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Abstract: This study examines an optimal harvesting problem for a periodic n-dimensional food chain
model that is dependent on size structure in a polluted environment. This is closely related to the pro-
tection of biodiversity, as well as the development and utilization of renewable resources. The model
contains state variables representing the density of the ith population, the concentration of toxicants
in the ith population, and the concentration of toxicants in the environment. The well-posedness of
the hybrid system is proved by using the fixed point theorem. The necessary optimality conditions are
derived by using the tangent-normal cone technique in nonlinear functional analysis. The existence
and uniqueness of the optimal control pair are verified via the Ekeland variational principle. The finite
difference scheme and the chasing method are used to approximate the nonnegative T-periodic solution
of the state system corresponding to a given initial datum. Some numerical tests are given to illustrate
that the numerical solution has good periodicity. The objective functional here represents the total
profit obtained from harvesting n species.
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1. Introduction

In today’s world of industrial pollution, toxicants are pervading the air, ecological problems have
become increasingly prominent, and environmental pollution has become a major problem. SARS,
Ebola virus, AIV, HIN1 influenza, and COVID-19 are threatening the ecological balance as well as
the survival of human beings and other creatures. It is necessary to study the effects of toxicants on the
ecosystem. Hallam et al. proposed using a dynamic methodology to examine ecotoxicology in [1-3].
They established a model of the interaction between toxicants and population, and provided sufficient
conditions for the persistence and extinction of a population stressed by a toxicant. Researchers have
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been studying ecotoxicology since the 1980s, and a large amount of literature has been devoted to
problems in the area. Luo et al. [4-6] studied a new age-dependent model of toxicant population in an
environment with a small capacity for toxicants. The threshold between persistence in the mean and
extinction was obtained for each species in a polluted environment [7, 8]. The results of thresholding
in [9] were then extended to a stochastic Lotka—Volterra cooperative model for n-species.

The effects of environmental pollution on biological population, the dynamical behavioral analy-
sis of ecosystem models, and the control problem have attracted the attention of many scholars. A
large number of ecological studies have shown that differences in individual size structures have a
more important effect on population development than those in the age structure. This kind of model
has achieved remarkable results through theory, numerical calculations, and experimental methods.
Among them, the maximum principle and bang-bang structure of the optimal control were established
in [10] for a size-structured forestry model with the benefit of carbon sequestration. In [11-13], several
authors investigated size-structured population models with separable mortality rates. He and Liu [14]
studied an optimal birth control problem for a size-structured population model that takes fertility as
the control variable. Later, they studied a nonlinear egg-juvenile-adult model in which eggs and juve-
niles were structured by age while adults were structured by size [15]. In [16], Liu et al. proposed a
unified size-structured PDE model for the growth of metastatic tumors and provided several numerical
examples. In [17], Mansal et al. studied the dynamics of the predator and the prey in a fishery model
by using the fractional-order derivative. In [18], Thiao et al. discussed the fractional optimal economic
control of a continuous game theory model described by the fractional-order derivative. Optimal har-
vesting problems for a size-structured population model were analyzed in [19,20]. However, most of
these studies have focused on a single species, and few have examined interactions among species,
especially predator-prey models of two species. In addition, due to the influence of seasonal changes
and other factors, the living environment of populations often undergoes periodic changes. Research
on optimal harvesting problems dependent on the model of individual size in a periodic environment
has been reported in [21,22]. In this study, we establish mathematical population models to consider
the size factor to render them reasonable.

Few studies to date have examined optimal control problems of size-dependent population mod-
els and periodic effects in a polluted environment. In order to bridge this gap, we discuss optimal
harvesting for a periodic, n-dimensional food chain model dependent on size structure in a polluted
environment, and detail a simulation and an example based on the population density.

The remainder of this paper is organized as follows: Section 2 describes a population model with
size structure in a polluted environment. Its well-posedness is proved in Section 3 and its optimality
conditions are established in Section 4. In Section 5, we discuss the existence and uniqueness of the
optimal control pair. Section 6 is devoted to approximating the T-periodic solution by a numerical
algorithm. A discussion of the results and the conclusions of this study are provided in Section 7.

2. The basic model

In [1-3], Hallam et al. proposed the following dynamic population model with toxicant effects:

d
5 = x[ro = riCo — fxl,

&0 = kCp — gCy — mCo, (2.1)

=£ = 1 Cpx + g1COX —hCg + u,
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where x = x() is the population biomass at time #; Cy = Cy(?) is the concentration of toxicants in the
organism at time t; Cg = Cg(t) is the concentration of toxicants in the environment of the population
at time ¢. The exogenous rate of input of toxicants into the environment was represented by u. They
investigated the persistence and extinction of a population in a polluted environment.

Luo et al. [23] studied optimal birth control for the following age-dependent n-dimensional food
chain model:

100~ _pyy(a,1)p) — i@, DPA(D)py,

On 1 08— (@, Dpi + Aaia(a Py (1) — Ay (@, Py (D,
T+ = a0+ Aaea@, P (D,

pi(0,1) = Bi(0) [ mi(a, Dpi(a, da,

pi(a,0) = py(a),

Pit) = [" pia.nda, (a,t)€Q,

(2.2)

where Q = (0,a,) X (0, +0), [a;, ay] is the fertility interval. p;(a,t) represents the density of the ith
population of age a at time ¢, and a, is the life expectancy of individuals. The control variable §;(f)
is the average fertility of the ith population. The vitality rate u;(a, t) denotes the average mortality of
the ith population. A;(a, ) is the interaction coeflicient, and m;(a, t) is the ratio of females in the ith
population. Maximum principles for the control problems with free terminal states, infinite horizons
and target sets have been derived.

