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Abstract: Several biometric privacy-enhancing techniques have been appraised to protect face image 

privacy. However, a face privacy protection algorithm is usually designed for a specific face 

recognition algorithm. When the structure or threshold of the face recognition algorithm is fine-tuned, 

the protection algorithm may be invalid. It will cause the network bloated and make the image 

distortion target multiple FRAs through the existing technology simultaneously. To address this 

problem, a fusion technology is developed to cope with the changeable face recognition algorithms 

via an image perturbation method. The image perturbation is performed by using a GAN-improved 

algorithm including generator, nozzles and validator, referred to as the Adversarial Fusion algorithm. 

A nozzle structure is proposed to replace the discriminator. Paralleling multiple face recognition 

algorithms on the nozzle can improve the compatibility of the generated image. Next, a validator is 

added to the training network, which takes part in the inverse back coupling of the generator. This 

component can make the generated graphics have no impact on human vision. Furthermore, the group 

hunting theory is quoted to make the network stable and up to 4.8 times faster than other models in 

training. The experimental results show that the Adversarial Fusion algorithm can not only change the 

image feature distribution by over 42% but also deal with at least 5 commercial face recognition 

algorithms at the same time. 

Keywords: privacy protection; neural network; facial recognition; adversarial attacks; decoding; 

transferability; algorithm fusion 

 

1. Introduction  

The risk of privacy leakage is often encountered in the exchange of medical data, especially 
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between institutions. Because auxiliary algorithms used by institutions come from different 

manufacturers, some data analysis tools even need to be connected to the Internet. Commercial 

biometric estimators with face recognition algorithms (FRAs) may steal facial data to a third party 

during transmission. Biometric Privacy-Enhancing Techniques (PETs) have been invented, but none 

can cope with all situations. There are three classifications to hit the target. One is parts shelter. The 

characteristic is that the human can see the local content, and the information of the specific 

information is hidden. Additional computational overhead is required while the image is restored, e.g., 

pixelation and blurring. Another is in pixels recoding. Anyone can hardly recognize the content in the 

image unless they know the cipher. For this reason, a password is required whenever the image is used, 

e.g., chaos [1] or RCDP [2] method. And the most suitable for daily use is cloak perturbation. It can 

not only hide specific features but also be recognizable to humans, e.g., Fawkes [3] and federated 

privacy [4]. The first two categories are almost impeccable, but in most cases, face images still need 

some readability in daily research, e.g., medical institutions exchange toddler images to record the 

relationship between eye distance and height. In contrast, the desensitization of children’s images 

deserves more attention than the research itself. However, if the face image is hidden roughly, it may 

bring inconvenience to doctors to identify patients.  

Table 1. Accuracy of famous FRAs on difficult benchmarks. “*” indicates that the data is 

quoted from the original paper. 

FRA name Year 
Training 

dataset 

Accuracy (%)   

LFW2 IJB-C AndyLau CFP-FP iQIYI-VID 

Fisherface [6] 1936 -- 93.5 [7] -- 93.6 -- -- 
Phenogram [8] 1987 -- 97.6 -- 98.1 -- -- 
Eigenface [9] 1991 -- 64-96* -- 95.56 -- -- 
LBP [10,11] 1996 -- 87.62 -- 88.12 -- -- 
Color 
Segmentation [12] 

2001 -- 96.27 -- 93.47 -- -- 

DeepFace [13] 2014 LFW1 97.35* 79.88–90.49 98.81 97.26 -- 
DeepID [14] 2014 LFW1 97.45 79.91–90.88 98.81 95.08 -- 
DeepID2 [15] 2014 LFW1 99.15 79.94–90.98 98.81 95.31 -- 
DeepID2+ [16] 2015 LFW1 99.47 81.36–90.96 98.98 95.43 97.52 
FaceNet [17] 2015 LFW1 99.63* 84.76–90.28 91.17 -- -- 
Baidu [18] 2015 -- 99.85 98.21–98.66 99.98 99.71 98.11 
Face++ [19] 2016 -- 99.6–99.8* 90.73–96.12 99.96 99.74 98.09 
SphereFace [20] 2017 LFW1 99.17–99.42 73.58–93.77 97.89 -- -- 
Cosface [21] 2018 YTF/LFW1 99.33–99.51 89.25–95.96 99.27 -- -- 
ArcFace [22] 2018 -- 99.41–99.5* 88.5–95.74 99.94 98.27 98.2 

PyramidBox [23] 2018 
WIDER 
FACE 

88.7–95.6 79.51–89.41 96.17 97.11 97.39 

ElasticFace [24] 2019 MS1MV2 99.8–99.82* 96.4–98.96* 99.89 98.61-98.73* 97.41 

MagFace [25] 2021 MS1MV2 99.83* 89.26–90.24* 99.68 98.46* 98.07 
MixFaceNets [26] 2021 MS1MV2 99.53–99.68* 90.43–93.08* 99.93 98.37 98.11 

