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Abstract: Brucellosis is a zoonotic disease caused by Brucella, and it is an important infectious
disease all over the world. The prevalence of brucellosis in the Chinese mainland has some spatial
characteristics besides the temporal trend in recent years. Due to the large-scale breeding of sheep
and the frequent transportation of sheep in various regions, brucellosis spreads wantonly in pastoral
areas, and human brucellosis spreads from traditional pastoral areas and semi-pastoral areas in the
north to non-pastoral areas with low incidence in the south. In order to study the influence of sheep
immigration on the epidemic transmission, a patch dynamics model was established. In each patch,
the sub-model was composed of humans, sheep and Brucella. The basic reproduction number, disease-
free equilibrium and positive equilibrium of the model were discussed. On the other hand, taking
Shanxi Province and Hebei Province as examples, we carried out numerical simulations. The results
show that the basic reproduction numbers of Shanxi Province and Hebei Province are 0.7497 and
0.5022, respectively, which indicates that the current brucellosis in the two regions has been effectively
controlled. To reduce brucellosis faster in the two provinces, there should be a certain degree of sheep
immigration from high-infection area to low-infection areas, and reduce the immigration of sheep from
low-infection areas to high-infection areas.
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1. Introduction

Brucellosis is one of the common zoonotic diseases, and it mainly infects livestock and has been
reported in various countries [1]. The main reason people suffer from brucellosis is eating food
contaminated with Brucella or contacting the secretions and excreta of sick animals; people don’t
infect each other [2]. There are many kinds of Brucella, including Brucella of cattle, sheep, pigs, dogs
and mice, of which the main infectious sources are sick sheep and cattle [3, 4]. With the large-scale
management of the sheep industry and the frequent trading of sheep products among regions, the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022300


6397

liquidity of sick sheep has increased. In the past 30 years, brucellosis epidemic areas have gradually
shifted from pastoral areas (i.e., Inner Mongolia, Xinjiang, Tibet, Qinghai and Ningxia) to grassland
and agricultural areas (i.e., Shanxi, Liaoning, Hebei, Shandong and Jilin). Especially since 2004, the
affected areas have expanded from the north to the south of China [5, 6]. There is evidence that the
epidemic of brucellosis in the south is caused by infected animals imported from other regions [7].
Therefore, the development of animal husbandry and the immigration of sheep are the most
commonly accepted explanations for the prevalence of human brucellosis.

Mathematical modeling is a good tool to study diseases and give measures for disease control. For
example, mathematical models have played a key role in predicting and controlling the disease for the
novel coronavirus currently present globally, Ma et al. [8] studied the effect of mask use on controlling
the spread of COVID-19 by constructing a model, and Asamoah et al. [9] studied the optimal control
and cost effectiveness of COVID-19 through modeling. Some mathematical models have been used in
the study of brucellosis. For example, Li et al. [2] studied the transmission mechanism of brucellosis in
the Hinggan League of Inner Mongolia, and the results showed that banning the mixed feeding of basic
ewes and other sheep, vaccination, detection and culling were the effective strategies. Hou and Sun [10]
established a multi-stage dynamic model of sheep brucellosis transmission, and it was concluded that
the birth rate, vaccination rate and culling rate of sheep play an important role in the transmission of
brucellosis. From the investigation and comparison of the effects of vaccination and culling strategies,
the latter is better than the former. Chen et al. [11] studied the spatial distribution of human brucellosis
in Shanxi Province and found that the proportion of affected cities and towns increased from 31.5% in
2005 to 82.5% in 2014. These papers only studied the temporal and spatial characteristics of human
brucellosis and established a dynamic model according to the pathogenesis and propagative law of
brucellosis in different epidemic areas. The immigration of sheep among patches is an important factor
causing the spread of brucellosis, but there is little work.

With regard to the research on the spatial transmission of brucellosis, Zhang et al. [12] established
a multi-patch dynamic model of cattle brucellosis, and they obtained that the dispersal of susceptible
populations of each patch and the centralization of infected cattle to patches with large breeding scale
are conducive to the control of the disease. However, the basic reproduction number, the uniqueness
of the positive equilibrium and the global asymptotic stability have not been further analyzed, and
there is no numerical simulation of practical problems. Sick sheep are a major source of human
brucellosis. Based on the above research, this paper established a patch model composed of people,
sheep and Brucella. The transmission of sheep brucellosis among patches was analyzed qualitatively
and quantitatively, and the prevention and control measures were put forward in combination with
practical problems.

The article is organized as follows. In Section 2, an n-patch dynamics model was proposed. In
Section 3, we gave the mathematical analysis of the model, including the basic reproduction number,
disease-free equilibrium and positive equilibrium. In Section 4, taking two patches in Shanxi Province
and Hebei Province as examples, the numerical simulation was given. In Section 5, a brief conclusion
was made.
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2. Model formulation

The spatial distribution of human brucellosis shows that there is inter-provincial transmission of
human brucellosis in China. Therefore, we regarded each province as an isolated patch. Assuming
there are n patches, a multi-patch model composed of humans, sheep and Brucella was established. We
made some assumptions about the model: that human brucellosis is mainly transmitted by sick sheep,
and that environmental brucellosis also causes infection in susceptible people and sheep. There are
few reports of human-to-human transmission of brucellosis, so human-to-human and human-to-animal
transmission are ignored. Since sheep are the main source of infection, we considered only sheep
immigration among patches and not human immigration among patches. In patch i, the population is
divided into three classes: S h

i , Ih
i and Yh

i , which are susceptible, acute and chronic brucellosis patients at
time t, respectively. Sheep are divided into two classes: S i and Ii , which are the number of susceptible
sheep and infected sheep at time t, respectively. During infection, the infected sheep release brucella
into the environment, and the number of brucella in the environment is denoted by Wi. The flow chart
of brucellosis is shown in Figure 1.

Figure 1. Flow chart of brucellosis transmission among patches.