By combining (2.1) and (2.2), we propose the following periodic, n-dimensional food chain model
with size structure in a polluted environment:

Iy JNCDP) = f, (x, 1) — pay (x, c10(0)p1 — A1 (x, P (E)py — wy(x, D)1,

ot ox
Opi g WD) — f(x, 1) — pi(x, cio(D)p; + Aoia (X, D)Pi-1 (1)
- /121_1()( I)PHI(Z)pl U; (x f)Pu i = 2 3 -.n = L
jg; + QD) = (3, 1) = (X, €0 (0)) P + Aanea (X, )Py (DD = Un(X, 1)y
CIO = klce(l) gICIO(t) mclO(t) (2 3)

dﬂ = —kac.(1) Z Pi(t) + & Z cio(P(1) = hyc.(1) + v(1),

vmnnmﬂ—gmxmmmunm
pi(x,t) = pi(x,t +T),

am=ﬂnmmm (x,1) € O,

where Q = (0,/)XR,,! € R, is the maximal size of an individual in the population, 7 € R, is the period
of evolution of the population. The meanings of the other parameters are as follows: p;(x, ¢): the density
of the ith population of size x at time t; c;o(¢): the concentration of toxicants in the ith population;
c.(1): the concentration of toxicants in the environment; V;(x, f): the growth rate of the ith population;
wi(x, cio(?)), Bi(x, cip(?)): the mortality and fertility rates of the ith population, respectively; A;(x,1):
the interaction coefficient (k = 1,2,...,2n — 2); v(¢): the input rate of exogenous toxicants; P;(¢):
total number of individuals in the ith population; fi(x,?): the immigration rate of the ith population;
u;(x, t): function of the harvesting efforts of the ith population. ki, g, m, hi, k,, and g, are nonnegative
constants. For the sake of convenience, if there is no special description, i = 1,2,...,n. The model
represents the population dynamics, and couples toxicants with the population. Moreover, it is more
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realistic for the fertility and mortality rates to depend on the size and the concentration of toxicants in
an organism.
This paper considers the following objective functional:

max{J(u,v) : u = (u(x, 1), u(x,1),...,u,(x,1),v =v(t), (u,v) € Q)}, 2.4)

where

n T [ 1 n T [ 1 T
J(u,v) = Z f f wi(x, Hui(x, t)p;(x, t)dxds — > Z f f c,-uiz(x, t)dxdr — 3 f Co Vi (0)dt,
—'Jo Jo —'Jo Jo 0

represents the revenue obtained from harvesting less the costs of harvesting and curbing environmental
pollution. The weight function w;(x,?) is the selling price factor of an individual belonging to the ith
population. The positive constants ¢; and ¢, are the cost factors of the ith harvested population and
the curbing of environmental pollution, respectively. Therefore, the objective function represents the
total profit from the harvested populations during period 7. To utilize the resources of the species
over a long time, we must develop them rationally and manage them scientifically. We should not
only consider the maximization of current economic benefits, but should also consider the ecological
balance to ensure the maximization of long-term economic benefits. Our optimal control pair (u*, v*)
in Q satisfies J(u*, v*) = max,,eq J(u, v). The admissible control set €2 is as follows:

Q={u,v) e [L7(Q]" X LF(R;) : 0 < ui(x,t) < Nj,ae. (x,1) € Q, 0 <vy <v(t) <vj,ae.t € R},
where

L7 (Q) ={neL™(Q) :n(x,1) = n(x,t + T),ae. (x,1) € O},

L7 (R) ={neLl™R,):nt)=nt+T),ae.t €€ R,}.

This paper makes the following assumptions:

(A) V;:10,)) x R, — R, are bounded continuous functions, V;(x,7) > 0 and V;(x, 1) = Vi(x,t+ T) for
(x,1) € Q, lim,y; Vi(x,t) = 0, and V;(0,7) = 1 for t € R,. There are Lipschitz constants Ly, such
that

[Vi(x1,1) = Vi(x2, 1)| < Ly,|x1 — x| for x1,x, € [0,1], t € R,.

(A7) 0 < Bi(x, cip(t)) = Bi(x,cio(t + T)) < E,-,Bi are constants.

wi(x, cio()) = po(x) + fi(x, cio(1) a.e. (x, 1) € Q, where g € L, ([0, 1)),
(43)  po(x) = 0 ae. x € [0,0), [ po(x)dx = +o0, 1, € L™(Q),
7%, o) = 0 and T (x, co(1)) = F(x, colt + T)) ace. (x,1) € Q.

(A4) ﬁ € LDi(Q)’O < ﬁ(-x, t) = ﬁ(-x,t+ T),O < Wi(x’ t) < W,‘(X,t + T) < W,‘,O < Ai(x’ t) < /_11" Pl(t) <
My, w;, A; and M,y are constants.

(As) | Bi(x, cjy(1)) = Bilx, (D)) I< Lg | cjy(1) — e (D) |, | pi(x, €3p(0)) — pilx, ¢ (D) 1< L, | ¢jo(8) — c(0) | -
(Ag) g1 < ki < g1 +m,v; < hy. (see [24])
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3. Well-posedness of the state system

This section discusses the existence and uniqueness of the solution to the state system (2.3). For
convenience of research, the following definitions are introduced:
Definition 3.1 For i = 1,2,...,n, the unique solution x = ¢;(t; 9, X;o) of the initial value problem
xX'(t) = Vi(x, 1), x(ty) = x;0 is said to be a characteristic curve of (2.3) through (¢, x;). In particular, let
zi(t) := ¢i(t; 0, 0) be the characteristic curve through (0,0) in the x — ¢ plane.
Definition 3.2 Suppose g(x) is an essentially bounded measurable function on E; let

(Sup Ig(X)I) ;

= inf
lglle = jnf, | sup

0
where the infimum is taken for all zero sets Ej in E that make f(x) a bounded function on E — E,. This
is also denoted by

Ess sup |g(x)|.

xeE

i(t;7,0) = x © ¢;(t;t,x) = 0. The solution of (2.3) is

For any point (x,#) € [0,/) X [0, T] such that x < z;(¢), define the initial time 7 := 7(¢, x); then,