PocketNet [27] 2022 MS1MV2 99.5–99.58* 90.79–91.62* 99.71 93.78–94.21* 
97.75–
98.01 

PET methods are currently formulated for one or several types of FRAs. Hence, those excellent 

cases become helpless once the scenes are changed. These studies were not widely adopted because 

FRAs upgraded and developed rapidly, and the computing power and network update for face tasks 

were also fast. Further, the average annual compound growth rate of the face recognition market alone 

is 30.7% from 2010 to 2018, and the market scale will exceed 7 billion dollars by 2024 [5]. More 

importantly, everyone can get and collect FRAs easily. Since 2014, commercial FRAs have sprung up, 
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and they have a perfect development to after-sales process, so their recognition accuracy is 

approaching 99.99% as shown in Table 1. After the COVID-19 outbreak, FRAs for deep occlusion 

have also emerged. They can identify covered faces (gauze mask), even the face covered over 50%. 

We can’t conclude whether a camera applies an FRA, and manufacturer of the FRA. 

The classification of PET can be roughly divided into 6 groups [28]: 1) Data applicable, 2) 

Mapping type, 3) Biometric attributes, 4) Ways to address biometric utility, 5) Guarantee of the 

possibility of reconstructing information, 6) Hidden biometric targets (humans and/or machines). As 

for the specific response measures, only three categories are widely used. Only Image means, 

representation means and inference means can produce effective algorithms. 

Image means are used to process graphics or videos. Their target may be humans or machines. 

Confusion, confrontation and synthesis technology is used to change visual data to protect privacy [29,30]. 

Representation means are based on the method of transformation and elimination. It suppresses some 

target aspects of data by transforming the original template into another form. It can also delete the 

meta element with the largest amount of information about the target attribute in the template [31], and 

used only for a pre-defined purpose [28]. Inference means usually change the biometric template and 

the comparison/classification process used to drive the similarity/comparison score [32]. Unlike image 

means PET, this group’s technology is specifically aimed at automatic machine learning models rather 

than humans. However, our research mainly focuses on an image processing method that allows human 

beings to know who’s that in the picture while the machine cannot, so we need to combine both image 

and inference. It is more important to disable many machine recognition algorithms as much as 

possible, rather than a certain class. 

 

Figure 1. The illustration of the FlowSAN model, after completely hiding the gender 

attribute, the generated person can hardly be recognized by humans. 

All privacy protection networks based on neural networks are easily affected by the neural 

network itself. Therefore, even if the PET algorithm is extremely advanced, it cannot keep up with the 

frequently upgraded FRA. PET algorithms are usually targeted for research and development. Take 

Fawkes [3] for example, the training for ArcFace V1 has been outstanding, and the success probability 

(SP) can reach over 90%. However, this algorithm is failed to work with V2 soon after it was proposed. 

Even if we retrained the model, SP dropped below 50%. FlowSAN [33] as representative of semi-

advertising networks will make the face look more and more strange with the high threshold. Thus, 

some face attributes are hidden. As shown in Figure 1. Later, some algorithms were compared. Few 

PETs can cope with multiple types of FRAs at the same time. 
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As shown in Table 2, almost every method is not competent for non-anticipatory situations. If the 

retrained model copes with the new FRA version, it may lead to data rewriting. It’s necessary to study 

a sustainable PET without retraining. Algorithm convergence leads to complex and huge networks. 

Therefore, no ideal neural network can be fast and flexible for multiple FRAs. High intensity GAN 

often leads to output distortion to the eyes or failure to FRAs. 

Table 2. Characteristics of PETs. 

PET name Adversary Year SP Conclusion 

De-identifying [34] All 2005 99.9% 
Characteristic irreversibility. Not suitable for 
eyes. Key is easy to be leaked. 

Outsourced computation [35] All 2016 99% Not suitable for eyes. 

Multi-target adversary [36] All 2017 90–98% 
It requires a large number of training samples 
and huge parameters. 

Similarity-sensitive noise [37] SphereFace/Dlib 2019 95% Only used in SphereFace & Dlib. 

LightFace [38] 
All CNN based 
FRAs 

2019 96.2–98.5% 
Only one FRA can be dealt with, slow 
training speed. Not suitable for eyes. 

Differential [39] Eigenface 2020 70–90% Limited to single white box applications 

Pixel perturbation [3] 
Black box based 
FRAs 

2020 97–98% 
For specific versions of commercial FRAs 
only or need to retrain the model. Some 
algorithms fail after the image is compressed 

Synthetic face replacement 
[40] 

U-net based FRAs 2021 98.1–98.4% Become another person. Not suitable for eyes. 

In short, the main point is to keep the generator adapting to the newly added discriminator (black 

box FRAs) continuously. It is more important to find a fast gradient descent method when the 

parameters are increasing. 