Based on the model flow chart, we established a multi-patch dynamics model including sheep,
humans and bacteria in the environment:

dS h
i

dt = Ah
i − dihS h

i − βiS h
i Ii − αiS h

i Wi + piIh
i ,

dIh
i

dt = βiS h
i Ii + αiS h

i Wi − dihIh
i − piIh

i − miIh
i ,

dYh
i

dt = miIh
i − dihYh

i ,
dS i
dt = Av

i − divS i − δiS iIi − φiWiS i +
∑n

j=1 ai jS j,
dIi
dt = δiS iIi + φiWiS i − divIi − aivIi +

∑n
j=1 bi jI j,

dWi
dt = kiIi − σWi,

i = 1, 2..., n,

(2.1)

where Ah
i and dih are the numbers of birth and natural mortality of people per unit time, respectively;

Av
i and div are the birth number and sale rate of sheep per unit time, respectively; pi is the transfer rate
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from acute infections to susceptible individuals; mi is the transfer rate from acute infections to chronic
infections; αi is the transmission rate of Brucella to susceptible humans; βi is the transmission rate of
infectious sheep to susceptible humans; δi is the transmission rate of infectious sheep to susceptible
sheep; φi is the transmission rate of Brucella to susceptible sheep; aiv is the disease-related culling rate
of infectious sheep; ai j and bi j are the immigration rates of the susceptible sheep and infectious sheep
from the jth patch to the ith patch for i , j; −aii =

∑
i, j a ji and −bii =

∑
i, j b ji are the emigration

rates of the susceptible sheep and infectious sheep; ki is the amount of Brucella released from infected
sheep; and σ is the decay rate of Brucella.

Since the last three equations of system (2.1) are independent of the first three equations, we only
studied the following system for the dynamic analysis of (2.1):


dS i
dt = Av

i − divS i − δiS iIi − φiWiS i +
∑n

j=1 ai jS j,
dIi
dt = δiS iIi + φiWiS i − divIi − aivIi +

∑n
j=1 bi jI j,

dWi
dt = kiIi − σWi,

i = 1, 2..., n.

(2.2)

3. Dynamic analysis of model

Firstly, we considered the existence and uniqueness of the disease-free equilibrium of (2.2).
Let E0 = (S 0

1, S
0
2, ..., S

0
n, 0, ..., 0, 0, ..., 0) be the disease-free equilibrium of (2.2); then

S 0 = (S 0
1, S

0
2, ..., S

0
n) is the positive equilibrium of the following subsystem:

dS i

dt
= Av

i − divS i +

n∑
j=1

ai jS j, i = 1, 2, ..., n. (3.1)

According to Av
i − divS i +

∑n
j=1 ai jS j = 0, we define an auxiliary matrix

M1 =


d1v − a11 −a12 . . . −a1n

−a21 d2v − a22 . . . −a2n
...

...
. . .

...

−an1 −an2 . . . dnv − ann


n×n

.

Then, M1S = Av, where S = (S 1, S 2, ..., S n)T , Av = (Av
1, A

v
2, .., A

v
n)T . Note that M1 is an irreducible M-

matrix (Appendix A [13]), and M1S = Av has a unique solution S . According to corollary 4.3.2 [14],
M−1

1 is a positive matrix; then, S = M−1
1 Av > 0, so S 0 = (S 0

1, S
0
2, ..., S

0
n) is the only positive equilibrium

of (3.1).
Define s(M) as the spectral bound of matrix M.

s(M)=max{Reλ:λ is an eigenvalue of M}.
M1S = Av, so −M1S = −Av. Since −M1 is an irreducible Metzler matrix , by the Perron-Frobenius

Theorem [15], s(−M1) is a zero solution of the characteristic polynomial, there is no other eigenvalue
λ so that R(λ) = s(−M1), and there is only one positive eigenvector for the eigenvalue s(−M1). Let
V = (v1, v2, . . . , vn) be a positive eigenvector associated with s(−M1); then, −M1V = s(−M1)V =
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−Av, so s(−M1) < 0, and hence all eigenvalues of −M1 have negative real parts. Since (3.1) is a
linear system, S 0 = (S 0

1, S
0
2, . . . , S

0
n) is globally asymptotically stable on S ∈ Rn

+ \ 0. Thus, E0 =

(S 0
1, S

0
2, ..., S

0
n, 0, 0, ..., 0, 0, 0, ..., 0) is the disease-free equilibrium of (2.2).

3.1. Basic reproduction number

To derive the basic reproduction number R0 for (2.2), we ordered the infected variables first by
disease state, then by patch, i.e.,

I1, I2, ..., In,W1,W2, ...,Wn.

Applying the method of the next generation matrix [13], we can obtain the expression of the basic
reproduction number; define

F =



δ1S 1I1 + φ1W1S 1
...

δnS nIn + φnWnS n

0
...

0


, V =



(d1v + a1v)I1 −
∑n

j=1 b1 jI j
...

(dnv + anv)In −
∑n

j=1 bn jI j

−k1I1 + σW1
...

−knIn + σWn


.

F =

[
F1 F2

0 0

]
, V =

[
V1 0
V3 V4

]
, where F1 = (δi j(δiS 0

i ))n×n, F2 = (δi j(φiS 0
i ))n×n, V1 = (δi j(div + aiv)−B)n×n,

B = (bi j)n×n, V3 = (δi j(−ki))n×n, V4 = (δi j(σ))n×n.
δi j denotes the Kronecker delta (i.e., 1 when i = j and 0 otherwise). Define M = F − V .

V−1 =

[
V−1

1 0
−V−1

4 V3V−1
1 V−1

4

]
, FV−1 =

[
F1V−1

1 − F2V−1
4 V3V−1

1 F2V−1
4

0 0

]
;

then, R0 = ρ(FV−1) = ρ(F1V−1
1 − F2V−1

4 V3V−1
1 ), where ρ(FV−1) represents the spectral radius

of the matrix FV−1. In particular, the basic reproduction number of the single patch model (2.2) is
R0i =

δiS 0
i σ+kiφiS 0

i
(div+aiv)σ .

