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Abstract: Motor Imagery EEG (MI-EEG) classification plays an important role in different Brain-
Computer Interface (BCI) systems. Recently, deep learning has been widely used in the MI-EEG
classification tasks, however this technology requires a large number of labeled training samples
which are difficult to obtain, and insufficient labeled training samples will result in a degradation of
the classification performance. To address the degradation problem, we investigate a Self-Supervised
Learning (SSL) based MI-EEG classification method to reduce the dependence on a large number of
labeled training samples. The proposed method includes a pretext task and a downstream classification
one. In the pretext task, each MI-EEG is rearranged according to the temporal characteristic. A
network is pre-trained using the original and rearranged MI-EEGs. In the downstream task, a MI-
EEG classification network is firstly initialized by the network learned in the pretext task and then
trained using a small number of the labeled training samples. A series of experiments are conducted
on Data sets 1 and 2b of BCI competition IV and IVa of BCI competition III. In the case of one third
of the labeled training samples, the proposed method can obtain an obvious improvement compared
to the baseline network without using SSL. In the experiments under different percentages of the
labeled training samples, the results show that the designed SSL strategy is effective and beneficial
to improving the classification performance.
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1. Introduction

Electroencephalography (EEG), as a non-invasive and cost-effective approach, is commonly used
in various fields such as rehabilitation [1] and disease diagnosis [2]. Motor Imagery EEG (MI-EEG)
classification plays an important role in different Brain-Computer Interface (BCI) systems [3]. The goal
of the MI-EEG based BCI system is to control different external devices [4]. Due to non-stationary,
nonlinearity, and randomness of MI-EEGs [5], how to accurately classify MI-EEGs is a crucial step in
the MI-EEG based BCI system.

Up to now, different MI-EEG classification methods have been proposed by many researchers. In
traditional classification methods, Müller-Gerking et al. [6] proposed the Common Spatial Pattern
(CSP) method to classify single-channel MI-EEGs. Huang et al. [7] employed Surface Laplace
Transform (SLT) and Power Spectral Density (PSD) to extract MI-EEG features. Chatterjee et al. [8]
used wavelet energy, root means square error and the average power for feature extraction, and
Support Vector Machine (SVM) to classify the left and right hand MI-EEGs. Recently, deep learning
has developed rapidly in the computer vision and signal processing fields [9, 10]. Therefore, deep
learning provides an effective tool for the MI-EEG classification task [11,12]. Schirrmeister et al. [13]
found that Batch Normalisation (BN) [14] and Exponential Linear Units (ELU) [15] could effectively
improve the representation capability of Convolutional Neural Network (CNN). In [16], CNN and
Augmented CSP (ACSP) was firstly used to extract the features and CNN was then used to classify
the MI-EEGs. Besides CNN, a deep belief network was used for the MI-EEG classification task [17].
Li et al. [18] utilized the spatial location and time-frequency information to build 2D images. These
images were then used as the inputs to train a network. Lawhern et al. [19] proposed EEGNet to
identify the paradigm of EEGs. The above-mentioned MI-EEG classification methods belong to
supervised learning, and the performance of supervised learning relies on a large number of labeled
training samples.

However, accurate MI-EEG labeling is time-consuming and expensive. For example, labeling EEG
during sleep requires professional technicians to check the EEG for several hours and mark the 30-
second window one by one [20]. In the case of a small number of the labeled training samples, the
performance of supervised learning may be poor and unstable. In the past years, Self-supervised
Learning (SSL) has been verified that it is a novel and effective strategy to improve the performance
under a small number of labeled training samples [21]. SSL generally includes two parts: a pretext
and downstream task. A network is learned by the pretext task and transferred to the downstream
task. The pretext task is mainly divided into two categories: generation and contrast. The typical
generation methods include Colorization, Auto-Encoders, etc. In the typical contrast methods, the
training samples are generated according to some strategies and used to train a pretext network. In
SSL, how to define the pretext task is the core content.

Recently, SSL has been widely used in computer vision, natural language processing and other
fields. Noroozi et al. [22] utilized a puzzle approach to design the pretext task. Li et al. [23] proposed a
Twin-Cycle Autoencoder (TCAE) to learn the pretext network from videos without manual annotation.
Banville et al. [24] constructed a time contrastive SSL method for classifying EEGs. In the MI-EEG
classification field, few SSL-based studies have been investigated. Therefore, it is meaningful to design
the SSL strategy to improve the MI-EEG classification performance.

