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Abstract: In this study we investigate computationally tumour-oncolytic virus (OV) interactions that
take place within a heterogeneous extracellular matrix (ECM). The ECM is viewed as a mixture of two
constitutive phases, namely a fibre phase and a non-fibre phase. The multiscale mathematical model
presented here focuses on the nonlocal cell-cell and cell-ECM interactions, and how these interactions
might be impacted by the infection of cancer cells with the OV. At macroscale we track the kinetics
of cancer cells, virus particles and the ECM. At microscale we track (i) the degradation of ECM by
matrix degrading enzymes (MDEs) produced by cancer cells, which further influences the movement
of tumour boundary; (ii) the re-arrangement of the microfibres that influences the re-arrangement of
macrofibres (i.e., fibres at macroscale). With the help of this new multiscale model, we investigate two
questions: (i) whether the infected cancer cell fluxes are the result of local or non-local advection in
response to ECM density; and (ii) what is the effect of ECM fibres on the the spatial spread of oncolytic
viruses and the outcome of oncolytic virotherapy.

Keywords: multiscale cancer modelling; non-local cell adhesion; tumour-oncolytic viruses
interactions; cancer invasion; computational modelling; cross cell-cell adhesion; extracellular matrix
fibres

1. Introduction

Cancer invasion is a complex multiscale phenomenon that relies on the structure and composition of
the extracellular matrix (ECM). The ECM is an important biological structure that serves as a platform
for cellular communication, as well as providing support to surrounding cells and tissues, transducing
mechanical signals, and functioning as adhesive substrate [1]. This matrix is a highly dynamic struc-
ture that controls most fundamental behaviours of cells: from proliferation, to adhesion, migration,
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differentiation and apoptosis [2]. These processes are controlled through the interactions of cells with
the components of the ECM: collagen, proteoglycans, elastin and cell-binding glycoproteins [2]. The
matrix components are continuously deposited, degraded or modified, and thus the ECM is continu-
ously undergoing remodelling. This remodelling process (which involves matrix degrading enzymes
that can be secreted by the cancer cells and normal cells) impacts also the evolution of cancer inva-
sion. A fundamental process in the invasive potential of cancer cells is the cell-ECM adhesion (through
adhesion molecules such as integrins) [3]. In addition, the collective movement of cancer cells is the
result of cell-cell adhesion (through adhesion molecules such as E-cadherins) [3]. Understanding these
cell-cell and cell-matrix adhesion processes is important not only for our understanding of the evolu-
tion of cancer and its invasion of the surrounding tissue, but also for our understanding of the efficacy
of various anti-cancer therapies.

An emerging effective anti-cancer treatment is the oncolytic virotherapy (OV-therapy). The effec-
tiveness of this treatment lies on viruses selectively infecting and destroying malignant cancer cells
without harming the surrounding healthy cells; see [4–7]. The structure and composition of the ECM
influences the effectiveness of the OV-therapies, since the ECM components can form a physical bar-
rier that traps the viral particles [8]. In particular, experimental studies have shown that the collagen
fibres play a very important role in inhibiting viral spread [8].

Due to the complexity of the tumour microenvironment, which makes it difficult to understand the
interactions between the different components of this environment, mathematical models have been
used over the last few decades to answer various questions about these interactions. The great majority
of these models are single-scale models, which focus on spatial tumour invasion [9–11], on tumour
oncolytic therapies [12–18], or both [19–23]. More recently, various multi-scale mathematical models
have been derived to reproduce and investigate biological processes that take place at different spatial
scales [24–31]. For example, [30] introduced a multi-scale moving boundary model for cancer inva-
sion, which focused on the local interactions between cancer cells and the ECM, via matrix degrading
enzymes (MDEs) that act at the micro-scale level of the invading tumour boundary. This study was
further extended in [31] by considering also the non-local cell-cell and cell-ECM adhesive interac-
tions. This study also considered a heterogeneous ECM population formed of fibres and non-fibrous
sub-populations, and investigated the role of fibres (and their re-arrangement at macro-scale and micro-
scale) in the evolution of a tumour population. Other local and nonlocal multiscale models were used
in [24–27] to investigate the interactions between oncolytic viruses and cancer cells.

