] on 30 CEC2014 benchmark functions for further tests of QC-HHO’s performance. 
For CEC2014 test, population size N is set to 100, the search range is in [−100, 100]D, for each 

function, each algorithm independently run 50 times to get experimental results that composed of mean 
and standard deviation values on 30, 50, and 100-dimensional CEC2014 benchmark functions in 
Tables 5, 7 and 9, respectively. Moreover, for convenience of making analysis, ranking statistics for 
each category are recorded in Tables 6, 8 and 10. 

Table 5. Comparisons of all algorithms on the 30-dimensional CEC2014 benchmark functions. 

 metrics HHO CEHHO DMSDL- 
HHO AD-HHO CLHHEO QC-HHO 

f1 
ave 3.4388E+07 6.7119E+07 9.2986E+00 9.3981E+00 6.0859E+04 8.2197E+00

std 1.5816E+07 1.7777E+07 1.3081E+01 1.2775E+01 2.0189E+07 1.5221E+01

f2 
ave 3.4053E+07 1.4616E+08 1.9284E-07 1.8058E-07 7.4597E+05 1.7759E-07 

std 1.1072E+07 5.5324E+07 1.0708E-07 8.9939E-08 4.8320E+07 1.1139E-07 

f3 
ave 2.4042E+04 3.7078E+04 2.6431E-01 4.4136E-01 5.6404E+02 3.6351E-01 

std 5.4667E+03 1.3501E+04 3.0418E-01 2.9975E-01 1.0972E+04 3.4800E-01 

f4 
ave 6.2954E+02 8.1557E+02 3.0498E-10 3.0772E-10 1.2677E-10 3.3697E-10 

std 6.7784E+01 2.0063E+02 1.0968E-10 1.1019E-10 1.0309E+02 7.3327E-11 

f5 
ave 5.2052E+02 5.2059E+02 5.1904E+02 5.1888E+02 5.0843E+02 5.1453E+02

std 1.2532E-01 1.4775E-01 2.7139E-04 3.0074E-04 1.4283E-01 2.3809E-04 

f6 
ave 6.3334E+02 6.3626E+02 1.0219E+02 1.3807E+02 4.4244E+02 3.9525E+01

std 3.3253E+00 2.9463E+00 2.4023E+00 2.8022E+00 3.3249E+00 2.3540E+00

f7 
ave 7.0130E+02 7.0243E+02 9.3954E-11 1.6007E-10 9.3062E-07 9.4327E-12 

std 8.5586E-02 6.3357E-01 1.8047E-14 1.8914E-14 1.0667E+00 1.5569E-14 

f8 
ave 9.3159E+02 9.4180E+02 2.2990E+02 2.7292E+02 1.6638E+02 1.6360E+02

std 1.7349E+01 2.2440E+01 1.0357E+01 9.9155E+00 1.6189E+01 1.8853E+01

f9 
ave 1.0874E+03 1.1007E+03 2.8799E+02 4.0555E+02 3.5026E+02 2.7859E+02

std 2.0406E+01 2.0994E+01 1.3628E+01 1.3421E+01 1.7502E+01 1.4507E+01

f10 
ave 4.0048E+03 4.1507E+03 8.6068E+02 7.3350E+02 1.9039E+03 7.7819E+02

std 7.8162E+02 6.1751E+02 2.8306E+02 2.7512E+02 2.3224E+02 3.0040E+02
Continued on next page
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 metrics HHO CEHHO DMSDL- 
HHO AD-HHO CLHHEO QC-HHO 