This paper aims to propose a novel SSL approach to alleviate the degradation influence in the case
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of a small number of the labeled training samples. In this paper, a Temporal-Rearrange based MI-EEG
network (TRMINet) is designed. The pretext task based on the temporal characteristics of MI-EEGs
is firstly built to learn a pretext network from the whole MI-EEGs. The pretext network is then used to
initialize the downstream MI-EEG classification one. Finally, the downstream network is trained using
a small number of the labeled training samples. The main contributions are outlined as follows:

• A pretext task is designed according to the temporal characteristics of MI-EEGs.
• The differences of the MI-EEG representation ability among different CNNs are investigated.
• The impact of the pretext task on the classification performance of the downstream task is

analyzed.

The rest of the paper is organized as follows. Some of the networks used in this paper are described
in Section 2. Section 3 describes the pretext and downstream tasks. The details of the datasets are
described in Section 4. The experimental configurations and results are described in Section 5. The
conclusion and future directions are given in Section 6.

2. Background

Figure 1. EEGNet network architecture.

Table 1. EEGNet detailed parameters.

Layer Operator Output Channels Kernel Size Stride
1 Conv & BN 8 (1, 64) 1
2 Depthwise Conv & BN & elu 16 (3, 1) 1
3 Avgpool & Dropout 16 (1, 4) 4
4 Depthwise Conv 16 (1, 16) 1
5 Separable Conv & BN & elu 16 (1, 1) 1
6 AvgPool & Dropout 16 (1, 8) 8

This section describes the networks used in the experiments. In deep learning, there were many
classic networks, such as AlexNet [25], GoogLeNet [26], ResNet [9], etc. In these classic networks,
AlexNet used ReLU [27] as the activation function and was trained in parallel on two GPUs. The
computational complexity of the network and the interdependence of parameters were reduced by
the ReLU function. The inception architecture was proposed in GoogLeNet, which could further
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reduce the computational complexity of the network. Meanwhile, BN [14] was used in GoogLeNet to
standardize the output mean and variance of each layer of the network. Furthermore, the BN alleviated
the vanishing gradient problem. The residual network was introduced in ResNet to deal with the
training of deep network models. EfficientNet [10] was proposed by the Google team in 2019 and
could balance the network width, depth, and resolution to improve performance. EfficientNet could
focus on more image details than other scaling methods. The MobileNet Convolution (MBConv) was
used in the convolutional layers of EfficientNet, except for the first convolutional layer which used
the normal convolutional structure. The MBConv included a 1 × 1 pointwise convolution, a depthwise
convolution [28], and a Squeeze-and-Excitation (SE) module [29]. The commonly used CNNs for EEG
classification included DeepConvNet, ShallowConvNet [13] and EEGNet [19]. In particular, EEGNet
attempted to classify EEGs from several paradigms using a single network. EEGNet used depthwise
and separable convolutions instead of the traditional ones. Additionally, ELU [15] was used as the
activation function. The architecture of EEGNet is shown in Figure 1 and the parameters of each layer
of EEGNet are given in Table 1.

Meanwhile, a glossary containing all initials and abbreviations is given in Table 2.

Table 2. Glossary of Terms and Abbreviations.

Abbreviations Explanation
MI-EEG Motor Imagery EEG
SSL Self-supervised Learning
BCI Brain-Computer Interface
CSP Common Spatial Pattern
SLT Surface Laplace Transform
PSD Power Spectral Density
SVM Support Vector Machine
BN Batch Normalisation
ELU Exponential Linear Units
CNN Convolutional Neural Network
ACSP Augmented Common Spatial Pattern
TCAE Twin-Cycle Autoencoder
TRMINet Temporal Rearrange Motor Imagery Network
MBConv MobileNet Convolution
SE Squeeze-and-Excitation
TR Temporal Rearrange
ERS Event-Related Synchronization
ERD Event-Related Desynchronization
ICA Independent Component Analysis
ACC Accuracy
AUC Area Under the Curve
CI Confidence Intervals
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3. Proposed methods

To address the performance degradation under a small number of the labeled training samples, we
design a self-supervised network framework, as shown in Figure 2. Firstly, MI-EEGs are
pre-processed by denoising and filtering. In the pretext task, the Temporal Rearrange (TR) approach
generates the rearranged MI-EEGs. The network of the pretext task is then trained to learn the
MI-EEG representation using the original and rearranged MI-EEGs. The network of the downstream
task is initialized by the pretext one and trained using the labeled MI-EEGs.