The main contributions of this work can be summarized as follows: 

1) The model can integrate many face recognition algorithms without caring about their structure and 

training sets. 

2) The algorithm proposes an inverse back coupling mechanism to make the output play the opposite 

role to the input and automatically balance the target error. 

3) Keeping the network stable with the help of the principle of social animal hunting. 

4) Use the validator to score and maintain a stable visual effect. 

2. Related works 

2.1. Privacy and security technology 

Privacy-Preserving and Security Mining Framework (PPSF) offers algorithms for data anonymity, 

privacy-preserving data mining, and privacy-preserving utility mining [41]. It comprises 13 data 

anonymity algorithms. However, these state-of-the-art algorithms mainly hide sensitive information [42], 

making the targets they try to read become incomprehensible, including humans. 

Lin et al. proposed an ant colony optimization (ACO) method [43], which uses multiple objectives 

and transaction deletion to protect confidential and sensitive information. This method mainly deletes 

transactions to protect confidential and sensitive information, which belongs to representation means. 

That protected information will not apply to the data without dedicated tools, e.g., CT graphics. 

Shan et al. [3] use the Generative Adversarial Networks to cheat the ArcFace algorithm at the 

image level. As a result, they can magically disable the specific FRA, to protect the textured face ID 
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from being collected. The biggest disadvantage of this method is that it can only be used for a certain 

FRA. If FRA changed, the network needs to be retrained. 

Wang et al. [44] introduced the nearest neighbor method to calculate the cosine similarity of 

feature vectors into edge computing, which can effectively improve the security of face data in the 

cloud. The fault tolerance of identity authentication systems is improved by the secret sharing of 

homomorphism technology of distributed computing. 

The research of soft biometrics considers the use of feature templates to infer information about 

a person’s gender, age, race, sexual orientation, and health status [32]. The server preserves a full 

amount of face feature templates [45]. In the business process, face privacy is safe, but if the server 

receives an intrusion, there is still a risk of privacy disclosure. 

In brief, the existing privacy protection methods are described for a certain pattern of FRA, and 

most of them are for machine recognition. 

2.2. Information fusion 

Damer et al. suggested the concept of algorithm fusion in 2013 [46]. The algorithm results from 

different sources are normalized, and then the scores are fused to improve compatibility. However, 

after our evaluation, the time to reach the deviation of multiple algorithms is unacceptable, especially 

in the black box state. Baseline weighting algorithms [47] were applied in the second year. Although 

the robustness has been improved, the experimental results show significant differences for different 

data sets. 

Subsequently, Damer then focused on an asynchronous combination-based score-level weighted-

sum fusion approach [48]. Its focus is on the trusted model, not the attack model. We believe that the 

attack model is the key to protect privacy. Face Morphing Attacks were invoked [49] by the minimum, 

maximum, and mean fusion rules, and at most 3 detectors of different protocols can be fused. The new 

method is totaling up to six fused detectors in different attacks. 

Literature [50] gives us some enlightenments. Even if we integrate some algorithms, some repair 

methods can still judge the changed area in the image, resulting in the attack's failure. There must be 

a network structure with both automatic mechanism and manual intervention mechanism to prevent 

the generated attack image from being seen through. 

3. Methods 

A face image should be blocked by some cloaks so that the corresponding FRA recognition can 

be prevented as shown in Figure 2. Considering the variety and self-renewal of FRA, the algorithm 

should be compatible. The overall goal is to make function f that exerts some perturbation on the input 

image x to satisfy the following properties: 

It believes that the facial feature template corresponding to each algorithm is different. We define 

the characteristic set of each FRA as the two-dimensional representation of its feature template, and 

its mapping to image x is s. The original image feature cx∈s and the output image feature cy∉s. 

If the feature set of x in FRA1 and FRA2 are s1 and s2 respectively, then the output image meets 

cy∉(s1∪s2 ). 
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Figure 2. Overall target diagram: the protected face image can disable multiple FRAs at 

the same time without affecting human vision. 

3.1. Adversarial fusion network 

The best way to inherit human visual recognizance is to add small perturbations to the image, 

therefore the main research objective is to utilize the cloak pixels to encrypt the image. The proposed 

Adversarial Fusion Network (AFN) is divided into two categories: build a generative adversarial 

network (GAN) and inverse back coupling validator. In order to improve the compatibility of the 

algorithm, the adversary nozzles are used to carry out black box attacks instead of the discriminator. 

True and false images at the nozzles can be docked to parallel FRAs and compared constantly until 

they are decided to be different results completely by FRAs. To keep the visibility of the output image, 

a validator scores the output image to determine the generation effect, as shown in Figure 3. 