f11 
ave 5.6507E+03 5.7285E+03 3.1228E+03 3.8417E+03 5.4454E+03 6.0754E+03

std 7.8910E+02 5.5742E+02 7.7495E+02 6.1912E+02 5.1104E+02 6.9601E+02

f12 
ave 1.2019E+03 1.2021E+03 2.5912E+02 2.8480E+02 1.6350E+02 4.3482E+01

std 4.7933E-01 6.9743E-01 2.9394E-01 2.7541E-01 6.4237E-01 2.7386E-01 

f13 
ave 1.3005E+03 1.3005E+03 6.2438E+02 6.6377E+02 1.0466E+03 6.1473E+02

std 1.5096E-01 1.2744E-01 1.0724E-01 8.1349E-02 1.0359E-01 7.3202E-02 

f14 
ave 1.4003E+03 1.4004E+03 1.0463E+03 1.1425E+03 1.1245E+03 8.6137E+02

std 1.0112E-01 2.7234E-01 2.5115E-02 2.2234E-02 3.0647E-01 1.5575E-02 

f15 
ave 1.5453E+03 1.5601E+03 1.5535E+02 1.4709E+02 1.3600E+02 1.2897E+03

std 8.9250E+00 1.7244E+01 1.1863E+00 9.3748E-01 2.0126E+01 1.2965E+00

f16 
ave 1.6124E+03 1.6123E+03 1.1359E+03 1.3203E+03 7.7656E+02 9.7576E+02

std 4.8097E-01 5.9799E-01 6.7343E-01 6.8893E-01 6.3623E-01 7.4550E-01 

f17 
ave 4.4967E+06 5.7408E+06 8.6200E+03 7.0382E+03 5.6425E+04 1.0090E+04

std 3.6931E+06 3.3646E+06 5.5689E+03 4.7452E+03 2.9065E+06 5.0348E+03

f18 
ave 1.9322E+05 7.8069E+05 2.5421E+03 2.3654E+03 7.8574E+03 2.8281E+03

std 3.4242E+05 7.2558E+05 5.2332E+03 3.7030E+03 7.7741E+05 3.5642E+03

f19 
ave 1.9518E+03 1.9926E+03 1.8122E+02 2.2464E+02 1.3694E+03 1.5917E+02

std 3.6942E+01 3.4779E+01 8.3276E-01 8.9098E-01 3.9001E+01 8.6310E-01 

f20 
ave 2.5130E+04 4.7393E+04 1.1201E+03 1.0525E+03 1.0623E+03 1.6085E+03

std 8.9647E+03 7.8229E+03 5.6089E+02 4.8117E+02 8.9803E+03 4.6628E+02

f21 
ave 7.8219E+05 7.8782E+05 1.0874E+03 1.1780E+03 6.7445E+04 7.9901E+03

std 7.2130E+05 7.2787E+05 8.7689E+02 8.5450E+02 8.4029E+05 9.6452E+02

f22 
ave 3.1687E+03 3.2757E+03 1.3253E+03 7.9046E+02 5.8064E+02 1.4654E+03

std 2.9168E+02 1.6299E+02 1.0242E+01 9.8666E+01 1.8406E+02 1.0312E+01

f23 ave 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03
Continued on next page
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 metrics HHO CEHHO DMSDL- 
HHO AD-HHO CLHHEO QC-HHO 

f23 std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f24 
ave 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03

std 4.0537E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f25 
ave 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f26 
ave 2.7622E+03 2.7403E+03 2.0384E+03 1.9048E+03 1.9035E+03 2.5068E+03

std 4.8819E+01 5.1410E+01 7.3958E-02 5.8292E-02 5.0192E+01 5.5044E-02 

f27 
ave 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f28 
ave 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f29 
ave 6.2109E+05 2.6613E+06 3.2662E+05 3.0237E+05 2.8801E+05 3.0168E+05

std 2.7211E+06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f30 
ave 8.2238E+04 4.5278E+04 4.4532E+03 4.1717E+03 4.2684E+04 5.9009E+03

std 1.4431E+05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Table 6. Comparisons of average ranking for all algorithms on each category of the 30-
dimensional CEC2014 benchmark functions. 

 
Unimodal 
Functions 

Simple 
Multimodal 
Functions 

Hybrid 
Functions 

Composition 
Functions 

All Functions 

HHO 5.00 5.08 5.00 2.75 4.43 

CEHHO 6.00 5.77 6.00 2.63 5.00 

DMSDL-HHO 2.00 2.46 2.17 1.75 2.17 

ADHHO 2.67 3.08 1.67 1.38 2.30 

CLHHEO 4.00 2.54 3.17 1.38 2.50 

QC-HHO 1.33 2.08 3.00 1.75 2.10 

As shown in Tables 5 and 6, the results obtained in 30-dimensional CEC2014 benchmark 
functions show that QC-HHO obtains 15 times ranking the first, 5 times ranking the second, 4 times 
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ranking the third, 5 times ranking the fourth and 1 time ranking the sixth, and no ranking the fifth, its 
average ranking is 2.1 which is less than this of any other optimizers. DMSDL-HHO and ADHHO 
compute the average rankings are 2.17 and 2.30 respectively, which are also relatively competitive. 
The reason why QC-HHO can be the top one is that it is extremely good at Unimodal Functions and 
Simple Multimodal Functions. QC-HHO is outstanding in average ranking of these two categories, it 
is means quantum correction mechanism and modified Nelder-Mead simplex method guarantee QC-
HHO can find better solution in exploration and exploitation phase by precise or long-distance 
movement, even if other optimizers are incapable of get better results. Also, the modified escape energy 
factor E makes the conversion between global and local search at right time. Distribution of initial 
population generated by Hénon Chaotic Map makes search more accurate. Uniform and moderate 
distance between individuals is good for group communication factor play a more effective role in the 
process of population regeneration. On the other side, intermediate level optimization ability result in 
QC-HHO is surpassed by DMSDL-HHO and ADHHO in categories of Hybrid Functions and 
Composition Functions.  

Table 7. Comparisons of all algorithms on the 50-dimensional CEC2014 benchmark functions. 

 metrics HHO CEHHO 
DMSDL- 
HHO

ADHHO CLHHEO QC-HHO 

f1 
ave 8.8085E+07 1.5267E+08 1.6076E+00 1.5998E+00 1.3999E+00 1.3853E+00

std 3.3967E+07 6.2054E+07 2.3140E+00 2.0577E+00 2.6593E+00 1.6336E-01 

f2 
ave 6.5654E+08 2.2991E+09 1.3291E+03 1.1442E+03 1.5104E+03 1.0161E+03

std 2.5436E+08 7.6478E+08 6.7502E+02 6.2056E+02 6.7748E+02 6.5509E+02

f3 
ave 5.7216E+04 8.6216E+04 1.5200E-01 1.6903E-01 1.8400E-01 1.8167E-01 

std 1.0290E+04 1.4523E+04 1.6414E-02 1.9100E-02 2.2674E-02 1.7807E-02 

f4 
ave 9.2274E+02 1.1512E+03 1.1415E-01 8.8438E-02 7.2032E-02 6.6518E-02 

std 1.3692E+02 1.3042E+02 1.4276E+00 1.7794E+00 1.4689E+00 1.4655E+00

f5 
ave 5.2084E+02 5.2079E+02 5.4338E+03 5.1954E+03 4.5483E+03 5.9474E+02

std 1.2934E-01 1.5010E-01 1.7678E-05 1.9315E-05 2.8812E-05 1.6617E-05 

f6 
ave 6.6089E+02 6.6458E+02 2.9099E+02 2.5444E+02 2.2542E+02 2.6008E+02

std 4.8858E+00 3.4152E+00 4.4083E+00 4.1760E+00 4.6698E+00 3.1034E+00

f7 
ave 7.0626E+02 7.2412E+02 1.5010E+00 1.3966E+00 1.2825E+00 1.7613E+00

std 1.9491E+00 6.5846E+00 9.1075E-02 9.1857E-02 7.6984E-02 1.0520E-01 

f8 
ave 1.0830E+03 1.0884E+03 5.9830E+02 5.6709E+02 2.1714E+02 4.8943E+02

std 2.4935E+01 2.8755E+01 2.2672E+01 2.6441E+01 2.6903E+01 5.4955E+00

Continued on next page
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 metrics HHO CEHHO 
DMSDL- 
HHO