In this study, we develop further the non-local multiscale approach for modelling cancer-OV in-
teractions introduced in [24] (and which focused on the role of cell-cell and cell-matrix adhesive in-
teractions on the spread of OV throughout solid tumours) by combining it with the heterogeneous
ECM approach proposed in [31], to investigate these tumour-ECM-OV interactions in fibrous ECM;
see Figure 1.

In Section 2 we describe the new multiscale mathematical model. In Section 3 we describe the
numerical approach used to discretise the macroscale and microscale equations, while in Section 4
we present the results of the numerical simulations. We conclude in Section 5 with a summary and
discussion of the results.
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Figure 1. Caricature description of the interactions between oncolytic viruses (OVs), cancer
cells, non-fibre ECM and fibre ECM. The OVs replicate inside cancer cells, leading to their
lysis.

2. Mathematical model

The multiscale moving boundary model used here is based on the two-scale (tissue scale-macro-
scale, and cell scale-micro-scale) moving boundary framework introduced in [30] and recently applied
to nonlocal cell-cell interactions in the context of oncolytic viral therapies [24]. Furthermore, in here
we explore the dynamic interaction between an invading solid tumour, OV, and a two-component ECM
(which was first introduced by [31]). This complex dynamic is captured by two interconnected mul-
tiscale systems that share the same macro-scale cancer dynamics at the tissue-scale. However, at
cell-scale we use two distinct micro-scale dynamics for fibre rearrangement and for cancer invasion
boundary, both being linked to the macro-dynamics through two double feedback loops, as illustrated
in Figure 2.

2.1. Macro-scale dynamics

Let us denote by Y ⊂ R2 the macro-scale domain representing the maximal environmental tissue
square that we consider in this study. Also, let us denote byΩ(t) ⊂ Y the spatial support of the growing
tumour within the macro-scale domain, at a time t ∈ [0,T ]. Let c(x, t) and i(x, t), ∀(x, t) ∈ Ω(t)× [0,T ],
represent the spatio-temporal densities of the uninfected cancer cells and the infected cancer cells,
respectively. Finally, let v(x, t) and e(x, t), ∀(x, t) ∈ Y × [0,T ], represent the spatial-temporal densities
of the oncolytic virus and the cumulative extracellular matrix, respectively. The later is defined as

e(x, t) = E(x, t) + F(x, t),

where F(x, t) denotes the macroscale spatial distribution of the fibre ECM, which accounts for all
significant ECM fibres such as collagen fibres or fibronectin fibrils, and E(x, t) denotes the spatial
distribution of the non-fibre ECM, which includes all the other non-fibre components of the ECM,
i.e., elastin, laminins, fibroblasts, etc. At any spatio-temporal node (x, t) ∈ Y × [0,T ], the macroscale
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Figure 2. Schematic demonstrate the links between the multiscale model, specifically, the
link between the macro-scale dynamics and the micro-fibre rearrangements, and the exten-
sion of cancer region Ω(t) caused by MDE micro dynamics.

dynamics for ECM is described by the following equations:

∂E
∂t
= −E(αc c + αi i) + µ2E(1 − ρ((s))), (2.1)

∂F
∂t
= −F(αcF c + αiF i), (2.2)

where αc, αi, αcF , αiF > 0 are the ECM degradation rates caused by cancer cells subpopulations c and
i, respectively. Further, µ2 > 0 is a fixed remodelling rate. The fibre micro-dynamics will be discussed
in details in Section 2.2. Defining s the tumour-ECM vector,

s (x, t) = (c(x, t), i(x, t), e(x, t))T ,

then the volume fraction of space occupied by the tumour and the ECM is given as

ρ(x, t) ≡ ρ(s(x, t)) := νee(x, t) + νc
(
c(x, t) + i(x, t)