*fir, 7 (1, %)) TIi(x; x, 1)
r,
o Vir, g7 (ry 1, %)) Ti(r; x, 1)

pi(x, 1) = pi(0,t — 77 CI(x; x, 1) + (3.1)

where

{ fs i (r, ol (3 £, %)) + A1 (r, 07 (5 8, X)) Pa (g7 (5 2, X))
IT(s; x,1) = expq— =
0 Vi(r,¢7 (31, x))
i (r, @7 (ry 1, ) + Viu(r, 7 (r3 1, %)) }
+ dry,
Vi(r, ¢7'(r:1, %))

* pi(r, cio(g; (13 1, X)) — Aoica(r, 07 (1 £, X)) Py (@ (73 1, X))
IL;(s; x,1) = exps — =
0 Vi(r,¢; (r; 1, X))
+/12i—l(r9 ()Dl_l (r’ ta x))Pi+l(QDj_l(r; t’ X)) + ui(ra 901_1(}"’ t’ X)) + Vix(ra Qo:l(r’ ta -x))d
’
Vi(r, ;7' (r; 1, x))

i=2,3,....,n—-1,

* ,Un(l", CnO(‘;Dn l(r; t, .X))) - /IZn—Z(r, ‘Pn 1(’,.; t7 -x))Pn—l (‘Pnl(”; ta X))
IL,(s;x,1) = expq—
0 Vu(r, @, (13 8, X))
un(r, 0, (r; 1, %)) + Ve (r, 0, (3 1, X))
+ dry.
Vu(r, ¢, (r5 1, x))

cio(r) = cio(0) exp{—(g1 +m)t} + ki f ce(o) exp{(o — 1)(g1 + m)}do. (3.2)
0
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co(t) =ce<0>exp{— f [kZZPl(mh]
0

i=1
- exp { f ' [IQ D P+ hl} dr} do- (3.3)
4 i=1

Theorem 3.1 Assume that (A;) — (Ae) hold; then, the hybrid system (2.3) has a nonnegative and unique
solution (p(x, 1), p2(x, 1), ..., pa(x, 1), c10(1), C20(2), . . ., Cno(2), c.(t)), such that

(D) (pi(x, 1), cio(t), co(1)) € L=(Q) X L=(0,T) X L*(0, 7).

(iD) 0 < cod) < 1,0 < () < 1LY1 € (0,T), 0< p(x,), ) pilx,0)dx < M,¥(x, 1) € Q.

d 0(o)P;
T}+ fo [gzzco(ﬂ') () + V(o)

i=1

Proof. Without loss of generality, we assume that u;(x,1) = 0. p(x, 1) = (p1(x,1), p2(x,0), ..., pu(x, 1)),
co(t) = (c10(1), c20(2), . . ., Cuo(D)), X = [L7 (R, LY(0,D))]" X [L*(R)]" x L*(R.). Then, the state space is
defined as follows:

[
Y = {(p, co,Ce) € X | pi(x,1) > 0 a.e.in Q, f pix,H)dx <M, 0<cp() <1, 0 < c,(t) < 1.},
0

where
M :=max {B, Tl A, gy explB T + IAC, gy BT explAoiaMoTHIfC, o)
- exp{B;T exp{dai-aMoT}} + exp{aicaMoT I/, Iz i = 2,3, . n} :
Define a mapping
G :Y - X,G(p, co, c.) = (G1(p, co, o), G2(p, o, Ce)s - -+, Gane1 (P, Cos Ce))-
where

Y fi(r, 07 (s 1, %) T x, ¢
Jilr g BLOVILBED gy

Gi s sLe 5t:i09t_ '_1 H[ ;at+ s L=
(o c)COD =piO 1 =2 MR D | oGt o) T

G (P, co, c)(t) =¢;o(0) exp{—(g1 + m)t} + k, fo ce(o) exp{(o —1)(g1 +m)}do,

j=n+1,n+2,...,2n.

n

g ) col@)Pie) +v(e)

i=1

Gt (ps €0, €)1) =ce(0>exp{— f [@Zﬂ(rnhl
0

i=1

-exp{fa[kzzpi(’r)-i'hl
! i=1

t
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By assumption (A;), we have V;(0, ) = 1. Let b;(#) = p:(0, t), then, noting gpl.‘l =t- zl.‘l(x), we have
bl (t) :V1 (O, t)p] (07 t)

[
= f Bi(x, cro(®)pi(x, fdx
0

filr (15, %)) drd
Vi(r, ;' (131, %))

/ / :
=f;,31()6,010(1))1?1(1—Zfl(x))dx+foﬁl(x,clo(f))f . filpi(o;t, x), o)dodx
@' (0:1,%)

X

[ [ X
= f Bi(x, cio())bi(¢; ' (0; 1, x))dx + f Bi(x, Clo(f))f
0 0 0

[ [ t
Sﬁlfbl(t—zfl(x))dx+ﬁlfffl(gol(O';t,x),O')dO'dx

0 0 Jo
SB]j;191(0')do'"',El||fl(',')||Ll(Q)-

It follows from Bellman’s lemma that

bi(®) < BillAiC, g explB, T).

Then we can see that
!
f | Gl(p’ Co, Ce) | (-x’ t)dx
0

: LY fi(n et (s x) T (x;
:f P10, 67(0: 1, )T, (x: x, H)dx + f Si(r. 901_1(r. X)) 1(x', X, t)drdx
0 0 Jo Vi(r,ey (r;t, %) ILi(r; x, 1)

: LY Al et
< f Pp1(0, 0710 1, x))dx + f G l(r ) 4rdx
0 0o Jo Vi(r, e (rit,x)

/ [ t
= f by(t - zl_l)dx + f f filpi(o;t, x), 0)dodx
0 0 Jor(0:1.%)

< fo bi(@)do + 1A o)
< TIfi( N explBiT} + /i, N

Similarly, we have

/
f | Gilp. co.co) | (x, 1)dx
0

<B,T expldai aMoTHI (5 i) exp{B: T expidaiaMoT}} + exp{daaMoTHIfiC, Loy
i=2,3,...,n.