ADHHO CLHHEO QC-HHO 

f9 
ave 1.2985E+03 1.3268E+03 5.3727E+02 6.7579E+02 6.6299E+02 5.4358E+02

std 4.1898E+01 3.8579E+01 4.4425E+01 3.5146E+01 5.6706E+01 4.3760E+01

f10 
ave 7.4406E+03 8.3494E+03 1.5085E+03 3.1313E+03 2.7626E+03 1.8091E+03

std 1.3736E+03 9.9589E+02 8.3676E+02 7.3305E+02 8.4150E+02 8.0097E+02

f11 
ave 1.0140E+04 1.1356E+04 6.5184E+03 7.7585E+03 9.2076E+03 6.2393E+02

std 1.1277E+03 1.4072E+03 9.3317E+02 7.8877E+02 7.5315E+02 1.0175E+03

f12 
ave 1.2027E+03 1.2029E+03 1.1083E+02 1.3577E+02 2.0733E+02 8.4096E+01

std 5.6534E-01 7.1506E-01 1.2631E-01 1.8406E-01 1.7612E-01 1.0291E-01 

f13 
ave 1.3006E+03 1.3006E+03 1.1865E+03 1.0192E+03 1.2148E+03 1.9979E+03

std 1.1094E-01 1.5253E-01 6.3924E-02 5.5773E-02 5.2991E-03 6.2082E-02 

f14 
ave 1.4004E+03 1.4004E+03 9.4218E+02 1.1219E+03 2.5971E+02 9.4118E+02

std 1.0639E-01 1.5366E-01 8.4510E-02 6.8426E-02 5.3345E-03 7.6521E-02 

f15 
ave 1.6353E+03 2.0286E+03 1.6569E+02 1.4874E+02 1.5910E+02 1.6023E+02

std 4.9995E+01 4.0222E+02 3.8812E+00 4.6768E+00 3.8753E+00 3.5583E+00

f16 
ave 1.6222E+03 1.6222E+03 1.5002E+03 1.4165E+03 1.7790E+03 1.3866E+03

std 4.2170E-01 5.1725E-01 2.9190E-01 6.5435E-01 6.4365E-01 4.4801E-01 

f17 
ave 1.4557E+07 3.9310E+07 1.8954E+04 1.8389E+04 2.1112E+04 1.6400E+04

std 8.7585E+06 1.6772E+07 1.0117E+04 1.0110E+04 8.0640E+03 7.4718E+03

f18 
ave 6.4198E+06 2.9993E+07 3.6657E+05 4.5792E+05 4.2545E+05 4.7209E+05

std 2.1913E+07 5.3636E+07 1.8446E+06 3.5932E+06 3.8297E+06 1.6075E+06

f19 
ave 1.9772E+03 2.0031E+03 1.2075E+03 6.1665E+02 6.7387E+02 2.0142E+03

std 2.5168E+01 3.4978E+01 1.4342E+01 1.3839E+01 1.2625E+01 1.5203E+01

f20 
ave 3.9538E+04 6.3072E+04 1.8738E+03 2.2161E+03 2.4283E+03 1.8695E+03

std 1.3456E+04 1.8238E+04 1.1249E+03 1.2644E+03 1.1763E+03 1.2064E+03

f21 
ave 5.4741E+06 9.3026E+06 7.8663E+03 9.1266E+03 1.0157E+04 8.7394E+03

std 2.5403E+06 5.1269E+06 5.8327E+03 5.4384E+03 4.0745E+03 4.4298E+03

Continued on next page
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 metrics HHO CEHHO 
DMSDL- 
HHO

ADHHO CLHHEO QC-HHO 

f22 
ave 4.0893E+03 4.1887E+03 3.3122E+03 1.6926E+03 1.2617E+03 3.4122E+03

std 4.1644E+02 4.0711E+02 2.9382E+02 2.7958E+02 3.1192E+02 1.4846E+01

f23 
ave 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f24 
ave 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03

std 1.2144E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f25 
ave 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 2.9068E+03 2.7000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f26 
ave 2.7801E+03 2.7900E+03 1.6534E+03 2.0271E+03 1.6382E+03 1.7901E+03

std 4.0219E+01 3.1478E+01 4.7512E+01 4.7105E+01 5.4754E+01 4.0077E+01

f27 
ave 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f28 
ave 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03

std 4.5936E-13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f29 
ave 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f30 
ave 3.9043E+04 8.2553E+04 2.1650E+03 2.2834E+03 2.5747E+03 2.7625E+03

std 1.2152E+05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Table 8. Comparisons of average ranking for all algorithms on each category of the 50-
dimensional CEC2014 benchmark functions. 