)
, (2.3)

where νe represents the fraction of physical space occupied by the ECM and νc is the fraction of
physical space occupied collectively by all cancer subpopulations.
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In this study tumour dynamics consists of three main components: motility, proliferation, and death.
Moreover, we describe the spatial fluxes for both cancer cells (c, i) by a combination of a linear diffu-
sion term caused by cells’ random walk and a directed migration term due to cell-cell and cell-ECM
adhesion. Here we investigate directed cell migration from two perspectives: local migration and non-
local migration as a result to cell adhesion [32–37]. Therefore, the dynamics of the uninfected cancer
cells subpopulation is given by:

∂c
∂t
= ∇ ·

[
Dc∇c − cAc(t, x, s, θ f )

]
+ µ1c(1 − ρ(s)) − ϱcv, (2.4)

where Dc > 0 is a constant diffusion coefficient, µ1 > 0 is a constant proliferation coefficient, ϱ > 0 is
a constant rate at which the uninfected cancer population diminishes due to infection by the oncolytic
virus v, whileAc(t, x, s, θ f ) is a non-local spatial flux term that describes the cells adhesion process that
causes cancer cells to move in a directed manner. In references [24, 25] the authors studied the effects
of cell adhesion process on cancer-OV interaction, by focusing on cell-cell adhesion and cell-ECM-
non-fibres substrate. Here we adopt the modelling concept proposed by [31], to consider the essential
role performed by the cell-fibres adhesive interaction. Denoting the cell-cell adhesion function by:

Tc(x + y, t) = Scc c(x + y, t) + Sci i(x + y, t), (2.5)

where Scc > 0 and Sci > 0 are the strengths of cell-cell adhesion and cross adhesion bonds, respectively
that are formed between cancer cells distributed at x and cells at x + y. Since the cell-cell adhesion
strength Scc,Sci is dependent on the quantity of intercellular Ca2+ ions available within the ECM [38,
39]. We adopt a similar approach as in [31] to compute cell-cell adhesion strength, and extend it to
determine cross cell-cell adhesion strength as follows:

S··(E) = S max
·· exp

(
1 −

1
1 − (1 − E(x, t))2

)
, (2.6)

where S·· ∈ {Scc,Sci,Sic,Sii} with S max
·· ∈ {S

max
cc , S max

ci , S max
ic , S max

ii } respectively. S max
·· is fixed and repre-

sent the maximum strength of cell-cell adhesive junctions. Within a sensing radius R > 0 at time t > 0,
the non-local adhesive flux is defined as follows:

Ac(t, x, s, θ f ) =
1
R

∫
B(0,R)

K(∥y∥2)(1 − ρ(s))+
(
n(y)[Tc(x + y, t) + Sce E(x + y, t)]

+ n̄(y, θ f (x + y, t))ScF F(x + y, t)
)
χ
Ω(t)(x + y, t) dy, (2.7)

where B(0,R) := {z ∈ R2 : |z| ≤ R} is a closed ball centred at origin and of radius R, called here
the sensing region. Sce is a constant that describes the cell-ECM adhesion strength. ScF is a constant
that describes the cell-fibre-ECM adhesion strength. χ

Ω(t)(·) is the characteristic function of Ω(t), and
(1 − ρ(s))+ := max{(1 − ρ(s)), 0} is a threshold term to avoid local overcrowding, and n(y) denotes the
unit radial vector giving by:

n(y) :=


y
∥y∥2

if y ∈ B(0,R) \ {(0, 0)},

(0, 0) otherwise,
(2.8)
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with ∥ · ∥2 representing the usual Euclidean norm. n̄(y, θ f (x + y, t)) is the unit vector that is dependent
on the fibre orientations, defined as follows:

n̄(y, θ f (x + y, t)) :=


y + θ f (x + y, t)∥∥∥y + θ f (x + y, t)