It follows that G is a mapping from Y to Y. We now discuss the compressibility of the mapping G.
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G1(p, co, co)(x, 1) =bi(@7 (051, ))E (7 (03 1, x); x, 1, Pa (1))

[
+ f filpi(ost,x), 0)E (07 x, 1, P»(t))do,
[

710

where
E(r; x,t, Py(t)) = exp {— ftﬂl(%(o'; t,x),ci0(0)) + Ai(@1(0; 1, x), ) Pr(t) + Vi(pi(o; ¢, x), O')dO'} .
Then, we have
fo | | Gi(p', ¢ cl) = Gi(p*, g ) | dx
= fo | | b1y (0s 1, ))E| (97 (03 1, x); x, 1, Py(0)) = b0y (05 2, X)) ET (g, (03 1, %); x, 1, P3(1)) | dx
+ fo | L jl(om | filer(os 1, x), OE(07; x, 1, PY(D) = file1(07s 1, x), O)Ef(07; x, 1, P3(1)) | dordx
< fo | | bi(¢1 (032, %)) = bi(¢; (052, x)) | dx

t

/
+ f b1 (7' (031, x)) | i (@1 (073 1, ), ¢1o(0) — (1 (073 1, %), c1o(0)) | dordx
0 @71 (0:1,%)
!

[
+ f bl (7(0; 1, x)) Ay | P50 — P3(t) | dodx
0

@7 (05t,%)

[ t t
+ f f - filelost,x),0) f | 11 (@1(03 1, %), clo(0) — pi (@1 (03 1, X), ¢3o(07) | drdordx
0 Je (0:1,x) o
[ lz t
+ f f filpi(os;t,x),0) f | P3(t) — P5(¢) | drdodx
0 Jor(0:1.x) o
! t
< f | bi(0) — bi(0) | do + ML, f | clo(0) = ciy(0) | do
0 0
! !
+ L, MT f | ph(x, o) = p3(x, ) | dx + ILfi G, )l f | clo(0) = cio(0) | dor
0 0
[
+IT|fi G, )Mo f | Pé(X, o) - P%(X, o) | dx
0
_ t /
<Bi f f | p1(x, o) — pi(x, o) | dxdo
0 0
!
# (ML, + LGN + ML [ el = o | do
0

[
+ [UMT +1TIf G )| f | Pa(x, o) = pa(x, o) | dx.
0
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Similarly, we have
[
f | Gi(p', s ) = Gip?, ¢, ¢7) | dx
0
_ _ t [
<exp {dy2MT | {ﬁi f f | pi(x,0) = p(x,0) | dxdor
0 JO
t
+ [ ML, + ILIFC. o) + MLg| f | ch(o) = (o) | dor
0

[
+ | A2 MT + [T £, .)||L1(Q)]f | Pl (x,0) = pry(x,0) | dx} ,i=23,...,n-1.
0

!
f | Gn(pla C(l), Ci) - Gn(pza Cé’ Cg) | dx
0
_ _ t [
<exp {[Tou2MoT | {ﬁn f f | P ) = P2, o) | dxdor
0 Jo
t
+ | ML, + ILAFC g + MLg| f | clo(o) = () | da}.
0

Thus, we have
fIG(p co» €)= Gi(p*, ¢§, ¢2) | dx,

<M, (Zf f | pi(x,0) — p(x,0) | dxdo +f | ciy(0) — e (o) | dO‘] (3.4)
i=1

where
My = max {B,, [1+ L, MT + ITI|f (. )l )| Br exp {MoT | ...
|1+ 20 sMT + ITNFC, i) | By oxp {Aan s MoT ), | ML, + L £C, )llio) + MLg )
By (3.2) and (3.3), we obtain
| Gi(p',cprc) —=Gi(p*, 5,1 (1) (j=n+1,n+2,...,2n)
<M, fo t | cl(o) — cX(0) | do, (3.5)
where M, = k.
| G2n+1(Pl, C(l)» Ci) - G2n+1(1?2’ Cé, Cg) | ()

<M; (; fo t fo l | pl(x,0) = pX(x,0) | dxdo + fo t | cly(0) — ci(or) | do |, (3.6)

where M3 = max{k, + g, + kol T + kogo MT, g, M}.
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We now show that the mapping G has a unique fixed point. Due to the periodicity of elements in
the set Y, we consider the case [0, T'] only. We define an equivalent norm in L*(0, T") as follows:

n / n
Ip. co. co)ll. = Ess sup ™ {Z f | piCe ) [ dx+ 3" i) |+ | celr) |},
i=1 Y0 i=1

t€[0,T]

where A > 0 is large enough. Then, we have

”G(pl’ C(l)’ C;) - G(pza c(2)9 ci)”x

i
<M, Ess sup e f Z f | pi(x,0) — pi(x,0) | dx

t€[0,T]

+ ) (@) = chi@) |+ k(@) - (o) |}da
i=1

t n !
<M Ess sup e f el e Z f | pi(x,0) = pi(x,0) | dx
0 —Jo

t€[0,T]
+ )l el(@) = ch(@) |+ el(@) = () |]}da
i=1

!
<My|l(p" — p*,cg — cb, ! — cD|.Ess sup e"l’f e do
€10, 0

M, 1 2 1 2 1 2
STII(p =D, ¢y— €y Co — €l

where M, = max{M,, M,, M5}. Thus, choosing 4 > M, yields G as a strict contraction on the space

of (Y, - ||.). By the Banach fixed point theory, G has a unique fixed point, which is the solution of the
system (2.3).