Corollary 3.1. min1≤i≤n R0i ≤ R0 ≤ max1≤i≤n R0i.

Proof. Through the expression of R0, we gained F1V−1
1 − F2V−1

4 V3V−1
1 = (F1 − F2V−1

4 V3)V−1
1 .

Let

H = F1 − F2V−1
4 V3 =


δ1S 0

1σ+k1φ1S 0
1

σ
0 . . . 0

0 δ2S 0
2σ+k2φ2S 0

2
σ

. . . 0
...

...
. . .

...

0 0 . . .
δnS 0

nσ+knφnS 0
n

σ


,

then, R0 = ρ(HV−1
1 ).

Since V1 is the M-matrix, V−1
1 is a nonnegative matrix. We apply Fischer’s inequality (Theorems

2.5.4(e) [16]) and 3.4 [17] to estimate the diagonal entries of matrix V−1
1 .

For example, let V1 = (ai j)n×n and V−1
1 = (αi j)n×n; then, 1

aii
≤ αii, i = 1, 2, ..., n. Therefore, 0 ≤

diag{ 1
d1v+a1v

, ..., 1
dnv+anv

} ≤ diag{ 1
d1v+a1v−b11

, ..., 1
dnv+anv−bnn

} ≤ diag{α11, ..., αnn} ≤ V−1
1 .
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So, min1≤i≤n R0i ≤ R0.
Let G = V1 + B = diag{d1v + a1v, ..., dnv + anv}; then, I(V1G−1) = I ⇒ I(GV−1

1 ) = I, where I =

(1, 1, ..., 1)1×n, which implies that the spectral radius of GV−1
1 is 1, and hence ρ(V−1

1 ) = ρ(G−1GV−1
1 ) ≤

ρ(G−1)ρ(GV−1
1 ) = ρ(G−1).

So, ρ(HV−1
1 ) ≤ ρ(H)ρ(V−1

1 ) ≤ ρ(H)ρ(G−1) ≤ max1≤i≤n R0i.
Based on the above, min1≤i≤n R0i ≤ R0 ≤ max1≤i≤n R0i.

Lemma 3.1. There hold two equivalences [13]:

R0 < 1⇐⇒ s(M) < 0,R0 > 1⇐⇒ s(M) > 0.

By Theorem 2 [13], the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1 and is
unstable if R0 > 1.

Next, we studied the global dynamics of (2.2), the disease-free equilibrium E0 is globally attractive
if R0 < 1, and (2.2) has a positive equilibrium if R0 > 1.

Lemma 3.2. Let k = max{ki : 1 ≤ i ≤ n}, dv = min{div : 1 ≤ i ≤ n},N∗ = A
dv

, where A =
∑n

i=1 Av
i . Every

forward orbit of (2.2) eventually enters into G = {(S , I,W) ∈ R3n
+ :
∑n

i=1(S i + Ii) ≤ N∗,
∑n

i=1 Wi ≤
kN∗
σ
},

and G is positively invariant for (2.2).

Theorem 3.1. When R0 < 1, the disease-free equilibrium of system (2.2) is globally asymptotically
stable in G [12].

Theorem 3.2. When R0 > 1, then (2.2) admits at least one positive equilibrium, and there is a
positive constant κ such that every solution φt(χ0) = (S (t), I(t),W(t)) of (2.2) with
χ0 = (S 1(0), ..., S n(0), I1(0), ..., In(0),W1(0), ...,Wn(0)) ∈ Rn

+ × Rn
+ \ {0} × Rn

+ \ {0} satisfies

lim
t 7→∞

Ii (t) > κ, lim
t 7→∞

Wi (t) > κ, (i = 1, 2, ..., n). (3.2)

Proof. Let
X = {(S 1, .., S n, I1, ..., In,W1, ...,Wn) : S i ≥ 0, Ii ≥ 0,Wi ≥ 0, i = 1, 2, ..., n}.
X0 = {(S 1, .., S n, I1, ..., In,W1, ...,Wn) ∈ X : Ii > 0,Wi > 0, i = 1, 2, ..., n}.
∂X0 = X \ X0 = {(S 1, .., S n, I1, ..., In,W1, ...,Wn) ∈ X : for some i ∈ {1, 2, ..., n}, Ii = 0,Wi = 0}.

Then, we showed that (2.2) is uniformly persistent with respect to (X0, ∂X0).
Clearly, X and X0 are positively invariant, and ∂X0 is relatively closed in X. Furthermore, system

(2.2) is point dissipative [18]. Set M∂ = {(S (0), I(0),W(0)) : (S (t), I(t),W(t)) satisfies (2.2) and
(S (t), I(t),W(t)) ∈ ∂X0,∀t ≥ 0}.We next show that M∂ = {(S , 0, 0) : S ≥ 0}.

Set (S (0), I(0),W(0)) ∈ M∂; then, I(t) = 0,W(t) = 0,∀t ≥ 0. Suppose not, then there exist an
i0, 1 ≤ i0 ≤ n, and a t0 ≥ 0 such that Ii0(t0) > 0. Here we only analyzed I(t), because the change of W(t)
depends on the change of I(t). If Ii(t) > 0, then Wi(t) > 0; if Ii(t) = 0, then Wi(t) eventually tends to 0.

We partition {1, 2, ..., n} into two sets Q1 and Q2 such that
Ii(t0) = 0,∀i ∈ Q1,
Ii(t0) > 0,∀i ∈ Q2.
Defined by M∂, Q1 is a non-empty set. Since Ii0 > 0, Q2 is non-empty. For any j ∈ Q1, we have

I′j(t0) = δ jS j(t0)I j(t0)+φ jW j(t0)S j(t0)−dvI j(t0)−avI j(t0)+
∑n

i=1 b jiIi(t0) = φ jW j(t0)S j(t0)+
∑n

i=1 b jiIi(t0) ≥
b ji0 Ii0(t0) > 0.
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Then exist an ε0 > 0, when t0 < t < t0 + ε0, there is I j(t) > 0, j ∈ Q1, we can restrict ε0 > 0
small enough such that t0 < t < t0 + ε0, Ii(t) > 0, i ∈ Q2. This shows that when t0 < t < t0 + ε0,
(S (t), I(t),W(t)) < ∂X0, which contradicts (S (0), I(0),W(0)) ∈ M∂, so M∂ = {(S , 0, 0) : S ≥ 0}.