 

Figure 3. Schematic representation of Adversarial Fusion Network architecture. 
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The output contains random factors related to the distribution of feature points corresponding to 

the target FRA. The greater the Euclidean distance between the output vector and the original vector, 

the weaker FRA’s ability. If multiple FRAs are compatible, try to keep the output vector consistent 

with the original image when the current FRA fails. The original image can be restored by printing 

random factors and calculating with the protected image. According to this idea, we assume that the 

regression function f is the feature point mapping learned in an FRA. In the training stage, the same 

mask template distribution needs to be got from images of different scales, and the complete feature 

space should comply with Eq (1). Vector � is the nth feature distribution of different scales (s) in the 

original images. Equation (2) makes the network learn the hyperparameters. The relatively simple idea 

is the translation and scaling for the aim function in Eq (3). 

� = ∑ ��
��

�                                           (1) 

�(��
�) = �(��

��)                                       (2) 

�∗(�) = �∗
� ∙ �                                        (3) 

Set I represent input eigenvector, ω∗  is hyper parameter, * refers regional coordinate of the 

feature point, �∗ is predicted value, which should have the smallest Euclidean distance from the real 

value �∗, Eq (4) is the loss function for adversary nozzles, which distinguishes the difference between 

the generated image and the original image. The function optimization goal is defined as Eq (5). 

�� = ∑ (�∗
� − �∗

� ∙ ��)��
�                                     (4) 

�∗ = �������∗
∑ (�∗

� − �∗
� ∙ ��)��

� + �‖�∗‖�                        (5) 

Input images are samples of different scales and distinct faces which are mapped to a fixed size 

landmark template image, and the feature output is given by the same FRA. The feature points region 

output by the algorithm is pre-processed in 4 × 4 × 3 pixels or 4 × 4 × 1 pixels to reduce the amount 

of computation (the result of a grey scale image is sometimes not ideal, because some algorithms are 

sensitive to color channels). Normalizing a random facial mask model is expected to have 30 million 

super parameters, so it is necessary to establish a simple network. Each layer adopts batch 

normalization layer to speed up model training and prevent over fitting [51]. We use a filter of 4 × 4 

pixels and the same convolution (stride is 2). After 2 consecutive convolutions with 16 filters, the 

image is compressed to 128 × 128 × 32 pixels through the pooling layer. Then there are several 

convolution layers again, by using 64 filters and some same convolution. After pooling, it becomes 

a 64 × 64 × 64 matrix. Subsequently, matrix data of 16 × 16 × 128 pixels are gained through 128 filters 

and maximum pooling twice respectively. After passing through two full connection layers, it is input 

into the Softmax layer for activation, as shown in Figure 4. 

The concept of adversarial example transferability was first proposed by Szegedy et al. [52], in 

that the training models with different structures on different subsets set results in the target model 

have high confidence error classification. If the trained model is universal, Feature-representation-

transfer [53] can be used as a node to fit different FRAs. Adversary nozzles establish a connection 

between the generator and FRAs, it aggregates the vectors with close feature distance into a subset that 

reduces the network parameters. The set φ is used to describe the characteristics of FRAs. The 

regrouped distribution f(x,y) is continuously fed back to the generator and compares the distance of the 

same feature with the real image. e.g., the tip and wing of nose are mapped to vector τ for different 

FRAs as shown in Figure 5. Next, more new FRAs can be added, and old memories are stored in the 
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set φ. 

256 ×  256 ×  16 

64 ×  64 ×  64 

Convolution & ReLU

Max pooling

Full connection & ReLU

Softmax

128 ×  128 ×  32 

32 ×  32×  128 16 ×  16×  128 
1 ×  1×  1024

500 

256 ×  256 ×  16 

16 ×  16×  128 

32 ×  32×  128 

64 ×  64 ×  64 

128 ×  128 ×  32 

TransposeConv & ReLU

 

Figure 4. The detailed architecture of the generator. 

 

Figure 5. The principle of the adversary nozzle. 

However, feeding data only through the nozzle will make the output image unattractive with high 

probability. If the generated image is approaching an unacceptable level, the nozzle should be closed 

in time. In the formula, the distribution parameter θ comes from the validator which makes the 

Euclidean distance between desired distribution t* and measurement f* as small as possible. The 

validator comprises six deconvolution layers and a human face tracking network. On the one hand, the 

deformation degree of the generated image is detected by the visual semi supervised window [54]. On 

the other hand, if the face cannot be detected, the training will be stopped by nozzles. 

The generated template can be regarded as a reserved room. If it is filled with noise, the image is 

encrypted. Using the template to do XOR operation with the encrypted image can also restore the image. 

3.2. Group hunting in AFN  

When carrying out multi-objective AFN tasks, training time is a thorny problem. Attacker, barrier, 

chaser, and driver are simulated in expectation, extreme value, data distribution, and minimum loss [55]. 

We use the division of labor of chimpanzees in hunting behavior to improve the cooperation ability of 

the network. Each hidden layer in AFN is treated as a chimpanzee. The characteristic distribution plane 
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is considered as a tree.  