Theorem 3.2 If T is small enough, then there are constants K;(7") with limy_o K;(T) > 0,j = 1,2,
such that

n n
1 2 1 2 1 2
Z ||P,- —Pi ||L°°(0,T;L1(O,l)) + Z ||Cl-0 - C,~0||L°°(0,T) + ||Ce - Ce”L""(O,T)
i=1 i=1

n
1 2 1 2
<K\(T)T (Z bt} = 1l rarom + IV = v ||Lw(o,n] : (3.7)

i=1

n n
1 2 1 2 1 2
Z lp; — p; ||L1(Q) + Z llcio — ciolleior + lle, = c2llio.r)
i=1 i=1

<K)(T)T (Z ||M,-1 - u,-2||L1(Q) + ||V1 - VZ”LI(O,T)J- (3.8)

i=1

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7481-7503.
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Proof. Let (p/, cé, ¢!y be the solution of (2.3) corresponding to (u/,v/), j = 1,2, it follows from (3.1)

that
[
f | pi(x, 1) — pi(x, 1) | dx
0

[
= f | b1 (7" (0; £, )T} (x; x, 1) — by ' (0; £, X)) (x; x, £) | dx
0

il it ) IGGax, ) filn g (n1,0) TR x, 1)

v

[
< f | b1(9;'(0; 2, %)) — by (7' (0; 1, x)) | dx
0

Vit (rt, ) T (s x, ) Vi @7 (s £, ) T (s x, 1)

) [ t
- f b1 (7' (01, x)) f | m(gol(r;t,x),do(r))—ul(sol(r;t,x),C?o(r))Idrldx
0

LV o7 (031,%)

[ Bl
+ f bi(¢;" (051, x)) f |/ll(sol(r;t,x),r)(Pé(t)—Pﬁ(t))Idr]dx
0

[ S (01.%)

[ [ t
+ f b1 (¢;'(0; ¢, x)) f |u}(<p1(r;r,x),r)—u$(<p1(r;r,x),r)|dr]dx
0

[ S (0:1.%)

[t Bl
+ f f filei(o31,0,0) f |u1(¢1<a;r,x),c}0<a))—mw](a;r,x),ciow))|dr]dadx
0 w[l(O;t,x) LV o

[ t i
+ f f filgi(ost, %), 0) f | L1 (0751, ), )Py (1) = PA(0) | dr] dodx
0 gol’l(O;t,x) Vo

[ t [t
+ f f filgi(o3 1, %), 0) f | ui (@103 1, %), 0) = ui(pi(03 1, %), 0) | dr] dodx
0 (pl‘l(O;t,x) Vo

! !
Sf | bi(O') - b%(O') | dx +,81MLﬂf | CiO(O') - ch(O') | do
0 0
!
+,31/11MTf | py(x,0) = py(x,0) | dx
0

t [
+,5le f | ui(gpl(a; t,x),0) — u?(«pl(a; t,x),0) | dxdo
0 Jo

t [
FILAAC Mo f | elo(0) = o) | dor + LTI G Mo f | A o) — P20 | dx
0 0

t [
+11AC, -)Ilu(@f f | uy(p1(03 1, X), &) — Ui (1 (073 1, %), 0) | dxdor
0 0

t [ [
<B fo fo | pi(x,0) = pi(x,0) | dxdo + L, [MT + IT|| i, L] fo | p5(x,0) = p5(x,0) | dx

!
+ [,31ML;1 + L /G )Mo + MLﬁ]f | c1o(0) = cip(0) | dor
0

t /
+[BM + A o] fo fo | 1y (p1(03 1, %), 0) = ui (1 (073, %), 0) | dxdor. (3.9)
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Similarly, we can see that
/
f | pi(x.0) = pie,0) | dx
0
_ _ t [
<B; exp { L2 MoT f f | pl(x,0) = p}(x,0) | dxdor
0 0
!
+ exp (Ao MoT | [BML, + ILI£C, o) + MLg| f | ch(e) = A (o) | dor
0
/
+ A;exp {/lzi—zMoT} [MT + IT|fi(-, )l o)] f | pioy(x,0) = piyy(x,00) | dx
0
t [
+exp {2 MoT | [BM + 11, M) f f | ui (@i 1, %), 0) = Ui (i3 1, %), 0) | dxdor,
0 0
i=2,3,...,n—1. (3.10)
[
f | Pa(x, ) = p(x,0) | dx
0
_ _ t [
< B, exp {Aa, Mo T} f f | pa(x,0) = pa(x,0) | dxdo
0 JO
f
+ exp {Ap 2MoT }|B, ML, + IL ||, Nl o) + MLg| f | cho(0) = (o) | dor
0

! /
+ exp {LuaMoT} [B,M + £, o) fo fo | (a3 1, %), ) = Uu(pu(07: 1, x), ) | dxdor

(3.11)
From (3.2) and (3.3), we obtain
!
| cjo(t) — cip(t) 1< Ky f | cb(s) = c2(s) | ds. (3.12)
0
n [ t
)= ) st + g2 4 T +kogoMD) Y [ [ 1plxs) = pice ) s
i=1 Y0 VO
n ! !
+ gzMZ f | cly(s) — ch(s) | ds + f | vi(s) = v3(s) | ds. (3.13)
i=1 Y0 0

Finally, from (3.9)—(3.13), we can deduce (3.7), where K;(T) is a constant depending on the bounds of
parameters in (2.3). In addition, combined with (3.9)—(3.13), there exists K,(7), which enables us to
obtain (3.8) of the standard norm in L' space.