Obviously, M∂ has only one equilibrium E0. We chose η > 0 small enough such that s(M−Mη) > 0,

where Mη =

[
Aη Bη

0 0

]
, Aη = δi j(δiη)n×n, Bη = δi j(φiη)n×n. Consider the perturbed system of (3.1)

S
′

i = Av
i − (div + δiε1 + φiε1)S i +

n∑
j=1

ai jS j. (3.3)

First, with regard to our previous analysis of the system (3.1), restrict ε1 > 0 small enough so that the
system (3.3) has a unique equilibrium point S ∗(ε1) and is globally asymptotically stable, and S ∗(ε1) is
continuous in ε1. Therefore, we can further restrict ε1 > 0 small enough such that S ∗(ε1) > S 0 − η.

Let us consider an arbitrary positive solution (S (t), I(t),W(t)) of (2.2); then, lim
t→∞

sup max
i
{Ii(t)} > ε1.

Suppose there is a T > 0 such that Ii(t) ≤ ε1, i = 1, 2, ..., n, for t ≥ T ; then for t ≥ T , we have

S ′i ≥ Av
i − (div + δiε1 + φiε1)S i +

n∑
j=1

ai jS j, i = 1, 2..., n. (3.4)

Since the equilibrium S ∗(ε1) of system (3.3) is globally asymptotically stable, and S ∗(ε1) > S 0 − η,
there is T1 > 0 such that S (t) ≥ S 0 − η for t > T1 + T . Therefore, when t > T1 + T ,

I′i ≥ δi(S 0
i − η)Ii + φiWi(S 0

i − η) − divIi − aivIi +

n∑
j=1

bi jI j i = 1, 2, ..., n.

Since the matrix (M−Mη) has a positive eigenvalue s(M−Mη) with a positive eigenvector, according
to the comparison principle [19], lim

t→∞
Ii(t) = ∞; then, lim

t→∞
Wi(t) = ∞, i = 1, 2, ..., n, which leads to a

contradiction.
For the system (3.1), we noted that S 0 is globally asymptotically stable. From the above, we can

see that E0 is an isolated invariant set in X, W s(E0) ∩ X0 = ∅. Clearly, each orbit in M∂ converges to
E0, and E0 is acyclic in M∂. According to the theorem 4.6 [20], the system (2.2) is uniformly
persistent with respect to (X0, ∂X0). By the theorem 2.4 [21], (2.2) has an equilibrium
E∗ = (S ∗1, ..., S

∗
n, I
∗
1, ..., I

∗
n,W

∗
1 , ...,W

∗
n) ∈ X0, S ∗ ∈ Rn

+, I
∗ ∈ int(Rn

+),W∗ ∈ int(Rn
+). Where S ∗ ∈ Rn

+ \ {0},
supposed that S ∗ = 0, from the second equation of system (2.2), we can get 0 = −

∑n
i=1(div + aiv)I∗i ,

since div + aiv , 0; then, I∗i = 0, i = 1, 2, ..., n, a contradiction. Through the first equation of system
(2.2) and the irreducibility of matrix (ai j)n×n, S ∗ ∈ int(Rn

+),∀t > 0; then, (S ∗, I∗,W∗) is the positive
equilibrium of system (2.2).

3.2. Uniqueness and uniform persistence of endemic equilibrium

We restricted the system (2.2) by assuming that the disease-related culling rate is 0, and the
immigration rate of susceptible sheep and infected sheep is the same, that is, ai j = bi j, i = 1, 2, ..., n;
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then, the model of system (2.2) becomes
dS i
dt = Av

i − divS i − δiS iIi − φiWiS i +
∑n

j=1 bi jS j,
dIi
dt = δiS iIi + φiWiS i − divIi +

∑n
j=1 bi jI j,

dWi
dt = kiIi − σWi,

i = 1, 2..., n.

(3.5)

Add the first two equations of the system (3.5):

dNi

dt
= Av

i − divNi +

n∑
j=1

bi jN j, i = 1, 2, ..., n. (3.6)

By the conclusion of system (3.1), system (3.6) has a unique positive equilibrium N∗ = (N∗1 ,N
∗
2 , ...,N

∗
n),

and system (3.5) has the following limit system:
dIi
dt = δi(N∗i − Ii)Ii + φiWi(N∗i − Ii) − divIi +

∑n
j=1 bi jI j,

dWi
dt = kiIi − σWi,

i = 1, 2..., n.

(3.7)

Lemma 3.3. For system (3.7), the set G1 = {(I,W) ∈ R2n
+ : Ii ≤ Ni,Wi ≤

kiNi
σ
, i = 1, 2, ..., n} is positively

invariant.

Theorem 3.3. When R0 > 1, the system (3.7) admits a unique endemic equilibrium
E
∗

= {I∗1, ..., I
∗
n,W

∗
1 , ...,W

∗
n}, which is globally asymptotically stable with respect to (I(0),W(0)) ∈ G1.

Proof. Through the definition on the right side of the system (3.7), F : G1 → G1. Obviously, F is
continuously differentiable and is cooperative on G1, and DF(I,W) is irreducible for every (I,W) ∈ G1.
F(0) = 0, and Fi(I,W) ≥ 0 for all (I,W) ∈ G1 with Ii = 0,Wi = 0, i = 1, 2, ..., n.