In nature, there are two main differences between chimpanzee groups and other biological groups: 

1) Individual diversity: in a group of chimpanzees, the abilities and intelligence of individuals are not 

similar, but they are all members of the hunting team, and there is no discrimination when performing 

tasks. In view of their different abilities, chimpanzees will be responsible for different hunting 

operations according to their special abilities. In the algorithm, different models with different 

curvature, slope, and interception points are used to give chimpanzees different behaviors, just like in 

natural hunting tasks. 

2) Sexual motivation: besides the great advantages of group hunting, research shows that the hunting 

behavior of chimpanzees is also affected through the social benefits brought by obtaining meat. After 

obtaining meat, chimpanzees have a certain reputation. They can use the meat for corresponding 

returns, such as sex, being groomed by their companions, and so on. Unfortunately, chimpanzees will 

shuffle their duties after each round of hunting. The chaos stimulates them to obtain meat quickly. This 

unconditional behavior improves the exploitation and convergence speed in the final. 

Attackers need more cognitive effort to predict the subsequent movement of prey, so after 

successful hunting, they will get a larger piece of meat. This aggressive behavior is positively 

correlated with initial position, empirical value, and time. In addition, chimpanzees can choose roles 

in each round of hunting according to their advantages [56]. 

Different FRAs are regarded as prey in AFN. The target FRA can appear simultaneously or 

separately, depending on the distance between the pursuer and the prey in the initial stage. Of course, 

every chimpanzee is constantly changing its position for driving and chasing its prey. The driver 

followed the FRA without trying to catch. And the barrier places itself on a tree to prevent FRA from 

escaping (Upgrading). The chaser chased the FRA and explored its route. Finally, the attacker predicts 

the FRA’s downward escape route and grabs it at the shortest distance. 

The driving model d in the exploration and exploitation phase represents the relative distance 

between the position of driver �� and the position of prey ��. Where t (< 500) stands for the iteration 

sequence number, a, m, and c are the coefficient vectors in [0, 2]. The smaller d, the better, but it cannot 

be 0. Its goal is to make prey move, the Eqs (6) and (7) are proposed. 

d = ��. ��(�) − �. ��(�)�                                   (6) 

��(� + 1) = ��(�) − ��                                   (7) 

According to experience, let the initial value x of f be 0.1 and the nonlinear descent space be [3.57, 4]. 

In which, �1 and �2 are the random vectors in the range of [0, 1]. Equations (8)–(10) respectively. 

� = (2�� − 1)�                                        (8) 

� = ���                                             (9) 

� = �(�) ≔ logistic(�)                                   (10) 

Finally, m is a logistic mapped vector that represents the effect of the chaotic stimulates (sexual 

motivation) of chimpanzees after hunting. Convergence rate is improved via the chaotic function in 

complex and high-dimensional problems. All particles behave similarly in both local and global 

searches, so individuals can be considered as a single population with a common search strategy. 

Chimpanzees can be divided into several hunting groups. The roles of each group are the same, 

and the members of the group can be adjusted after several rounds of hunting. In Table 3, where t refers 
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to the current iteration and T indicates the maximum number of iterations. 

Table 3. The coefficient of f vector. 

Groups Plan 1 Plan 2 

1 1.95 − 2
�

�
��

�
�

��
 2.5 −

2log (�)

log (�)
 

2 1.85 − 3
�

�
��

�
�

��
 2.5 − 2 �

�

�
�

�

 

3 1.5 − 3 �
�

�
�

�

 0.5 + 2exp �−16 �
�

�
�

�

� 

4 1.5 − 2 �
�

�
�

�

 2.5 + 2 �
�

�
�

�

− 4
�

�
 

There are no known parameters of an FRA. In order to compare gaining FRA characteristics 

to chimpanzees hunting, it is assumed that any member can be a chaser to report the location x. 

These recommended role models are applied and the other members update their positions based 

on the recommended initial values to get the best formation. The relational model is expressed by 

the Eqs (11)–(13). 

�� = |���� − ���|                                   (11) 

�� = �� − ����                                (12) 

�(� + 1) =
�

�
∑ ��

�
�                                    (13) 

The hunting role of chimpanzees is represented by subscript R; n is the group number of the next 

change. When the prey weight c > 1, the hunting group hunts (encircle and intercept), otherwise, it will 

divide food or reassign roles. This parameter also contributes to the randomization of the optimization 

process and reduces the probability of local minimization. Note that the c vector follows the same 

random function mapping from the beginning to the end of the iteration. 

3.3. Ensemble training 

Federated learning [39] and transfer learning [4] can also deal with multiple FRA attacks. 

However, their parameters are relatively large, and the gradient explosion or gradient disappearance 

often occurs. Too many training rounds will often lead to an unsatisfactory feeling for the human being. 