Formally, X = {(xi, yi)|i ∈ [1, n], xi ∈ RC×T , yi ∈ {−1, 1}} is used to denote the MI-EEG dataset.
xi denotes each MI-EEG and yi ∈ {−1, 1} denotes the label of xi. C denotes the number of MI-EEG
channels and T denotes the number of sampling points of MI-EEGs.

Figure 2. The proposed SSL classification framework.

3.1. Pretext task

The framework of the pretext task is shown in Figure 3. To generate labeled samples from
multichannel MI-EEGs, we propose a Temporal Rearrange (TR) method. A fixed-length sliding
window H is used to divide each original MI-EEG into multiple time window blocks. A new MI-EEG
is then obtained by rearranging these time window blocks. The label of the original MI-EEG is set to
1, and that of the rearranged MI-EEG is set to −1. The original and rearranged samples and labels are
represented by xi

′ and yi
′, respectively, and the number of generated samples is n′. The training set of

the pretext task Z = {(xi
′, yi

′)|i ∈ [1, n′], xi
′ ∈ RC×T , yi

′ ∈ {−1, 1}}.
In this paper, EEGNet is used as the baseline network. The prediction function is denoted as Ŷ =

wTFΘ(Z) + w0. The convolution function in the EEGNet is denoted as FΘ. The parameters of the
convolution function are denoted as Θ. The weight and the bias of the fully connected layer are denoted
as w and w0, respectively. The weight parameters are denoted as W = [Θ,w,w0]. Cross entropy is used
as the loss function in the pretext task, which is calculated by Eq (1).

L(Θ,w,w0) =

n′∑
i=1

log(1 + exp(−yi
′[wTFΘ(xi

′) + w0])) (1)
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The optimal network parameters W∗ = [Θ∗,w∗,w0
∗] can be obtained by training the pretext network.

Figure 3. Detail of pretext task.

3.2. Downstream task

The downstream task aims to classify MI-EEGs by training an optimal network. The network of
the downstream task is the same as that of the pretext task. The convolutional function in the network
is denoted as FΘd . The parameters of the convolutional function is denoted as Θd. The weight and
the bias of the fully connected layer are denoted as wd and w0

d, respectively. The weight parameters
are denoted as Wd = [Θd,wd,w0

d]. The downstream network is initialized by the pretext one, i.e.,
Wd = [Θ∗,w∗,w0

∗]. Then, The downstream network is fine-tuned using the labeled MI-EEGs. Cross
entropy is used as the loss function in the downstream task, which is calculated by Eq (2).

L(Θd,wd,w0
d) =

t∑
i=1

log(1 + exp(−yi[(w∗)TFΘ∗(xi) + w0
∗])) (2)

After fine tuning, the optimal network parameters W ′′ can be obtained. The MI-EEGs can be finally
predicted by W ′′.
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4. Datasets and preprocessing

This section describes the used data sets. Data set 1 of BCI competition IV contain 7 subjects. Each
subject chooses two types from left hand, right hand, and foot for MI-EEGs. In the Data set 1, an
MI-EEG trail contains 8 s of data, and a cross mark is displayed on the screen from 0 to 2 s. From 2 to
6 s, an arrow indicator appears in the center of the screen, and is superimposed on the cross mark. The
subject performs the MI-EEGs according to the directions of the arrow indicator. The screen is finally
blank in 6–8 s, indicating the end of this trail. The data is collected from 59 EEG channels, and the
sampling frequency is set to 100 Hz. Therefore, one MI-EEG trail has 800 sampling points.

Figure 4. Experimental stimulus paradigm.