For ∀α ∈ (0, 1) and (I,W) = (I1, ..., In,W1, ...,Wn) ∈ G1, we have
αδi(N∗i − αIi)Ii + αφiWi(N∗i − αIi) − αdivIi + α

∑n
j=1 bi jI j > α[δi(N∗i − Ii)Ii + φiWi(N∗i − Ii) − divIi +∑n

j=1 bi jI j], i = 1, 2, ..., n.
kiαIi − σαWi = α(kiIi − σWi), i = 1, 2, ..., n.
Therefore, F is strictly sublinear on G1 [22].

Let s(DF(0)) = M =

[
F1 − V1 F2

−V3 −V4

]
, where F1 = (δi j(δiN∗i ))n×n, F2 = (δi j(φiN∗i ))n×n, V1 = (δi j(div−

B)n×n, B = (bi j)n×n, V3 = (δi j(−ki))n×n, V4 = (δi j(σ))n×n. Then, M is an irreducible Metzler matrix.
According to the Perron-Frobenius theorem, s(M) is an eigenvalue with a positive eigenvector, and let
its positive eigenvector be x = (x1, ..., xn, xn+1, ..., x2n), so Mx = s(M)x = (δ1x2

1 + φ1x1xn+1, ..., δnx2
n +

φnxnx2n, 0, ..., 0)T ; then, s(M) > 0. From lemma 3.1 and corollary 3.2 [22], the system (3.7) has a
unique positive equilibrium E

∗
= {I∗1, ..., I

∗
n,W

∗
1 , ...,W

∗
n}.

Theorem 3.4. When R0 > 1, the system (3.5) has a unique endemic equilibrium
E∗ = (S ∗1, ..., S

∗
n, I
∗
1, ..., I

∗
n,W

∗
1 , ...,W

∗
n), which is globally asymptotically stable with respect to

(S (0), I(0), W(0)) ∈ G.
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Proof. Let ψ(t) be the corresponding flow of system (3.7). According to the strong monotonicity of
ψ(t), S ∗i = N∗i − I∗i > 0, i = 1, 2, ..., n, so the system (3.5) has a unique positive equilibrium
E∗ = (S ∗1, ..., S

∗
n, I
∗
1, ..., I

∗
n,W

∗
1 , ...,W

∗
n). Next, we prove the globally asymptotic stability of the positive

equilibrium E∗.
Let φ(t) : R3n

+ → R3n
+ be the solution semiflow of system (3.5), and let ω be the ω limit set of

φ(S (0), I(0), W(0)) ∈ G. By lemma 2.1′ [21], ω is an internal chain transitive set for φ(t). Clearly,
when R0 > 1, the system (3.5) has only two equilibria, E0 and E∗, by S 0 = (S 0

1, S
0
2, ..., S

0
n) is globally

asymptotically stable on Rn
+\{0} and theorem 3.1, it is easy to know that φ(t) satisfies theorem 1.2.2 [23].

Thus, ω is E0 or E∗. Next, we show that ω = {E∗}.
Let’s assume ω = {E0}; then, lim

t→∞
S i(t) = S 0

i , limt→∞
Ii(t) = 0, lim

t→∞
Wi(t) = 0, (i = 1, 2, ..., n).

Since s(M) > 0, we can choose a small enough ε > 0 so that s(M − Mε) > 0, where Mε =[
A01 B01

0 0

]
, A01 = (δi j(δiε))n×n, B01 = (δi j(φiε))n×n. It follows that there exists a T such that S i(t) > S 0

i −ε

for t > T ; then, dIi
dt > δi(S 0

i − ε)Ii + φiWi(S 0
i − ε) − dvIi +

∑n
j=1 bi jI j. Let v = (v1, v2, ..., vn, vn+1, ..., v2n)

be the positive eigenvector associated with s(M −Mε), and choose a small enough α to satisfy (I,W) =

(I1, ..., In,W1, ...,Wn) ≥ αv. By the comparison theorem, (I,W) ≥ αves(M−Mε )(t−T ), and thus lim
t→∞

Ii(t) =

∞, lim
t→∞

Wi(t) = ∞(i = 1, 2, ..., n), a contradiction. Therefore, E∗ is the only endemic equilibrium and is
globally asymptotically stable.

4. Numerical simulation

Assuming n = 2, the effect of sheep immigration on the transmission of brucellosis was studied by
numerical simulation. Let a21 = −a11, a12 = −a22, b21 = −b11, b12 = −b22, and hence, system (2.1)
reduces to 

dS h
1

dt = Ah
1 − d1hS h

1 − β1S h
1I1 − α1S h

1W1 + p1Ih
1 ,

dIh
1

dt = β1S h
1I1 + α1S h

1W1 − d1hS h
1 − p1Ih

1 − m1Ih
1 ,

dYh
1

dt = m1Ih
1 − d1hYh

1 ,
dS 1
dt = Av

1 − d1vS 1 − δ1S 1I1 − φ1W1S 1 − a21S 1 + a12S 2,
dI1
dt = δ1S 1I1 + φ1W1S 1 − d1vI1 − a1vI1 − b21I1 + b12I2,
dW1
dt = k1I1 − σW1,

dS h
2

dt = Ah
2 − d2hS h

2 − β2S h
2I2 − α2S h

2W2 + p2Ih
2 ,

dIh
2

dt = β2S h
2I2 + α2S h

2W2 − d2hS h
2 − p2Ih

2 − m2Ih
2 ,

dYh
2

dt = m2Ih
2 − d2hYh

2 ,
dS 2
dt = Av

2 − d2vS 2 − δ2S 2I2 − φ2W2S 2 + a21S 1 − a12S 2,
dI2
dt = δ2S 2I2 + φ2W2S 2 − d2vI2 − a2vI2 + b21I1 − b12I2,
dW2
dt = k2I2 − σW2.