4. Optimality conditions

In this section, we employ tangent-normal cone techniques in nonlinear functional analysis to de-
duce the necessary conditions for the optimal control pair.
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Theorem 4.1 If («*,v*) is an optimal control pair and (p*, ¢, ¢;) is the corresponding optimal state,
then

i(X, 1) — &i(x, ! ! , 1
ﬁw0=ﬁku) ﬂXHn@)y @1
Ci
a1 (
V(0 = Fu (52 l )) , (42)
Cn+l
in which ¥; are given by
0, n <0,
Fin) =3 n, 0<n<Nj, j=12,...,n+1, 4.3)
Nj, n> N,
and (&1, &, ...,&n41) 1s the solution of the following adjoint system corresponding to (u*, v*):
G+ ViGE = [ cj(0) + U P (@) + Ui 1€y + Tkaci (1) = ga650(D1énner = E1(0, DB (x, (1)
!
— [, (p3én)(x, Ddx + wyus,
G+ Vige = [ix, (1) = Do Py (D) + Doyt P,y () + w718 + [ac (1) = g2¢(D1Eanen
= &i(0,DBi(x, ¢ (D) + fo (Aicapi_ &ic1 — Aipi Eiv) (X, Ddx + wig,
i=2,3,...n—-1,
eV, 5 = (3, o0 — 2Py (1) + 116 + () - 2Dl 4d)

[
— &0, DB(x, (D) + [ (Aan_3 P Enc1)(x, Ddx + Wi,
) [ Oui(x,c % . ;) (X, X
% = b i pi&idt + (g1 + m)&usi — 2P (D211 — &0, t)f _5(0600(')) “dx,

Oco

el = _p, Z Eivn + [kz X P0)+h }fznw

&l =0, fz(x 1 = &l(x, f+T)
E(T)=0, j=n+1n+2,....2n+1

Proof. The existence of a unique, bounded solution to the system (4.4) can be treated in the same
manner as that for (2.3). For any given (v{,v,) € To(u*,v*) (the tangent cone of Q at (u*,v")), v; =
(Y11, V215 - - -» Va1), such that (u* + evy,v* + &v,) € Q, where € > 0 is small enough. Then, from
J(W* +ev, v +evy) < J(',v'), we derive

n T ! n T / T
1 1
Z f f wi(u; + evi)pidxdt — = Z f f ci(u; + evi) dxds — = f Car1 (V' + &v2)*dt
=1 Jo 0 2 4 2 0
n T
< wiu; prdxdr — = f f il *dxdt — —f Cpe1V" dt
A > .

that is
Zf f will! Pi ’d dt+Zf fwv,lpldxdt

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7481-7503.
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n T / T n T [ T
< Z f f ciu;vipdxde + f Cpi1VVodr + Z f f cl-gviz1 dxdr + f cn+1sv§dt,
—' Jo Jo 0 —' Jo Jo 0

as g — 0%,

n T / n T [ T
Z f f wi(u;z; + v p;)dxdr — Z f f ciu; vipdxdt — f Cps1Vyodr <0, 4.5)
i=1 YO0 JO =1 YO0 Jo 0

where
1 & * 1 &£ ¥ 1 E *
;(Pi -pi) = Z, ;(C,-o - Cio) — Zitn, ;(Ce —C,) = Zom+1, as € — 0.

By Theorem 3.2 we see that z;, 25, . . ., 22,41 makes sense ( [25], p.18). (p®, ¢f, ¢f) is the state corre-
sponding to (u* + evy, v* + &v,). It follows from (2.3) that (z;, 2, . . ., Z24+1) satisfies

i dz O (x,cy () *
S+ Vi = =[x, ¢y () + 4 P5(0) + Vie + ujlzy — LW Z(0)p) lgc—l(])op1Zn+l VP,

(9 Y a L %k *
Z + Vl 51 = [/'l (.X CLO(t)) AZl 2P (t) + /121 1P,+1(t) + Vix + I/li]Zi + AZi—ZZz—l(t)pi
6#:()5 Co®) * .
_/121 l(x I)ZH-l(t)p - 6600 pZn+i_Vi1Pl-, l :293"'-n_ 15

0. 0. * * *

n( = —Mn n0 2n-21", 4 nx ndln 2n—-24n-1 n
T+ V5 [t (x, Cn0(D) = Aopa P (1) + Vi + U312 + AopnZy 1 (t)p

(9[1,1(x Cn()(t)) *
T a0, Pnin T VaDp»

dznsi

da = kizons1 — g1Zn+i — MZp+is (4.6)

d% = —kyc,(2) Z Zi(t) + & Z(c,oZ (®) + 2p4iP; (1) — [kz Y P+ Iy

Vi(0, )20, 1) = fo Bilx, cy()zidx + [/ f’“f;j;“” P Znsidx,

Zz(x, t) - Zz(-xa I+ T)’ Zl’l+l(0) = Z2n+1(0)
Pit) = [ pix,ndx, Z(@) = [ z(x, ndx.

We multiply the first five equations in (4.6) by &(i = 1,2,...,2n + 1) respectively, and integrate on Q
and (0, 7). By using (4.4), we have

n T ] n T [ T
Z f f Wibt:fZidth = - Z f f Vilfip;ﬁd)(fdl + f V2§2n+1dt. “4.7)
—Jo Jo —Jo Jo 0

Substituting (4.7) and (4.5) gives

n T / T
Z f f [(wi = €Dp; — ciu;lvadxds + f (=Car1V" + & )r2dr <0,
i-1 YO0 0 0

for any (vi,v2) € Ta(u",v"). Consequently, the structure of normal cone tells us that [(w; — &)p] —
ciut}, —Cp1V* + Expp1] € No(u®,v"), (the normal cone of Q at (1", v*)), which gives the desired result.

2n+1 T V2,

Theorem 4.2 If T is small enough, then there is a constant K3 such that

lef — Elli=ig + Z I} = Elsor) + 1301 = Epiilli=o.r)

g=n+1

<Ky(T)T Z e} = 1oy + IV = VIl | (4.8)
i=1

The proof process of Theorem 4.2 is similar to that of Theorem 3.2, and is omitted here.
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5. Existence of optimal control pair

In order to show that there exists a unique optimal control pair by means of the Ekeland variational
principle, we embed the functional J(u, v) into [L'(Q)]" x L'(0, T). We define

~ J(u,v), (u,v)eQ,
Ju,v) = .

—00, otherwise.
Lemma 5.1( [6], Lemma 4.1) J(u, v) is upper semi-continuous in [L'(Q)]" X L'(0, T).
Theorem 5.1 If 7 is sufficiently small, there exists one and only one optimal control pair (u*, v*), which
is in the feedback, and is determined by (4.1)—(4.4) and (2.3), where C; and C, are the supremum of
Ipiland |;],i = 1,2,...,n,j=1,2,...,2n + 1, respectively.