Data set IVa of BCI competition III contains 5 subjects. Only cues for right hand and foot are
provided in the competition. In the Data set IVa, visual cues are displayed 3.5 s in the screen, and
the presentation of target cues is intermitted by periods of random length, 1.75 to 2.25 s. The data
is collected from 118 EEG channels, and the sampling frequency is set to 100Hz. In this dataset, the
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sample number of subjects aa, al, av, aw, and ay is 168, 224, 84, 56, and 28, respectively. Since
the sample number of subjects av, aw, and ay is very small, subjects aa and al are selected in the
experiment. The experimental stimulus paradigms for the Data set 1 of BCI competition IV and the
Data set IVa of BCI competition III are shown in Figure 4.

Data set 2b of BCI competition IV contains 9 subjects. The cue-based screening paradigm consists
of two MI-EEG classes, namely the left and right hand. 120 repetitions of each MI-EEG class are
available for each subject in total. More details of the dataset can be found at https://www.
bbci.de/competition/iv.

Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) are most
evident in EEG channels C3, C4, and Cz [30], thus, the three channels are selected in the experiments.
The positions of electrode caps [31] are generally illustrated in Figure 5.

Figure 5. The positions of electrode caps.

Since electrooculogram (EOG) and noise can be collected in the MI-EEGs, the MI-EEGs is firstly
preprocessed in the experiments. Generally speaking, the 8–30 Hz frequency band can reflect the
characteristics of the MI-EEGs [32]. Therefore, a third-order Butterworth band-pass filter at 8–30 Hz
is built to eliminate the effects of baseline drift and noise. Then, Independent Component Analysis
(ICA) is used to reduce the influence of EOG.

5. Experiments

5.1. Experiment configuration

All the used networks are implemented using Pytorch on NVIDIA GTX3090 and Intel(R)
Core(TM) i9-10940X CPUs. The convolutional function in the CNN is initialized by the
kaiming normal function, and the fully connected layer is initialized by a normal distribution
(N(0, 0.1)). Adam is used for the optimization. In the pretext task, the epoch, batchsize, and learning
rate are set to 200, 8, and 0.0001, respectively, and there is no validation or test set. The loss value is
used to measure the performance of the trained pretext model. In the downstream task, the epoch,
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batchsize, and learning rate are set to 100, 50, and 0.001, respectively. The dataset of each subject is
randomly divided by 3:1 to constitute the training and test sets. This process is repeated 10 times for
each subject. The validation set is not used because the sample number for each subject is small.

5.2. Evaluation metrics

Accuracy (ACC) and Area Under the Curve (AUC) are used to measure the performance of the
networks. ACC can reflect the classification ability of the networks. AUC represents an aggregate
measure of performance across all possible classification thresholds. In addition, Confidence Intervals
(CI) at the 95% confidence level are used in the ablation study to obtain a level of accuracy confidence.

5.3. Comparison of different models

In this section, to determine the suitable network for the MI-EEG task, six popular networks are
conducted on all subjects in the experiments, including ResNet [9], MobileNet [28], EfficientNet [10],
DeepConvNet, ShallowConvNet [13] and EEGNet [19]. The experimental results are shown in Table
3.

It can be seen intuitively from Table 3 that EEGNet performs better than the other networks on
most subjects, and ShallowConvNet can yield comparable performance to EEGNet on most subjects.
It indicates that EEGNet and ShallowConvNet can learn better MI-EEG representations than the other
four networks. Therefore, EEGNet and ShallowConvNet are chosen as the base classifiers.

Table 3. Results of six model.

Methods ResNet MobileNet EfficientNet DeepConvNet ShallowConvNet EEGNet

Metrics ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Data sets 1
(BCICIV)

a 52.80 0.550 62.40 0.651 62.25 0.663 70.40 0.819 68.80 0.764 75.60 0.817
b 55.20 0.574 50.40 0.521 56.00 0.583 67.00 0.763 73.20 0.820 71.60 0.786
c 53.60 0.574 52.80 0.540 60.80 0.622 51.40 0.647 64.40 0.732 70.60 0.765
d 63.60 0.724 64.80 0.728 78.00 0.844 63.40 0.870 88.80 0.945 91.80 0.977
e 67.34 0.628 53.06 0.520 79.59 0.884 92.20 0.994 95.40 0.995 96.40 0.993
f 66.50 0.699 58.50 0.663 64.40 0.714 63.00 0.786 72.60 0.793 80.20 0.874
g 69.50 0.733 64.80 0.736 74.00 0.826 78.80 0.904 82.60 0.896 85.20 0.910