(4.1)

For system (4.1), the disease-free equilibrium is P0 = (S 0
1h, 0, 0, S

0
1, 0, 0, S

0
2h, 0, 0, S

0
2, 0, 0), where S 0

1h =
Ah

1
d1h

, S 0
2h =

Ah
2

d2h
, S 0

1 =
Av

1a12+Av
2a12+Av

1d2v

a12d1v+a21d2v+d1vd2v
, S 0

2 =
Av

1a21+Av
2a21+Av

2d1v

a12d1v+a21d2v+d1vd2v
. Then, the basic reproduction number of the

two-patch submodels is calculated as
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R0 = 1
2A (C +D+

φ1S 0
1B+E
σ

)+ 1
2A

√
(C − D +

φ1S 0
1B−E
σ

)2 + 4b12b21δ1S 0
1δ2S 0

2 − 4b12b21k2φ1S 0
1φ2S 0

2, where
A = (d1v + a1v + b21)(d2v + a2v + b12) − b12b21, B = (d2v + a2v + b12)k1,C = (d2v + a2v + b12)δ1S 0

1,D =

(d1v + a1v + b21)δ2S 0
2, E = (d1v + a1v + b21)k2φ2S 0

2.

Table 1. Description and parameter values of relevant parameters in the model.

Symbol Description Shanxi Province CI Hebei Province CI Source

Ah
i

The birth number of population
in ith patch per unit time 201,164 / 467,718 / [A]

αi
Brucella in environment-to-susceptible

human transmission rate in ith patch 1.9e−13 [1.9e−13

1.9e−13] 1.9e−13 [1.9e−13

1.9e−13] fitted

βi
The infectious sheep-to-susceptible
human transmission rate in ith patch 6.64e−09 [6.64e−09

6.64e−09] 6.64e−09 [6.64e−09

6.64e−09] fitted

dih
Natural mortality of humans

in ith patch 0.0056 / 0.0065 / [A]

pi
The acute infected-to-susceptible
human transfer rate in ith patch 0.4 / 0.4 / [24]

mi
The acute infected-to-chronic infected

transfer rate in ith patch 0.6 / 0.6 / [24]

Av
i

The birth number of sheep in
ith patch per unit time 4,464,653 / 20,346,171 / [B]

div
The sale rate of sheep in
ith patch per unit time 0.51 / 1.44 / [B]

δi
The infectious sheep-to-susceptible
sheep transmission rate in ith patch 5.64e−08 [2.531e−08

8.749e−08] 5.648e−08 [1.576e−08

9.72e−08] fitted

φi
Brucella in environment-to-susceptible

sheep transmission rate in ith patch 1e−08 [0.18e−08

2.007e−08] 3e−09 [3.034e−09

3.188e−09] fitted

aiv
Disease-related culling rate of
infectious sheep in ith patch 0.15 / 0.15 / assumed

ai j (i , j) The immigration rate of the susceptible
sheep from jth patch to ith patch a21 = 0.22 / a12 = 0.07 / assumed

bi j (i , j) The immigration rate of the infectious
sheep from jth to ith patch b21 = 0.22 / b12 = 0.07 / assumed

−aii
The emigration rate of the susceptible

sheep in ith patch −a11 = 0.22 / −a22 = 0.07 / assumed

−bii
The emigration rate of the infectious

sheep in ith patch −b11 = 0.22 / −b22 = 0.07 / assumed

ki
Brucella quantity released by

infected sheep in ith patch 0.0056 / 0.0056 / assumed

σ Brucella decay rate 0.47 / 0.47 / assumed

(A) According to The China Statistical Yearbook,
A1h = 201, 164, d1h = 0.0056, A2h = 467, 718, d2h = 0.0065.

(B) According to The China Animal Husbandry Statistical Yearbook, in the past eight years, the
average stock in Shanxi Province was 8, 754, 222, the average sale rate was d1v = 0.51, and the birth
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number of sheep per unit time was A1v = 8, 754, 222 × 0.51 = 4, 464, 653. The average stock in Hebei
Province was 14,129,285, the average sale rate was d2v = 1.44, and the birth number of sheep per unit
time was A2v = 14, 129, 285 × 1.44 = 20, 346, 171.

(a)

2010 2011 2012 2013 2014 2015 2016 2017 2018

t(year)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
2

(t
)

104

95% CI

Model simulation

Reported cases

(b)

Figure 2. Numerical simulation of the cumulative number of human brucellosis cases in
Shanxi and Hebei from 2010 to 2018. The solid line represents the simulation results, these
points representing the cumulative reported number of human brucellosis cases from 2010
to 2018, and the dotted line represents the 95% confidence interval. The parameter values
are from Table 1. For the initial values, S h0

1 = 35, 740, 000, Ih0
1 = 3888,Yh0

1 = 2000, S 0
1 =

7, 347, 000, I0
1 = 1235,W0

1 = 784, 670, S h0
2 = 71, 940, 000, Ih0

2 = 2503,Yh0
2 = 1000, S 0

2 =

14, 086, 000, I0
2 = 2142,W0

2 = 220, 750.

4.1. Parameter estimation

Shanxi and Hebei provinces are adjacent provinces with high incidence rates and similar time series.
We have chosen the two provinces as the two patches in model (4.1). The rationality of the model is
verified by the least squares method using MATLAB. C1 (t) and C2 (t) are defined as the theoretical
cumulative numbers of Shanxi Province and Hebei Province in the t year, that is, the solutions of
models dC1

dt = β1S h
1I1 + α1S h

1W1 and dC2
dt = β2S h

2I2 + α2S h
2W2. By fitting the model solution with the

cumulative number of human brucellosis reported from 2010 to 2018, the values of parameters α1, α2,
β1, β2, δ1, δ2, φ1 and φ2 are estimated to obtain α1 = α2 = 1.9e−13, β1 = β2 = 6.64e−09, δ1 = 5.64e−08,
δ2 = 5.648e−08, φ1 = 1e−08 and φ2 = 3e−09. The data used to simulate the model are from article [4],
and the model parameter values are from Table 1. Figure 2(a),(b) shows the numerical simulation and
95% confidence interval of the cumulative number of human brucellosis cases in Shanxi and Hebei
provinces from 2010 to 2018, respectively. As can be seen from Figure 2, the solution of the model is
consistent with the reported data. In addition, we assumed that the number of newly infected people
in the two regions obeys the Poisson distribution at time t, and the cumulative cases are C1 (t) and C2
(t), t = 2010,...,2018. If 1000 samples are taken from the Poisson distribution, we have 1000 groups of
data samples and make least squares fitting for each group of data. At the same time, 1000 groups of
corresponding estimated parameter values can be obtained. We can assume that the parameters obey
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the normal distribution, and then we can obtain the 95% confidence interval of the parameters (Table 1).
According to the parameter values in the simulation and the basic reproduction number formula in the
two patch models, R0 = 0.5457, R01 = 0.7497, and R02 = 0.5022, which means that the disease will
disappear in Shanxi and Hebei Provinces. This shows that the two regions are very effective in the
prevention and control of brucellosis.