 
Unimodal 
Functions 

Simple 
Multimodal 
Functions 

Hybrid 
Functions 

Composition 
Functions 

All Functions 

HHO 5.00 4.69 4.83 2.00 4.03 

CEHHO 6.00 5.38 5.83 2.25 4.70 

DMSDL-HHO 2.67 3.00 2.17 1.13 2.30 

ADHHO 2.33 2.85 2.33 1.50 2.33 

Continued on next page
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Unimodal 
Functions 

Simple 
Multimodal 
Functions 

Hybrid 
Functions 

Composition 
Functions 

All Functions 

CLHHEO 3.33 2.69 2.83 1.88 2.57 

QC-HHO 1.67 2.38 3.00 1.63 2.23 

As shown in Tables 7 and 8, on the 50-dimensional CEC2014 benchmark functions, top one is 
also QC-HHO that obtains 14 times ranking the first, 5 times ranking the second, 5 times ranking the 
third, 4 times ranking the fourth and 2 time ranking the sixth, and no ranking the fifth, its average 
ranking is 3.23 that is more than this of 30-dimension to some extent. No.2 to No.4 positions are also 
DMSDL-HHO, ADHHO and CLHHEO. The competitiveness of HHO and CEHHO are relatively 
weak in comparison to the others. 

Table 9. Comparisons of all algorithms on the 100-dimensional CEC2014 benchmark functions. 

 Metrics HHO CEHHO 
DMSDL- 
HHO 

AD-HHO CLHHEO QC-HHO 

f1 
ave 2.9532E+08 4.5244E+08 2.2065E-01 2.3133E-01 1.8079E-01 2.0389E-01 

std 5.9293E+07 1.0812E+08 4.0428E-01 4.2021E-01 4.6860E-01 3.8815E-01 

f2 
ave 1.4056E+10 2.3634E+10 4.0215E+01 3.2914E+01 2.4421E+01 2.3105E+01 

std 3.4046E+09 3.1652E+09 1.2254E+02 1.3453E+02 1.0388E+02 1.4275E+02 

f3 
ave 1.5690E+05 1.9603E+05 4.3587E-01 4.0324E-01 1.2412E-01 3.8466E-01 

std 1.8735E+04 3.3780E+04 9.0178E-02 5.3367E-02 8.9880E-02 6.4643E-02 

f4 
ave 2.5476E+03 4.2424E+03 1.3242E+01 1.1286E+01 1.3599E+01 8.2205E+00 

std 4.0800E+02 1.0406E+03 1.2069E+01 8.2972E+00 1.6341E+01 9.8653E+00 

f5 
ave 5.2111E+02 5.2107E+02 5.1999E+02 6.5981E+02 8.4588E+02 5.2108E+02 

std 9.4023E-02 8.6480E-02 3.3689E-06 3.8421E-06 3.1172E-06 3.6386E-06 

f6 
ave 7.4008E+02 7.5001E+02 4.3865E+02 5.1949E+02 5.0975E+02 5.3346E+02 

std 6.5795E+00 6.8974E+00 6.9352E+00 6.4936E+00 7.6965E+00 8.2792E+00 

f7 
ave 8.4469E+02 9.8020E+02 1.2370E+00 1.0825E+00 1.2535E+00 1.1447E+00 

std 3.1984E+01 6.4082E+01 5.4277E-01 5.3984E-01 4.0310E-01 4.8305E-01 

f8 ave 1.5063E+03 1.5608E+03 1.0793E+03 1.0420E+03 1.0178E+03 3.9801E+02 

Continued on next page



7636 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7606−7648. 