Data set IVa
(BCICIII)

aa 73.80 0.793 60.50 0.707 64.30 0.661 58.10 0.785 78.80 0.877 80.00 0.893
al 91.70 0.966 82.10 0.944 83.90 0.952 75.70 0.964 95.40 0.986 95.70 0.987

Data sets 2b
(BCICIV)

1 50.30 0.510 50.00 0.508 50.80 0.507 50.30 0.502 51.80 0.528 71.20 0.748
2 69.50 0.775 60.50 0.664 70.30 0.802 74.30 0.872 76.70 0.860 77.30 0.871
3 58.00 0.613 55.70 0.580 59.30 0.629 57.50 0.601 61.80 0.649 63.00 0.682
4 59.80 0.636 55.20 0.567 69.20 0.759 70.30 0.793 70.80 0.783 84.30 0.901
5 95.20 0.993 75.50 0.837 96.20 0.994 93.70 0.957 99.10 0.999 98.90 0.999
6 59.30 0.645 54.70 0.586 58.70 0.630 61.20 0.653 58.80 0.636 63.70 0.657
7 80.00 0.881 62.00 0.667 80.20 0.872 85.00 0.920 86.00 0.912 88.20 0.924
8 62.10 0.672 53.90 0.529 68.40 0.754 62.00 0.701 65.00 0.715 64.90 0.690
9 63.70 0.705 51.50 0.549 66.30 0.701 70.00 0.762 76.00 0.824 73.80 0.793
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5.4. Ablation analysis

An ablation experiment is conducted to verify the effectiveness of the proposed pretext network
under a small number of labeled training samples. The base classifiers and one third of the training set
are used for experiments. The MI-EEG classification method without using SSL is denoted as Base,
which uses the random strategy to initialize the network weights. The proposed SSL method is denoted
as TRMINet, which uses the pretext task. These pretext network is used to initialize the weights of the
downstream classification network. The effectiveness of the pretext network is evaluated according to
the performance of the downstream classification network. In order to visualize the accuracies of the
Base and TRMINet methods, bar charts are plotted in Figures 6 and 7.

As shown in Figures 6 and 7, the accuracies of the TRMINet method are higher than the Base
method on most subjects. It shows that the pretext task can learn a good representation which has a
positive impact on the network training under a small number of the labeled training samples.

AUC is used to further measure the TRMINet and the Base methods. The results are shown in
Table 4. As seen from Table 4, the AUC of the TRMINet method is closer, if not higher, than the Base
method on most subjects. This shows that SSL under a small number of the labeled training samples
can improve the classification performance of the downstream network. It also shows that the proposed
pretext task can effectively learn MI-EEG representations.
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Figure 6. Test accuracy using one-third labeled training samples of Data sets 1 of BCI
competition IV and Data set IVa of BCI competition III.
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Figure 7. Test accuracy using one-third labeled training samples of Data sets 2b of BCI
competition IV.

Table 4. Results of ablation studies.

Subjects Base (EEGNet) TRMINet (EEGNet) Base (ShallowConvNet) TRMINet (ShallowConvNet)
ACC ACC CI AUC ACC ACC CI AUC ACC ACC CI AUC ACC ACC CI AUC

Data sets 1
(BCICIV)

a 53.20 [46.10,60.30] 0.725 66.40 [60.00,72.80] 0.741 64.20 [57.30,71.10] 0.708 65.80 [54.90,76.70] 0.739
b 56.90 [52.60,61.20] 0.649 60.40 [54.50,66.50] 0.675 63.60 [50.90,76.30] 0.712 65.00 [52.00,78.00] 0.740
c 49.20 [43.80,54.50] 0.561 55.20 [50.30,60.10] 0.605 60.20 [48.60,71.80] 0.651 61.00 [50.30,71.70] 0.703
d 62.20 [54.70,69.70] 0.740 75.80 [64.30,87.20] 0.826 86.20 [77.00,95.40] 0.938 84.40 [77.20,91.60] 0.901
e 86.70 [78.90,94.40] 0.946 91.20 [84.30,98.10] 0.923 94.90 [87.90,102.0] 0.994 94.80 [87.70,102.0] 0.991
f 53.00 [45.40,60.50] 0.648 68.40 [61.30,75.40] 0.752 65.40 [55.20,75.60] 0.732 66.00 [58.20,73.80] 0.754
g 65.20 [57.10,73.30] 0.814 75.80 [67.10,84.50] 0.856 71.20 [55.90,86.50] 0.820 75.00 [59.60,90.40] 0.821