ChOA theory can realize rapid gradient descent, and the acceptance of the output image can be 

effectively optimized. 

All the feature points can’t be clustered separately [57], because there will always be some 

unknown data. Chimpanzees need to know the focus of each FRA. According to the assumption, if the 

key points of an image correspond to the positions of different prey, the way to reduce the network 

parameters is to drive the prey to a certain position and then attack. It can reduce the capture time 

(training speed) and make the focus on the prey closer to the attacker (gradient explosion). 

Attackers attack the prey on the grassland named �, the lowest gradient acceptable to the human. 
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After AFN began, chimpanzees entered the stage of exploration. They search for prey (local extremum) 

separately and attack intensively. The vector a with a random value from -1 to 1, so that searchers 

focus on tracking prey far away from others. When inequality |a| > 1 the chimpanzees abandon the 

current route to find new prey, as shown in Figure 6. 

As mentioned earlier, after several iterations of hunting activities, each chimpanzee adjusts its 

weight and position (satisfaction after eating), and then released or inherited its previous 

responsibilities. Therefore, the chaotic way helps to balance the division of labor among hunting 

groups. This chaotic behavior helps chimpanzees to further ease falling into local optimization and 

slow convergence speed in solving high-dimensional problems. Once the prey is captured, the nearest 

four groups of chimpanzees will regroup and start new exploitation. 

� 

 

Figure 6. Fast gradient descent method based on hunting model. 

Every one-dimensional vector can be regarded as a chimpanzee to indicate the candidate points 

in AFN. Further, the weights are the coefficients of social roles, in which the total length is equal to 

the vector’s in �, in Equation 14, where h is the number of neurons in the hidden layer and n is the 

number of inputs [58]. As an example of this analogy, the ensemble training is shown in Figure 7. 

Mean square error (MSE) is used to measure the fitness of the chimpanzee, which calculates the 

difference between the expected value f and evaluation value �� of all training in Eq (15). Where n is 

the number of instances in the training dataset. 

L = (�  ×  ℎ)  +  (2  ×  ℎ)  +  1                          (14) 

��� =
�

�
∑ �� − ���

��
�                                   (15) 
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Figure 7. Diagrammatic sketch of ensemble training. 

3.4. Template application 

The captured prey is mapped to a two-dimensional grassland. It not only affects the behavior of 

chimpanzees’ social factor but also stores it in a room to generate templates. In other words, the main 

purpose of the attack is to determine the position of the prey on the σ plane, which continuously forms 

a template corresponding to the feature points collected by FRAs. And the template is transformed into 

printed patch [59] by texture visualization technology as shown in Figure 8.. 

4

4
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Figure 8. Template mapping. 

Because the location of prey driven to the ground is random, each template file is different. They 

are combined with perturbation technology to encrypt face images. For the generator, in order to 

improve the quality of samples and the speed of convergence, all pooling layers and full connection 

layers are cancelled [60]. This method can reduce the difficulty of search σ. The only problem is that 

it will produce noise pollution.  

By mapping Gaussian noise onto the template file and XOR with the original image, the features 

concerned by FRAs can be hidden. In order to make the generated image more realistic, we conduct 

Y-axis mapping on the images of less than 2KB in CelebA dataset, convert them into Gaussian noise 
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and give them to AFN. The protected image is a set of pixels at specific regions generated by random 

noise. If template file XOR with the disturbed image again and the pure image can be restored. The 

template file can be saved again through image encryption technology [61] to increase its security. 

4. Results 

4.1. Datasets and experimental setup 

This section compares the effects of several famous privacy protection methods, famous FRAs 

will also take part in the experiments. Distributed training conducted by the GPU of ARM mali-t860 

MP4 and the development board of 16 core NPUs. CelebA, LFW, and Andy_Lau datasets are used to 

assess the performance. 

Privacy protection methods include: Chaos [62] and cryptography [2], zero-watermark [63], 

Feature area twist [6], Fawkes [3], ADVHAT [64] in the image level. Parameters of paper [65] are used 

in the inference experiment. 

FRAs include: Baidu [18], Azure face [66], Face++ [19], ArcFace [22] and open source face 

recognition algorithm based on Dlib [67]. They are renamed as ��, ���, ��, ���, �� for convenience.  

4.2. Visual effect experiments 

This experiment is aimed at implementing ArcFace algorithm. ADVHAT and Fawkes algorithms 

are not updated for other FRAs. Principal component analysis (PCA) [68] method is used to reduce 

dimensionality to accept a two-dimensional space of visual features. To keep the interpretation of the 

original data to the greatest extent, this paper uses the minimum loss theory to make the first principal 

component have the largest variance, and each subsequent principal component is orthogonal to the 

previous ones. An image covered by every protection shows that chaos and cryptography are strongest 

and zero-watermark almost impossible to protect privacy, the algorithms of changing the eigenvector 

with cloak all work well, as shown in Figure 9. Although from the mathematical, most algorithms have 

the basic elements of hiding privacy. However, the printed image can't be recognized except ADVHAT, 

Fawkes, and the mask template. 