Proof. Define the mapping L : Q — Q as follows:

-E(M, V) = T((Wl _ §1)p1 R (W2 — 62)p2’ e (W’l - é‘:n)pn’ §2n+1)
€1 €2 Cn Cn+l
- (ﬁ ((Wl —&0p ) 7 ((Wz - a)pz) . ((wn - @)m) . (fzn+1)) |
“ 2 Cn Cn+l
where (p, co, ¢.) and (£1, &, - . ., £2441) are the state and adjoint state, respectively, corresponding to the

control (u,v). We show that £ admits a unique fixed point, which maximizes the functional J.
From Lemma 5.1 and the Ekeland variational principle ( [26], p.180), for any given € > 0, there
exists (u?,v%) € Q c [L'(Q)]" x L'(0, T) such that

f(u‘g, V%) > sup f(u, V) — &, (5.1
(U.1)eQ
JWf,v) 2 sup {7(u, V) = \/E(Z 7 = uillprg) + IV° = VIlle)]}, (52)
(u,v)eQ =1

Thus, the perturbed functional
n
To(u,v) = J(u,v) - ‘/E[Z e = el + Iv* = v||L1(o,T>],
i=1
attains its supremum at (1°, v®). Then, we argue as in Theorem 4.1:

(W = &DpT + \/59‘19) 7 ((Wz — &5 + \/595]

(6]

W, v) = Lw®,v) = (7’1 [

6}

W — EPE + \[ebf e+ Vet
ﬂ((w é:n)pn \/E n),?;1+] (§2n+1 \/_ n+l ]), (5'3)
Cn Cn+l
where (p®, ¢, cf) and (£7,&5, ..., &5 ) are the state and adjoint state, respcetively, corresponding to the

control (u®,v?), 6,65,...,6; € L(Q),and 6, € L~(0,T) with | 67 [< 1,i=1,2,...,n+ 1.
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First, we show that £ has only one fixed point. Let (p/, cé, cg) and (fj , fﬁ, ... ,%n .1) be the state and
adjoint state corresponding to the control (#/,v/), j = 1,2. By (3.7) and (4.8), we have

||.£(l/l1 s vl) - .[:(M2, vz)”oo

:i %((Wi_fil)pil)_ﬁ((wi_‘f,'z)p?) s, (éh)_?_w1 (-fé,,_ﬂ)
e} Ci Ci L=(0) Cn+l Cnt1 Jlz=(0,1)
N |- €Dp! o= ghp) ([
P Ci Ci L=(0) Cn+1 Cn+l L2(0,T)
B ol p,) 1€ 1 (p} = pD) . | p; 1 (& &) (= -~ &
= Ci Ci Ci L>(Q) Cn+l L2(0.7T)

n 1 . n
<T (Z —(WiKi + C2Ky + C1K3) + K3) : (Z lu; — ullr=o) + V' — v2||Lm(O,T)],

o ¢ i=1
Clearly, L is a contraction if 7T is sufficiently small. Hence, £ has a unique fixed point (u*, v*).
Next, we prove (u°,v°) — (u*,v*) as € — 0*. The relations (4.1), (4.2), and (5.3) lead to
LL(", v®) = W, Voo
:H(,«.-1 (M)%(M)f(@) T (le))

C1 (6] n Cn+1

_(T]((m—cﬁ)pf . VEQT),%[(WZ ‘C@pg N \/593),...,

1 C1 2 (&)

T ((Wn gg)pn \/_98), 7_~n+1 (§§n+l + \/Egiﬂ )]

Cn+1 Cn+1

Vl Cl’l

i
& & Vet
+ 7:n+1 ( 2n+1 | 7:n+l 2n+1 + n+1
Cn+l Cn+l Cn+l L=(0,T)
(Wi — 'ff)Pf _ (Wi — gtg)ng _ \/;:915 + §§n+1 _ §§n+1 _ \/Eeiﬂ
Ci Ci L™(Q) Cn+l Cn+l Cn+l L2(0,T)
n
1167 Cx, )] 167 (Dllz=@.r
< \/EZ i (Q) " \/— +1 0.7)
; Ci Cn+l

<\/_Z—
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it is easy to derive that

G, v) = (%, vO)lloo
<IIL(u",v*) = LW, V)l + I1Lu°, V) = @, V)l
n+1

- 1 —_ - k E 3k & 1
<T Z ;(WiKl + K + C1K3) + K3) . (; ey — ||y + IV — v ||L°"(O,T)] + \/El:z] o

i=1 !
So, if T is small enough, the following result holds:

n+1

=

n
Z i = w0y + IV = VVll=or) < p '
i=1 1-T (Z %(WJG + K, + C1K3) + KS)
i=1 "

which gives the desired result. .
Finally, passing to the limit &£ — 0" in the inequality of (5.2) and using Lemma 5.1 yield J(u", v*) >
lim supy, ,cq J(#, v), which finishes the proof.

6. Numerical approximation

6.1. Difference scheme

Our goal is to obtain a numerical approximation for the nonnegative T-periodic solution of the
system (2.3). We discuss the problem of evolution of a single species in a polluted environment.
Suppose the computational domain O = [0,1] x [0, T] is divided into an J x N mesh with the spatial
step size h = § = 0.01 in the x direction and time step size 7 = = 0.03. The grid points (x;, #,,) are
defined by

=2~

xj=jh, j=0,1,2,...,J;
t,=nt, n=0,1,2,...,N,
where J and N are two integers. The notation p’; denotes the solution p(jh,nt) of the difference

equation.
Based on the above analysis, the finite difference scheme of system (2.3) can be written as follows:

n

P;

n—1

- D) =0,
+V

T h

where j =1,2,...,/J;n=1,2,...,N. It follows from (6.1) that

+Vipi+upi - fi =0, (6.1)

—AVPI + L+ AV + (Ve + w]p' = pit + 17, (6.2)

where 4 = 7.
The boundary and initial conditions can be discretized as

P) = pojs

! 6.3
o= X Bjpih. (©)
f=
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From (6.2) and (6.3), we have

AP" = P! + 7F, (6.4)
where
[ 1+ AV +17(V,+u) — AVBh —AVBh ... —AVpBh -AVph
-V 1+AV+1(V,y+
A= ~

AV 1 +AV+1(V, +p)
A%

P =l ps.. 0D F=(fL .