Data set IVa
(BCICIII)

aa 61.40 [55.20,67.60] 0.675 64.30 [60.50,68.10] 0.755 57.90 [46.20,69.50] 0.732 68.50 [60.10,76.90] 0.785
al 62.00 [59.20,64.70] 0.728 71.10 [65.70,76.40] 0.837 91.10 [84.10,98.10] 0.975 91.30 [87.90,94.60] 0.964

Data sets 2b
(BCICIV)

1 54.20 [46.50,61.80] 0.525 57.00 [47.40,66.60] 0.630 53.30 [48.70,58.00] 0.555 54.80 [49.10,60.60] 0.560
2 61.30 [55.70,66.80] 0.663 66.10 [58.40,73.70] 0.695 71.70 [63.10,80.20] 0.796 72.20 [61.60,82.70] 0.813
3 57.50 [50.90,64.10] 0.629 58.70 [49.00,68.30] 0.634 55.00 [43.90,66.10] 0.572 55.70 [47.40,64.00] 0.599
4 62.30 [55.30,69.30] 0.689 66.30 [59.60,73.00] 0.739 58.90 [52.50,65.30] 0.636 64.60 [57.80,71.50] 0.688
5 92.00 [83.00,101.0] 0.980 90.80 [84.20,97.40] 0.977 93.80 [90.00,97.70] 0.993 87.20 [80.50,93.80] 0.965
6 55.60 [44.60,66.60] 0.582 57.90 [47.80,68.00] 0.605 54.00 [45.60,62.40] 0.542 56.20 [46.80,65.50] 0.550
7 63.20 [52.00,74.30] 0.676 68.30 [60.70,75.90] 0.771 76.20 [66.40,86.00] 0.845 82.20 [76.50,87.80] 0.898
8 57.30 [44.50,70.00] 0.583 55.90 [45.20,66.60] 0.563 61.30 [52.00,70.60] 0.647 62.30 [51.60,73.00] 0.680
9 55.60 [44.00,67.20] 0.600 61.80 [53.50,70.10] 0.661 71.80 [65.90,77.80] 0.788 74.70 [69.60,79.70] 0.810

5.5. Comparison of different percentages of labeled training samples

To further verify that SSL can effectively improve the classification performance, the experiments
are conducted under different percentages of the labeled training samples. The representation learning
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ability of the pretext task is evaluated by the classification results of the downstream classification task.
Figures 8 and 9 show the overall accuracy trends of the nine subjects as the percentage of the labeled

training samples increases. The accuracies of the TRMINet method are higher and increase more
obviously than the Base method as the labeled training samples increase on most subjects. This shows
that the proposed pretext task can effectively learn MI-EEG representations, and SSL can effectively
improve classification performance under a small number of the labeled training samples.
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Figure 8. Test accuracy using different percentages of labeled training samples of Data sets
1 of BCI competition IV and Data set IVa of BCI competition III.
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Figure 9. Test accuracy using different percentages of labeled training samples of Data sets
2b of BCI competition IV.

6. Conclusions

In this study, we propose an SSL method, called Temporal Rearrange, which exploits the temporal
characteristics of MI-EEGs to learn the pretext network by identifying the original and rearranged MI-
EEGs. The network learned by the pretext task is used to initialize that of the downstream task. The
experimental results show that the proposed method can improve the classification performance under
a small number of the labeled training samples. It is indicated that the proposed method can alleviate
the performance degradation caused by insufficient labeled training samples. Therefore, it is possible
to improve the classification accuracy of the MI-based BCI system and reduce the burden of labeling
MI-EEGs. In the future, transfer learning and subjectwise strategy will be employed to further improve
the classification performance of the network from multiple subjects.
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