D
im

en
si

o
n 

2

Dimension 1

-0
.4

-0
.3

-0.4-0.5 -0.1 0.2 0.3 0.4-0.2 0-0.3 0.5 0.6 0.7

-0
.2

-0
.1

0
1

2
3

4
5

Original image Mask

Chaos

0.8

Watermark

Twist
Fawkes

ADVHAT  

Figure 9. Visual 2D feature space. The Euclidean distances are different, indicating that it 
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4.3. Template mapping deviation experiments 

We refer to [65] and use 70% of CelebA as a data training set and 30% as a test set. Performance 

evaluation is conducted with a test set. Images from LFW are used to assess the generalization 

capabilities of AFN. To have a consistent evaluation setup, face recognition, gender, and age are 

organized into the experiments Learning-based and Strict (LBS) evaluation protocol [69] is used to 

train, and the dataset is organized into 5 folds. The commercialized FRA will not abide by the rules. 

The only way to prove whether the privacy protection is effective is whether the attacked FRA outputs 

the correct face ID. We use err to analyze the average ratio of genuine pair comparison. 

Privacy-gain identity-loss coefficient (PIC) is used to evaluate the performance of the model. 

Where ����  and ���′  were computed from the attribute suppressed representations, whereas the 

errors fic and eer were calculated from the original (unmodified) face representations [37], shown in 

Eq (16) [37], the higher value of PIC the performance is better. The model maps the initial face 

representations into disentangled representations z, zid, and zatt, where z represents the template information 

of a face, zid shows identity information and zatt encodes information about biometric attributes.  

��� =
��������

���
−

��������

���
                                  (16) 

The fraction of incorrectly classified images fic and equal error rates err are reported for the face 

id and attribute recognition. In table 4, the impact of the model on potential space is concentrated on 

zid, and the information of zatt includes age and gender are not been affected. The experimental results 

show our model does not care about the specific attributes of the face, we only care about whether 

FRA can output face ID. Existing state-of-the-art e.g., PE-MIU [32], Unsupervised privacy-

enhancement (PE-UP) [37], feature disentanglement (PE-FD) [65], prefer to hide some key attributes 

and preserve the recognizability of face. 

Table 4. Privacy-gain identity-loss coefficient on CelebA, LFW and Andy_Lau. Computed 
over 5 folds. 

Datasets z zid zatt 

CelebA 25.077 ± 1.130 422 1 

LFW 24.478 ± 0.189 348 1 

Andy_Lau 29.635 ± 1.484 1024 256 

This implies that the total privacy cost remains unchanged. It is important to apply an adaptive 

iterative privacy budget allotment to a fixed allotment [70]. In terms of latent space, the goal is to 

maneuver latent space to achieve a given image's transformations [71]. After mapping, the template 

coordinates of Arcface algorithm are output in the training network as shown in Figure 10, where xs is 

the original image and xt is the image template in AFN. It can be seen that the feature distribution of the 

processed image has changed. All the test samples are collected as shown in Table 5. We have added 

liveness (images of volunteers) experiments to deal with reality. 
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Figure 10. 2D coordinates of feature template. The test dataset is Andy_Lau and target 

FRA is Arcface v2. 

Table 5. Change rate of feature distribution. 

Dataset �� ��� �� ��� �� 

CelebA 13.6% ± 1.1% 24.4% ± 0.8% 10.2% 27.1% ± 0.5% 99% 

LFW 9.3% ± 0.8% 23.6% ± 0.8% 12.4% 18.6% ± 0.1% 99% 

Andy_Lau 15.2% ± 2.7% 33.3% ± 0.1% 25.8% ± 0.9% 42.0% ± 1.2% 99% 
Liveness 5.8% 10% ± 0.2% 4.5% 38.1% ± 3.5% 99% 

It can be seen from the experiment that the single FRA algorithm can change the image feature 

distribution and make the detector ineffective. The best experimental result is Andy_ Lau’s data set 

has a change rate of over 40% in the Arcface V2 algorithm. MD is not intelligent, so it is only recorded 

and not included in the experimental data. 

4.4. Cheat experiments 

The comparison processes adopt the black box method, and the evaluation index uses the 
protection score ��, which objectively evaluates the effect of algorithm output on the targeted FRA. �� 

represents error samples on target FRA, �� means accuracy given by FRA authors. ��
� stands for the 

correct samples of the image after the protection algorithm in other FRA. �  is the perception 

coefficient, which is based on the subjective evaluation of the tester comparing all the experimental 

results’ weight from 0.10 to 0.99, n is FRA’s ID. Shown as Eq (17), 1500 samples were tested in Table 6. 

�� = �� ��

������∑ ��
��

�
                                    (17) 
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Table 6. Cheat experiments. The values in brackets have � participation. 