R
0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

PRCC

1

2

1

2

a
12

a
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a
21

a
2v

d
1v

d
2v

Figure 3. Sensitivity analysis of R0 using partial rank correlation coefficient (PRCC).

4.2. Sensitivity analysis

As a zoonotic infection, the best way to control human brucellosis is to control the disease in
animals. The control measures of livestock brucellosis include detection, vaccination and elimination
of infected animals . We should also strengthen information dissemination and health education on
brucellosis, and improve veterinary and public health supervision [25]. In this part, we used the
PRCC (partial rank correlation coefficient) to analyze the sensitivity of R0 on control parameters. The
control parameters are disease-related culling rates a1v and a2v, the infection rates of infected sheep to
susceptible sheep δ1 and δ2, infection rates of Brucella to susceptible sheep φ1 and φ2, sheep sales
rates d1v and d2v, and sheep immigration rates a12 and a21. The sensitivity analysis of basic
reproduction number R0 to parameters is shown in Figure 3. We can observe that R0 is more sensitive
to δ1, δ2, a12, a1v, d1v and d2v (|PRCC| > 0.5), in which δ1, δ2 and a12 are positively correlated (PRCC
> 0.5), and a1v, a21, d1v and d2v are negatively correlated (PRCC < -0.5). There may be many factors
interacting with human brucellosis. Therefore, when eradicating this disease, we can take a variety of
measures, such as timely handling of the infected sheep in the two regions, reducing the infection rate
from infected sheep to susceptible sheep in the two regions, decreasing the immigration of sheep from
Hebei Province to Shanxi Province and improving the culling rate of infected sheep in Shanxi
Province and increasing the sheep immigration rate from Shanxi Province to Hebei Province and the
sales rate of sheep in the two regions. The relationships between the basic reproductive number R0

and the disease-related culling rate a2v of sheep in Hebei Province and the infection rates φ1 and φ2

from Brucella to susceptible sheep of the two regions are weak, so we do not select these three
parameters as control parameters. In particular, it can be observed that R0 has a positive correlation
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with the sheep immigration rate (a12) from Hebei Province to Shanxi Province and a negative
correlation with the sheep immigration rate (a21) from Shanxi Province to Hebei Province. Therefore,
next, we studied the impact of the sheep immigration rate on human brucellosis.
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Figure 4. R0 in terms of parameters a12 and a21.

4.3. The influence of sheep immigration on human brucellosis infection

Due to R0 having the opposite correlation with a12 and a21, in this part, we investigated the effects
of sheep immigration in Shanxi and Hebei Provinces on human brucellosis infection. Figure 4(a),(b)
shows that R0 is more sensitive to a12. We can reduce the immigration of sheep from Hebei Province to
Shanxi Province to control the disease of these two patches. In addition, we chose different immigration
rates a12 and a21 to study the changes of cumulative cases C1, C2 in the two provinces with time t
(Figure 5). Figure 5(a) shows that as a12 increases, the number of infected cases in the two regions is
increasing, and when a12 = 0, the two regions have the least number of infected individuals. Figure 5(b)
shows that as a21 increases, the cases in Shanxi Province are decreasing, while the infected in Hebei
Province are increasing. When a21 = 0.44, the least are infected in Shanxi Province, and the most are
infected in Hebei Province. When a21 = 0, the most are infected in Shanxi Province, and the least
are infected in Hebei Province. This indicates that in order to have fewer infected, the immigration of
sheep cannot be completely absent, the immigration of sheep from Hebei Province to Shanxi Province
should be reduced, and the immigration of sheep from Shanxi Province to Hebei Province should be
controlled within a reasonable range.

The basic reproduction number R0 is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual [13]. For Shanxi Province and
Hebei Province, R01 = 0.7497 > R02 = 0.5022, that is, in the population of all susceptible people, the
average number of infected people in Shanxi Province is greater than that in Hebei Province. Here,
we refer to Shanxi Province as the high-infected area and Hebei Province as the low-infected area.
When there is only one-way immigration (a12 = 0 or a21 = 0), the change of cumulative cases C1, C2
with time t in both provinces is shown in Figure 6. When a21 = 0, only sheep immigrate from the
low-infected area to the high-infected area, and Figure 6(a) shows that different values of a12 increase
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human brucellosis in the high-infected area to different degrees. When a12 = 0, the increase is
minimal. However, the situation of brucellosis in the low-infected zone shown in Figure 6(a) is
exactly opposite to that shown in Figure 5(a), where increasing a12 will reduce the occurrence of
brucellosis in the low-infected zone but increase the occurrence of brucellosis in the high-infected
zone. When a12 = 0 and only sheep immigrate from the high-infected area to the low-infected area,
the situation shown in Figure 6(b) is similar to that shown in Figure 5(a) (a12 = 0.07) for C1, C2 with
time t. This indicates that no sheep immigrate from the low-infected area to the high-infected area, or
a small amount of immigration has no effect on brucellosis in these two areas. In conclusion, to better
reduce human brucellosis in these two areas, there should be some degree of sheep immigration from
high- to low-infection areas, and sheep immigration from low- to high-infection areas should be
reduced.
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Figure 5. Effects of sheep immigration rates a12 and a21 on brucellosis in Shanxi and Hebei
Provinces.