 Metrics HHO CEHHO 
DMSDL- 
HHO 

AD-HHO CLHHEO QC-HHO 

f8 std 3.2668E+01 3.0244E+01 5.3529E+01 4.3120E+01 4.8401E+01 4.2877E+01 

f9 
ave 1.8268E+03 1.8914E+03 1.5135E+03 2.6553E+03 3.3141E+02 1.9302E+03 

std 4.5102E+01 4.4228E+01 7.4349E+01 5.5063E+01 6.7256E+01 4.5389E+01 

f10 
ave 1.7487E+04 1.9500E+04 8.3093E+03 1.9446E+03 9.1671E+03 1.8913E+03 

std 1.8860E+03 1.7014E+03 8.5620E+02 5.3573E+02 8.2863E+02 6.3636E+02 

f11 
ave 2.2358E+04 2.3184E+04 1.6779E+04 1.5132E+04 1.8203E+04 2.1426E+04 

std 2.1316E+03 2.7566E+03 1.0591E+03 1.0470E+03 1.8372E+03 9.7728E+02 

f12 
ave 1.2036E+03 1.2038E+03 1.7679E+02 3.4298E+02 1.7758E+02 2.7543E+02 

std 5.1525E-01 4.3964E-01 1.8670E-01 1.7408E-01 3.1450E-01 2.0032E-01 

f13 
ave 1.3006E+03 1.3011E+03 1.2036E+03 6.9965E+02 1.0099E+03 5.4023E+02 

std 7.3180E-02 9.3521E-01 6.1230E-02 1.0670E-01 5.8115E-02 5.5391E-02 

f14 
ave 1.4397E+03 1.4759E+03 1.2487E+03 1.4576E+03 1.3813E+03 1.3914E+03 

std 1.0803E+01 1.0229E+01 3.0977E+00 2.7375E+00 2.7636E+00 2.9033E+00 

f15 
ave 8.0315E+03 3.0563E+04 1.0476E+03 7.5402E+02 1.2366E+03 6.8471E+02 

std 3.4553E+03 1.4417E+04 4.7003E+02 1.7529E+02 5.4379E+02 1.4072E+02 

f16 
ave 1.6461E+03 1.6460E+03 1.5723E+03 4.4884E+02 1.3370E+03 3.3899E+02 

std 5.3948E-01 6.5221E-01 6.7085E+00 6.9260E+00 7.7507E+00 6.7595E+00 

f17 
ave 5.9354E+07 9.1421E+07 4.3274E+04 5.5973E+04 4.1236E+04 5.8317E+04 

std 2.0834E+07 4.7987E+07 8.9080E+03 8.2787E+03 1.0579E+04 1.4855E+04 

f18 
ave 2.5553E+07 4.2986E+07 3.1724E+04 2.6405E+04 3.6162E+04 4.6724E+04 

std 4.0091E+07 2.0825E+07 1.7080E+04 1.8732E+04 2.0411E+04 5.2549E+03 

f19 
ave 2.2215E+03 2.3154E+03 1.2729E+03 1.1020E+03 1.1081E+03 1.4420E+03 

std 8.0641E+01 4.4544E+01 7.0559E+01 5.6971E+01 3.8067E+01 4.3033E+01 

f20 
ave 1.1887E+05 1.7736E+05 1.1082E+04 1.1422E+04 1.2123E+04 9.4987E+03 

std 2.4661E+04 4.7633E+04 4.6661E+03 5.1722E+03 6.0422E+03 6.2754E+03 

Continued on next page
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 Metrics HHO CEHHO 
DMSDL- 
HHO 

AD-HHO CLHHEO QC-HHO 

f21 
ave 1.9119E+07 2.9989E+07 1.1519E+04 9.7435E+03 1.2092E+04 9.7915E+03 

std 6.3314E+06 1.4428E+07 3.0529E+03 4.5540E+03 3.2256E+03 4.0206E+03 

f22 
ave 5.8287E+03 6.5909E+03 3.2905E+03 2.8780E+03 3.1277E+03 3.0934E+03 

std 5.7346E+02 7.5484E+02 4.3025E+02 4.2572E+02 4.9619E+02 4.7700E+02 

f23 
ave 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 2.5000E+03 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f24 
ave 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 

std 7.2310E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f25 
ave 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 2.7000E+03 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f26 
ave 2.8000E+03 2.8000E+03 2.8000E+03 2.8000E+03 2.8000E+03 2.8000E+03 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f27 
ave 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 2.9000E+03 

std 1.3781E-12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f28 
ave 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 3.0000E+03 

std 9.1873E-13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f29 
ave 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f30 
ave 3.2000E+03 3.2000E+03 5.3231E+02 1.3189E+02 4.7449E+02 4.1959E+02 

std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Table 10. Comparisons of average ranking for all algorithms on each category of the 100-
dimensional CEC2014 benchmark functions. 

 
Unimodal 
Functions 

Simple 
Multimodal 
Functions 

Hybrid 
Functions 

Composition 
Functions 

All Functions 

HHO 5.00 4.77 5.00 1.50 3.97 

Continued on next page
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Unimodal 
Functions 

Simple 
Multimodal 
Functions 

Hybrid 
Functions 

Composition 
Functions 

All Functions 

CEHHO 6.00 5.46 6.00 1.50 4.57 

DMSDL-HHO 3.67 2.46 2.67 1.38 2.33 

ADHHO 3.33 2.92 1.67 1.00 2.20 

CLHHEO 1.33 3.08 2.83 1.25 2.37 

QC-HHO 1.67 2.31 2.83 1.13 2.03 

As shown in Tables 9 and 10, on the 100-dimensional CEC2014 benchmark functions, QC-HHO 
obtains 15 times ranking the first, 6 times ranking the second, 3 times ranking the third, 5 times ranking 
the fourth and 1 time ranking the fifth, and no ranking the sixth, its average ranking is 2.03 that is 
better than this of 30 and 50-dimension. Increase of dimension makes QC-HHO take the advantage of 
distribution of initial population effectively. Results of Composition Functions are obviously promoted. 
Higher dimension makes taking long-distance movement of individuals by Nelder-Mead simplex 
method easier, be instrumental in bypass the local optima. As the result, the final solution is better than 
lower-dimensional population. 

According to the analysis aforementioned, QC-HHO has good performance in solution accuracy 
and more reliable scalability than other competitors, be able to get the most times on ranking the first, 
and its average rankings are always the highest in category of all functions. Specifically, QC-HHO 
achieves the highest average ranking on categories of Unimodal Functions and Simple Multimodal 
Function, however, for Hybrid Functions and Composition Functions, QC-HHO is incapable of 
achieving the top one, just position in the second or the third, that proves that QC-HHO has a robust 
exploration and exploitation capability for finding an optimal solution, at the same time, it need to be 
enhanced in future study. 

5.3. Analysis of time consumption 

This section takes analysis about efficiency and time consumption of QC-HHO on classic 
benchmark functions and CEC2014 benchmark functions. The results are shown in Tables 11 and 12 
that correspond with the testing data in Tables 3−10. 

In order to assess the computational complexity of QC-HHO, the mean values of the runtime over 
all runs of each algorithm on classic benchmark functions and 30-dimensional CEC2014 benchmark 
function are recorded in Tables 11 and 12. The numbers in the brackets behind the time values are the 
rank of computational complexity for every function. 
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Table 11. Runtime (seconds) on classic benchmark functions. 

Function 
No. 