 �� ��� �� ��� �� 

Chaos 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 

Zero-watermark 0.001(0.999) 0.001(0.999) 0.001(0.999) 0.001(0.999) 0.001(0.999) 

Twist 0.414(0.238) 0.230(0.138) 0.377(0.137) 0.798(0.701) 0.816(0.803) 
Fawkes 0.001(0) 0.327(0.310) 0.199(0.013) 0.986(0.837) 0.997(0.986) 
ADVHAT 0.001(0) 0.001(0) 0.333(0.334) 0.894(0.803) 0.960(0.960) 
Mask Template 0.834(0.811) 0.852(0.633) 0.883(0.675) 0.901(0.897) 0.998(0.998) 

The results indirectly proved that the method proposed in this paper has compatibility when 

dealing with multiple FRAs. Chaos method is more efficient without considering the visual effect. 

4.5. FRAs superposition experiments 

There is a catastrophic forgetting (feature confusion) phenomenon. Obviously, the pixel 

coordinates have shifted, as shown in Figure 11. Intuitively, it should be substantial differences in 

landmarks specifications of these enumerated FRAs, which may be related to the initial chaotic 

function of the chimpanzee hunting group. Logistic chaotic mapping with values of [0.01, 0.4] is used. 

If Singer mapping was used, the effect is much better. If users do more chaotic mapping experiments, 

they can save a lot of time, because they often find that the vision is affected after many rounds of 

model training. 

            

(a)                     (b) 

Figure 11. Catastrophic forgetting after hunting. (a) Feature confusion when Logistic 

mapping was used. (b) The image is smoother by singer mapping. 

The output image results from the XOR operation between the noise and the original image 

through the mask template in Figure 12. Therefore, in order to restore the image, we only need to make 

the output image XOR with the mask template again. The mask template can be saved by image 

encryption. When the image needs to be decoded, restore the graphical mask template by decryption, 

to ensure the security of the mask template key. 
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(a)                             (b) 

Figure 12. Multi model superposition reduction experiment. (a). Images generated for 

������������. (b). Restored image. 

The average error rate of cumulative FRAs ��� proves the generality of the algorithm studied in 

this paper. Even if the generated image is far from expected, it must be able to restore to the original 

state. Table 7 records the results of accumulating different FRAs, where Perception is the author's 

subjective opinion, and ��� is the recognition accuracy after restoring. It can be demonstrated that the 

number of FRA is not directly proportional to the training time. 

Table 7. Training results. 

To investigate the performance of the algorithm switching between different versions of FRA 

from the same manufacturer, V1 and V2 of ��� is chosen because these two versions are easy to 

download and have different interfaces. V1 training took 19,333 minutes to generate a template, 

but it is invalid when applied to V2. Then V2 is directly turned into prey without changing the 

network structure and protected image. The result can be successful and takes another 6010 

minutes. In contrast, Fawkes takes 61,028 minutes to train on V1 and AdvHat takes 93,110 minutes 

(two gradient explosions). 

5. Discussion 

The facial mask from AFN has great efficiency, but the solution to the template coordinate drift 

FRAs Training time(min) ��� ��� 

������������ 32,698 0.512 0.989 
��������� 31,058 0.838 0.989 
���������� 32,136 0.892 0.995 
������� 31,274 0.977 0.998 
����� 28,013 0.984 0.998 
����� 29,137 0.996 0.997 
�� 21,638 0.999 0.998 
��� 19,333 0.998 0.998 
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is only to change the chaotic function. The main reason is that we do not fully use the social behavior 

of chimpanzees. In other words, when the target features are captured, the weight of various roles in 

the network does not form an effective replacement. This causes that if the roles and tasks assigned at 

the beginning are not reasonable and the follow-up work is not tuned, we can only get good results 

from the random chaotic function. In the next work, we will focus on the optimization of task allocation 

and let the network adjust the weight of hunting members automatically. 

6. Conclusions 

The model proposed in this paper can ensure that the target face recognition algorithm cannot 

recognize the protected Face ID. the model improves the existing algorithms that can only protect the 

privacy for specific face recognition algorithms, and can deal with multiple recognition algorithms at 

the same time. In addition, a negative feedback network is added to intervene in image distortion, so 

that it can ensure that human beings can recognize the protected Face ID. In order to speed up the 

speed, the optimization algorithm of chimpanzee group hunting is introduced. Experiments show that 

the model can change the feature distribution of the facial image by up to 42% without obvious visual 

changes. It can be connected in parallel at least five commercial face recognition algorithms. Using a 

chaotic function to initialize network parameters can reduce the difficulty of network design, but it 

will produce slight noise on the output image. This will reduce the possibility of a gradient explosion. 

Compared with other biological privacy protection methods based on small perturbation, our method 

can improve the training speed by 4.8 times. 
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