From the above analysis, it can be seen that in order to better control human brucellosis in the
two provinces, there needs to be some sheep immigration between the two provinces. So, what is
the amount of sheep immigration under the best condition of disease control? We thought of the
case that sheep immigration in these two provinces is a constant C and to minimize R0 subject to the
condition of a21A1v + a12A2v = C. We brought a12 = C−a21A1v

A2v
into the R0 expression, and then R0 can be

regarded as a function of a21. Different immigration C values were selected to obtain different min R0.
Figure 7 shows that min R0 first decreases and then increases with the increase of immigration. The
maximum immigration under the condition of the best disease control effect is C = 10, 000, 000. The
immigration rates of Shanxi Province and Hebei Province are a21 = 0.88 and a12 = 0.3, respectively,
and the immigration rates are C1 = 3, 928, 894 and C2 = 6, 071, 105, respectively.
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Figure 6. The change of brucellosis between the two areas when sheep immigration occurs
in only one area: (a) when there is no sheep immigration from high-infection area to low-
infection area (i.e., a21 = 0), the influence of sheep immigration rate (a12) from low-infection
area to high-infection area on the occurrence of brucellosis in these two areas; (b) when there
is no sheep immigration from low-infection area to high-infection area (i.e., a12 = 0), the
influence of sheep immigration rate (a21) from high-infection area to low-infection area on
the occurrence of brucellosis in these two areas.
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Figure 7. Effects of different sheep immigration value on diseases.

In fact, we collected the data of human brucellosis in Shanxi Province and Hebei Province from
2010 to 2020, and we observed that the number of cases in Shanxi Province and Hebei Province
increased sharply in 2019 and 2020. To facilitate our study, we used the number of human brucellosis
cases from 2010 to 2018. According to our research, human brucellosis will disappear in the two
provinces. Based on the parameters in Table 1, MATLAB was applied to derive the numerical solutions
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of cumulative cases C1(t) and C2(t) from 2010 to 2020, and the predicted values of new infections in
2019 and 2020 were obtained according to Ih

i (t) = Ci(t) − Ci(t − 1), i = 1, 2, t = 2019, 2020. It is
predicted that the numbers of human brucellosis cases in Shanxi Province may be 1912 and 1373,
and the numbers of human brucellosis cases in Hebei Province may be 1732 and 1258, in 2019 and
2020 (see Figure 8). However, in 2019 and 2020, the actual numbers of cases in Shanxi Province
were 3279 and 3365, and in Hebei Province they were 3236 and 2968. There is a huge difference
between the predicted data and the actual data. According to our analysis, the main reasons are the
occurrence of African swine fever in 2018, the closure of a large number of domestic pig farms and
slaughterhouses, a large reduction in the source of pigs, a shortage of pork and a significant increase
in prices. Most people chose to buy mutton, and the immigration of sheep in various provinces had
also increased greatly, including Shanxi Province and Hebei Province. The frequent trading of sheep
products between different regions and the increased mobility of infected animals led to a significant
increase in the number of infected people in Shanxi and Hebei provinces in 2019 and 2020, indicating
that sheep immigration has a great impact on human brucellosis infection.
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Figure 8. The predicted value and actual value of human brucellosis in Shanxi Province and
Hebei Province in 2019 and 2020.

5. Conclusions

In the past 30 years, brucellosis epidemic areas have gradually shifted from pastoral areas to
grassland and agricultural areas. Especially since 2004, the affected areas have expanded from the
north to the south of China [5, 6], and studies have confirmed that part of the epidemic in the southern
region was caused by infected animals imported from other regions [7]. Therefore, the geographical
transmission of brucellosis is caused by the immigration of sheep.

In this paper, a patch model was proposed to describe the spatial transmission dynamics of
brucellosis and to study the impact of sheep immigration on the geographical transmission of
brucellosis. Firstly, we analyzed the dynamics of the model, including the basic reproduction number
and the existence, uniqueness and stability of the positive equilibrium.

Secondly, taking Shanxi Province and Hebei Province as examples, numerical simulation was

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6396–6414.



6412

carried out. The parameters were estimated by the least squares method, and R0 = 0.5457,
R01 = 0.7497 and R02 = 0.0.5022 were obtained, which indicate that brucellosis will disappear in the
two provinces. Sensitivity analysis of R0 found that the infection rates δ1 and δ2 from infected sheep
to susceptible sheep, the sheep sale rates d1v and d2v, the sheep immigration rate a12 from Hebei
Province to Shanxi Province and the disease-related culling rate a1v of sheep in Shanxi Province had
greater impacts on R0. Therefore, when eradicating the disease, we can take a variety of measures,
such as vaccinating sheep, timely dealing with infected sheep in these two areas, descreasing the
infection rate of infected sheep to susceptible sheep in the two areas, reducing the immigration of
sheep from Hebei Province to Shanxi Province, improving the culling rate of infected sheep in Shanxi
Province and increasing the sheep immigration rate from Shanxi Province to Hebei Province and the
sales rate of sheep in the two regions.

Finally, we studied the influence of sheep immigration rate on the occurrence of disease. In terms
of sheep immigration between the two regions, we should minimize the sheep immigration from
Hebei Province to Shanxi Province and control the sheep immigration from Shanxi Province to Hebei
Province within a reasonable range. According to R01 = 0.7497 and R02 = 0.5022, when we only
considered one-way immigration, we found that there should be a certain degree of immigration of
sheep from high-infection area to low-infection area, and we should lessen the immigration of sheep
from low-infection area to high-infection area.

We studied the geographic transmission of sheep brucellosis using a deterministic system and
simulated case data from 2010 to 2018 in Shanxi and Hebei provinces. Our model does not consider
stochasticity, periodicity and age structure. Next, the patch model combined with these factors can be
studied. Meanwhile, only the two-patch model was used to simulate the data of two provinces.
Complex transmission among three or more provinces needs to be researched.
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