HHO CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

F1 0.1711 (1) 0.1898 (4) 0.1979 (5) 0.1994 (6) 0.1855 (3) 0.1851 (2) 

F2 1.0354 (4) 1.0333 (3) 1.0402 (5) 1.0536 (6) 1.0280 (2) 1.0240 (1) 

F3 0.2127 (2) 0.2134 (4) 0.2130 (3) 0.2252 (6) 0.2161 (5) 0.2120 (1) 

F4 0.3470 (1) 0.3969 (5) 0.3489 (3) 0.3998 (6) 0.3732 (4) 0.3483 (2) 

F5 0.3200 (2) 0.3387 (4) 0.3172 (1) 0.3529 (6) 0.3415 (5) 0.3380 (3) 

F6 0.2748 (2) 0.2853 (4) 0.2854 (5) 0.2900 (6) 0.2839 (3) 0.2740 (1) 

F7 0.2775 (2) 0.3013 (5) 0.2782 (3) 0.2967 (4) 0.3072 (6) 0.2770 (1) 

F8 0.8146 (1) 0.8694 (6) 0.8476 (5) 0.8259 (2) 0.8385 (4) 0.8381 (3) 

F9 0.1752 (1) 0.1950 (6) 0.1947 (4) 0.1909 (3) 0.1889 (2) 0.1948 (5) 

F10 0.4427 (1) 0.4727 (5) 0.4679 (3) 0.4762 (6) 0.4427 (1) 0.4720 (4) 

ave 0.4071  0.4296  0.4191  0.4311  0.4206  0.4163  

rank 1 5 3 6 4 2 

The runtime taken by 6 kinds of optimizers to find the solutions for F1–F10 of classic benchmark 
functions are listed in Table 11. As per results in the table, QC-HHO shows a reasonably fast and 
competitive performance in finding the best solutions compared to most of optimizers for uni-modal 
cases. It takes 4 ranking the first, 2 ranking the second, 3 ranking the third, 1 ranking the fourth, 1 rank 
fifth, which is belong to moderate levels. F4 is an exception, all 5 improved HHO take more time than 
HHO, but QC-HHO has relatively good performance. For multi-modal and fixed-dimensional multi-
modal cases F5−F10, the search efficiency of QC-HHO is slightly lower than this of HHO, excluding 
for F7. This result imputes to execution of quantum correction in exploitation phase. Quantum 
correction can take more exact and accurate search to bypass optima, but it is a kind of time-consuming 
operation. On the other side, QC-HHO is superior to most of other 4 improved HHO algorithms in 
most cases. As a whole, although QC-HHO takes less computational cost only for part of uni-modal 
functions, it performs faster than HHO, CEHHO, DMSDL-HHO, ADHHO, CLHHEO. Because of 
quantum correction mechanism and modified Nelder-Mead simplex method, time consumption of QC-
HHO on multi-modal functions is very high. 

Table 12. Runtime (seconds) on the 30-dimensional CEC2014 benchmark functions. 

 HHO CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

f1 2.5712 (1) 3.8191 (6) 3.1869 (4) 3.7112 (5) 2.9971 (3) 2.9932 (2) 

Continued on next page
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 HHO CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

f2 2.2815 (1) 3.3411 (4) 3.0629 (3) 3.6919 (6) 3.5918 (5) 3.0009 (2) 

f3 2.3558 (1) 3.3897 (3) 4.0936 (4) 4.2559 (5) 4.2625 (6) 3.0685 (2) 

f4 2.2709 (1) 3.4221 (6) 3.1982 (3) 3.2618 (4) 3.3069 (5) 3.0166 (2) 

f5 2.6414 (1) 3.8369 (4) 3.4979 (3) 3.9471 (5) 3.9995 (6) 3.4643 (2) 

f6 15.0265 (1) 16.5892 (6) 15.3747 (3) 15.4918 (4) 15.7313 (5) 15.1352 (2) 

f7 2.4981 (1) 3.6428 (3) 3.8173 (5) 3.8433 (6) 3.7917 (4) 3.5909 (2) 

f8 2.3186 (2) 3.4396 (5) 2.1830 (1) 2.3421 (3) 3.5208 (6) 3.3858 (4) 

f9 2.5208 (1) 3.6129 (4) 3.8699 (5) 3.8792 (6) 3.5934 (2) 3.5991 (3) 

f10 2.5110 (1) 3.5748 (5) 3.5401 (4) 3.8220 (6) 3.4978 (2) 3.5326 (3) 

f11 2.7039 (1) 3.8528 (3) 4.1015 (6) 3.9709 (5) 3.9666 (4) 3.8243 (2) 

f12 5.9112 (3) 8.4490 (4) 5.6371 (1) 9.0890 (6) 5.7282 (2) 8.5186 (5) 

f13 2.3970 (1) 3.4216 (4) 4.7038 (5) 5.1111 (6) 3.1425 (2) 3.3602 (3) 

f14 2.3843 (1) 3.4155 (5) 2.4024 (3) 2.4702 (4) 3.4258 (6) 2.3998 (2) 

f15 2.5474 (1) 3.7753 (3) 4.1422 (5) 3.9425 (4) 3.7215 (2) 4.6415 (6) 

f16 2.6729 (3) 4.2012 (5) 2.4023 (2) 4.4965 (6) 2.3619 (1) 2.9426 (4) 

f17 2.6649 (1) 3.9537 (3) 4.2704 (5) 4.3114 (6) 3.9855 (4) 3.8294 (2) 

f18 2.4950 (1) 3.5390 (2) 4.4723 (5) 4.5069 (6) 4.3060 (4) 3.8235 (3) 

f19 4.7688 (1) 7.0241 (4) 7.1387 (5) 7.5082 (6) 6.9847 (2) 7.0149 (3) 

f20 2.5339 (1) 3.6043 (2) 4.3699 (5) 4.4119 (6) 4.2767 (4) 3.7216 (3) 

f21 2.6110 (1) 3.6399 (4) 3.9836 (6) 3.7167 (5) 3.4723 (3) 3.3203 (2) 

f22 2.9906 (1) 4.2424 (4) 4.2634 (5) 4.2992 (6) 4.2040 (3) 4.1862 (2) 

f23 3.6790 (1) 5.3735 (4) 4.3400 (2) 5.4874 (5) 5.6162 (6) 5.2882 (3) 

f24 3.1085 (1) 4.3348 (4) 5.1338 (5) 5.1898 (6) 4.2848 (3) 4.2692 (2) 

f25 3.5959 (1) 5.0386 (2) 6.7478 (6) 5.1213 (3) 5.2570 (5) 5.2076 (4) 

f26 16.3414 (1) 21.0678 (4) 17.5273 (2) 21.8697 (5) 22.3253 (6) 20.3958 (3) 

f27 16.4166 (1) 21.0634 (4) 19.1805 (2) 19.5642 (3) 21.5892 (5) 22.3870 (6) 

f28 4.2274 (1) 5.9362 (2) 8.2345 (6) 6.0785 (3) 6.4602 (4) 8.0234 (5) 

f29 5.6623 (1) 7.8752 (5) 7.5715 (4) 7.9956 (6) 7.4263 (3) 7.3215 (2) 