Note that A is an upper triangular matrix, so the nonlinear algebraic equation (6.4) have solutions.

6.2. Stability and convergence

We first prove the stability of the implicit difference scheme (6.1) by using the Fourier method. We
suppose that f = 0. The domain of the function defined on the grid point is extended according to the
usual method, that is, when x € (x; — %, Xj+ %), pl(x) = p;?; then, we have

—AVp' (x = h) + [1 + AV + o(V, + w)]p"(x) = p" '(x),x € R. (6.5)
Taking the Fourier transform of both sides of (6.5), we obtain
— VU (k)e ™™ + [1 + AV + t(V, + 10" (k) = U (k). (6.6)

By (6.6), we get
0n—l(k)

U" (k) = . ’
(k) —AVekh + 1 + 2V + 7(V, +,U)

Thus, the growth factor is as follows:

1

G(t,k) = :

= e m T r v, v 0
1
1+ AV(l — coskh) + (Vy + y) + AVisinkh’

Then, we have

2 1

IG(r, b)I* = —
[1+ AV(1 = coskh) + T(V, + w)]? + A2V2sin” kh

1
-2 kh 2 kh 2 khy"
[1+24Vsin™ 3 + 7(V, + w)]* + 442V?sin” 7 (1 - sin” )

If Vi, + u > 0, there is |G(t, k)| < 1, that is, the von Neumann condition is satisfied, the difference
scheme (6.1) is stable under condition V, + u > 0.

Next, we analyze the convergence of the difference scheme (6.1). Note that the difference scheme
is compatible, we thus use the Lax equivalence theorem. The difference scheme must be convergent
and have first-order accuracy.
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6.3. Numerical test

We chose the following parameters:

B(x, cot)) = 100x%(1 — x)(1 + sin(mx)) [sin Z2|,
p(x, co(t) = e (1 = x)714(2 + cos Z2D),

Vit,x) =1-x, f(x,t) =2+ (1 + x) sin(%),
po(x)=e€", u(x,t)=0, x=1, T = %, T =3.

l """ l."' ,,'l',"n, I" 'l".'i,. 0,.:0, "'.\'0,'.

A

N
o

fertility rate
& &

= o [$)]

size 0 o . time

Figure 1. Fertility rate of the population.

mortality rate
3 8 ]

[y
o

1
size 0 o0 time

Figure 2. Mortality rate of the population.
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In this paper, we used the backward difference scheme and chasing method, and (6.4) was solved
through programming. The fertility rate, mortality rate, and immigration rate were T-periodic and were
all greater than zero, which is consistent with the assumptions. We considered 7 = % Their graphs
are given in Figures 1-3, respectively. The fertility rate was the highest when the size was half and
the mortality rate was the highest when the size was the maximum, which conformed to the empirical

situation. Therefore, the selection of parameters 5, i, and f was reasonable.
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Figure 3. Immigration rate of the population.
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Figure 4. Numerical solution of the system.
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The graph of the numerical solution p is given in Figure 4. Over time, solution p showed T-periodic
changes. We take the numerical solution of system (2.3), corresponding to an arbitrary positive initial
datum py, on some interval [kT, (k + 1)T], where k is large enough. We can then get the periodic
solution of system (2.3) by extending the numerical solution p. Over time, the density of the popula-
tion increased first and then decreased. With respect to size, the density of the population gradually
decreased, and finally tended to be stable. The maximum value was reached at x = 0. On such an
interval with a sufficiently large k, the numerical solution was already stable. During computation we
found that any positive initial datum p, was appropriate for use.

7. Discussion and conclusions

In this paper, we considered the problem of optimal harvesting for a periodic n-dimensional food
chain model dependent on the size structure, that combined toxicants with the population. In the fore-
going, we have discussed the existence and uniqueness of a nonnegative solution of the state system.
The necessary optimality conditions were provided, and the existence of the optimal policy was inves-
tigated. Some numerical results were finally given. The results implied that the solution of (2.3) always
maintains the pattern of increasing periodically, and any positive initial datum p, is appropriate. From
Theorem 4.1, the optimal strategy had a bang-bang structure and provided threshold conditions for the
optimal control problems (2.3) and (2.4). The bang-bang structure of solutions is much more common
in optimal population management.

We now comment on the differences between the methods and results of this paper as well as
closely related work. The existence of the optimal strategy was proved by compactness and the ex-
treme sequence in [13]. In this paper, the corresponding problem was treated by using Ekeland vari-
ational principle. The authors [10] established the maximum principle and bang-bang structure for
optimal control but paid no attention to existence and uniqueness results. The existence of the opti-
mal harvesting rate in the harvesting problem was only given in [11]. Furthermore, if Vi(x,7) = 1 for
0=(0,)xR,,i=1,2...,n,the state system degenerates into an age-structured model, and our results
cover the corresponding results [4—6].

Note that the individual price factor w;(x,7) plays an important role in the structure of the op-
timal controller (4.1). However, as we do not have a clear biological meaning for the solutions
& =1,2,...,2n + 1) of the adjoint system (4.4), it is difficult to give a precise explanation of the
threshold conditions (4.1) and (4.2). In specific applications, the optimal population density and op-
timal policy are calculated by combining the state system and the adjoint system. In this way, we
enable the objective functional (2.4) to maximize the total profit during period 7". This is a challenging
problem, and future work in the area should address it. In addition, inspired by [17, 18], we intend to
consider the problem of fractional optimal control problem of the population model in future research.
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