Continued on next page
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 HHO CEHHO DMSDL-HHO ADHHO CLHHEO QC-HHO 

f30 3.6760 (1) 5.3156 (6) 4.7602 (3) 4.8526 (4) 4.6273 (2) 5.1187 (5) 

Ave 4.3461 5.9264 5.7069 6.0747 5.8485 5.8127 

rank 1 5 2 6 4 3 

Each algorithm’s average runtime results on all functions, and the ranking results according to 
the average runtime are shown in the last two rows. The results in Table 12. Because procedures of 
CEHHO, DMSDL-HHO, ADHHO, CLHHEO and QC-HHO are all more complicated than original 
HHO, the runtime of most cases are longer than these of HHO. Average runtime of DMSDL-HHO 
and QC-HHO are 5.7069 and 5.8127 respectively, the rank of QC-HHO is 3 that is lower than this of 
DMSDL-HHO. However, it is just lower in 2%, at the same time, the mean for QC-HHO on the 30-
dimensional CEC2014 benchmark functions is higher than this DMSDL-HHO in 8%. It is worth of 
exchange 2% of the time cost to 8% of the performance improvement. Furthermore, QC-HHO spend 
more time than other optimizers in Hybrid Functions and Composition Functions, QC-HHO just rank 
third and fourth. Because the functions in these two categories are much more complicated than 
Unimodal Functions and Simple Multimodal Functions, quantum correction as a kind of time-
consuming operation will be executed more frequently. Also, in order to bypass the local optima, 
individual need to move in long distance by modified Nelder-Mead simplex method. These two 
optimization mechanisms are both increase the computational complexity. 

5.4. Result of Wilcoxon rank-sum test 

In order to investigate the significant differences between the results of proposed QC-HHO versus 
other optimizers and provide more accurate and reliable conclusions, Wilcoxon rank-sum test with 5% 
degree is carefully performed. Tables 13 and 14 shows the attained p-values of the Wilcoxon rank-
sum test with 5% significance. 

Table 13. P-values of the Wilcoxon rank-sum test with 5% significance on classic 
benchmark functions. 

 HHO BFO WOA PSO DE CEHHO 
DMSDL- 
HHO 

ADHHO CLHHEO

F1 9.40E-12 9.40E-12 9.40E-12 9.40E-12 9.40E-12 9.40E-12 9.40E-12 9.40E-12 9.40E-12 

F2 2.26E-11 2.26E-11 2.26E-11 2.26E-11 2.26E-11 2.26E-11 2.26E-11 2.26E-11 2.26E-11 

F3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F4 4.91E-11 3.03E-11 1.17E-11 3.02E-11 3.02E-11 4.71E-11 4.79E-11 4.66E-11 4.97E-11 

F5 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 

Continued on next page
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 HHO BFO WOA PSO DE CEHHO 
DMSDL- 
HHO 

ADHHO CLHHEO

F6 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

F7 1.21E-12 1.21E-12 3.63E-09 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

F8 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

F9 3.02E-11 1.07E-07 3.69E-11 1.46E-10 NaN 2.99E-11 2.98E-11 2.92E-11 2.80E-11 

F10 3.69E-11 3.02E-11 9.76E-10 4.62E-10 9.92E-10 3.76E-11 3.77E-11 3.81E-11 3.53E-11 

Table 14. P-values of the Wilcoxon rank-sum test with 5% significance for 30-dimensional 
CEC2014 benchmark functions. 

 HHO CEHHO DMSDL-HHO ADHHO CLHHEO 

f1 1.7705E-08 5.2425E-09 4.6262E-05 1.1551E-03 4.6508E-05 

f2 3.5327E-09 2.7663E-09 4.7363E-05 4.7113E-05 4.3478E-05 

f3 8.7391E-07 6.3286E-06 4.7284E-05 1.1551E-03 4.7527E-05 

f4 1.0382E-06 1.2266E-05 4.8506E-05 4.7113E-05 4.8058E-05 

f5 2.6731E-01 9.0608E-01 2.5354E-01 2.5354E-01 2.5354E-01 

f6 2.9196E-05 4.7397E-05 4.5470E-04 4.9405E-04 4.5264E-04 

f7 2.0927E-07 9.0425E-06 4.7493E-05 6.0475E-05 5.0695E-05 

f8 4.8206E-04 3.0793E-03 3.8648E-05 9.1699E-03 3.8831E-05 

f9 1.6326E-04 2.2196E-04 5.7790E-04 4.6421E-04 5.7327E-04 

f10 2.3410E-05 1.4001E-03 9.3708E-04 6.5117E-03 9.6393E-04 

f11 5.1528E-04 8.9460E-03 5.3768E-05 1.1551E-03 5.3884E-05 

f12 2.8497E-04 5.5144E-04 4.7290E-05 4.7113E-05 4.7754E-05 

f13 7.1943E-03 1.8116E-03 9.5190E-03 4.2925E-01 9.5909E-03 

f14 2.1220E-03 5.1121E-03 5.4286E-05 1.4169E-03 5.5851E-05 

f15 2.6195E-03 2.1976E-04 4.6889E-05 4.7113E-05 4.7320E-05 

f16 1.1162E-04 2.4663E-03 5.6092E-04 4.9265E-04 5.5844E-04 

f17 2.4221E-05 9.3334E-05 4.7033E-05 1.1551E-03 3.8066E-05 

f18 4.1052E-04 4.0984E-02 5.2596E-05 1.5099E-02 5.2665E-05 

Continued on next page
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 HHO CEHHO DMSDL-HHO ADHHO CLHHEO 

f19 1.9152E-03 4.8671E-03 4.9178E-05 4.2925E-04 5.2957E-05 

f20 8.5933E-05 4.4240E-04 4.6667E-05 4.7113E-05 4.6744E-05 

f21 9.6968E-05 1.5948E-03 4.7318E-05 4.7113E-05 5.3494E-05 

f22 1.1347E-04 8.9985E-03 4.6991E-05 4.7113E-05 4.6674E-05 

f23 6.0998E-03 3.6646E-04 1.7514E-02 1.2542E-04 1.8586E-02 

f24 4.7882E-04 2.1092E-05 3.0202E-03 4.7113E-05 3.2206E-03 

f25 3.5328E-03 7.4526E-03 2.4097E-05 9.8325E-05 2.4222E-05 

f26 8.3156E-04 5.4782E-03 2.5678E-02 4.7113E-05 2.5918E-02 

f27 1.1901E-03 1.1267E-02 2.2684E-05 1.5890E-04 2.2524E-05 

f28 1.0185E-03 7.8966E-03 2.6043E-03 4.7113E-05 2.2437E-03 

f29 7.1010E-05 5.6701E-03 1.1766E-02 4.7113E-05 1.0596E-02 

f30 1.4942E-02 4.1432E-02 4.7113E-05 4.7113E-05 5.1618E-05 

5.5. Application for gas leakage source localization 

This section is applied to problem of gas leakage source localization. The results of QC-HHO are 
compared to various modified optimizers proposed in previous studies. 

This problem can be described mathematically as follows: 

Consider: z = [x, y, q] 

Minimize: 
2
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In Eq (5.1), CSensorData
i  is the data of gas concentration collected by the ith sensor. CTryData

i  is the 
data that is predicted by Gaussian puff model in Eqs (5.2) and (5.3). f(z) means the deviation of 
concentration value between predicted by Gaussian puff model and measured by sensor. The smaller 
f(z), the closer to actual gas leakage position. ξ is Eq (5.2) is random error simulated by white 
Gaussian noise with standard deviation of σwge2 . XSensor and YSensor are the location of sensor. 

 

Figure 7. Experimental scene of gas leakage source localization. 

The experimental site is set as Figure 7, there are 9 sensors set in it. Assuming the coordinate of 
gas leakage sources is (2, 3), gas release rate q is 30ml/min. the mean velocity of wind speed is 12.50 
cm/s. The standard deviation σwge of measurement error is set to 0.5, the final positioning results are 
shown in Table 15. 

Table 15. Comparison of result for gas leakage source localization. 

 (x,y) q Optimal Cost (s) 
Position deviation 
(%) 

Release rate 
deviation (%) 

QC-HHO (1.98, 2.97) 30.21 193.49 0.036 0.7 

CLHHEO (2.05, 3.02) 31.04 194.05 0.042 3.47 

ADHHO (1.97, 3.04) 29.56 202.01 0.041 1.47 

DMSDL-HHO (2.02, 2.96) 30.28 200.21 0.05 0.93 

CEHHO (1.93, 2.92) 28.97 196.77 0.092 3.43 

HHO (1.93, 2.92) 28.39 190.21 0.117 5.37 

Although the index of optimal cost of QC-HHO is not outstanding in all optimizer, the deviations 
of position and release rate are excellent and smaller than these of others. Good results are obtained at 
an acceptable cost of time. 
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6. Conclusions 

This paper briefly explains the principles of classic HHO and proposes QC-HHO that includes 5 
aspects of improvement: optimizing the distribution of initial populations by Hénon Chaotic Map, 
promoting local search and population diversity by quantum correction, enhancing global search 
performance by Nelder-Mead simplex method, describing the relationship between individuals by 
group communication factor, improving the selection of strategies in exploitation phase as well as 
occasion of conversion between global and local search by modified escape energy factor E based on 
biological energy consumption. A test was conducted on 10 classic benchmark functions and 30 
CEC2014 benchmark functions to analyze exploration, exploitation, capability of jumping out of local 
optima, and convergence feature of the proposed algorithm. The data and convergence curve show that 
QC-HHO is competitive with other optimization algorithms in finding the theoretical optimal solution, 
it improves the efficiency and robustness of original HHO. On the other hand, the performance of the 
multi-modal benchmark function is not as good as that of uni-modal benchmark function, which needs 
to be further studied. 

For application of indoor gas leakage source localization through wireless sensor networks, the 
experimental data shows that the accuracy of position and gas release rate are excellent, but index of 
time consumption is just in the middle level. As the whole, the performance corresponds to the result 
of testing of benchmark function. Limited by objective conditions and project requirements, QC-HHO 
is not testing in outdoor environment. Also, for multiple leakage source, if distance between leakage 
sources is too close and the diffusion concentration fields are overlapped, there will be large deviation 
in the locating results. Furthermore, quantum correction is helpful for jumping local optima, but it is a 
kind of extremely time-consuming operation, so the time when to execute it should be more accurate. 
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