∥∥∥
2

if y ∈ B(0,R) \ {−θ f (x + y, t)},

(0, 0) otherwise,
(2.9)

where θ f (x + y, t) is the orientation of the fibres at macro-scale, this was first introduced by [31]. This
orientation is derived by the micro-scale mass distribution of micro-fibres f (., t), in the sense that affects
the cell-ECM adhesion and characterises the ECM fibres distributed at the macro-scale location x ∈ Y
namely F(x, t); for detailed mathematical formulas see Section 2.2. Note that F(x + y, t) describes the
influence of fibres distributed at x + y on the adhesion of cells at location x (with adhesion strength
S cF); see Figure 2 for more details. Furthermore, the radially symmetric kernel K(·) : [0,R] → [0, 1]
explores the dependence of the strengths of the established cell adhesion junctions on the radial distance
from the centre of the sensing region x to ζ ∈ B(x,R) := x + B(0,R). Since these adhesion junction
strengths are assumed to decrease as the distance r :=∥ x − ζ ∥2 increases, K therefore is taken here of
the form

K(r) :=
3

2πR2

(
1 −

r
2R

)
. (2.10)

By summing up the radially distributed adhesive interactions between the cells at x, and the cells
and ECM at x + y within y ∈ B(x,R), the term 1

R that appears in the front of the expression (2.7) is
simply an interaction range normalisation factor.

Next, we focus on the infected cancer cell subpopulation i(x, t) that emerges within this dynamics
due to infections by the OV. We denote by φi(s) the effect of the cell adhesion processes that take
place either locally (through adhesive interactions between infected cancer cells and ECM, as tumour
cells exercise haptotactic movement towards higher levels of ECM), or non-locally (where both cell-
cell and cell-ECM adhesive interactions are accounted for within an appropriate cell sensing region).
Mathematically, this can be formalised as

φi(s) :=

ηi∇·
(
i∇e

)
, local haptotactic interactions between infected cancer cells and ECM,

∇·
(
iAi(·,·,s(·,·))

)
, non-local cell−cells and cell−ECM interactions on a cell sensing region,

(2.11)
where ηi is a constant haptotactic rate associated to i, whileAi

(
·,·,s(·,·)

)
is a non-local spatial flux term

defined as in Eq (2.7). We define Ti(x + y, t) as follows

Ti(x + y, t) = Sic c(x + y, t) + Sii i(x + y, t), (2.12)

where Sic and Sii are are the strengths of infected cell-cell adhesion and cross adhesion bonds, and are
dependent on ECM as defined in Eq (2.6). Then,Ai

(
·,·,s(·,·)

)
becomes

Ai(t, x, s, θ f ) =
1
R

∫
B(0,R)

K(∥y∥2)(1 − ρ(s))+
(
n(y)[Ti(x + y, t) + Sie E(x + y, t)]

+ n̄(y, θ f (x + y, t))SiF F(x + y, t)
)
χ
Ω(t)(x + y, t) dy, (2.13)

where Sie is a constant describing the cell-ECM adhesion strength and SiF is a constant describing
the cell-fibre-ECM adhesion strength. Thus, the spatio-temporal dynamics of the infected cancer cell
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subpopulation is governed by the following equation

∂i
∂t
= Di∆i − φi(s) + ϱcv − δii. (2.14)

Here Di > 0 is a constant random motility coefficient, and φi(s) represents the directed migration
induced by the cell-adhesion processes that corresponds to i and is described in Eq (2.11) Further, the
infected population expands at a rate ϱ due to new infections occurring among the uninfected cells, and
dies at rate δi > 0.

Next, for the oncolytic virus spatio-temporal dynamics, we adopt here a similar reasoning as in
[24, 25], and assume that the OV motion is described by a random movement that is biased by a
“haptotactic-like” spatial transport towards higher ECM levels. Thus, the dynamics of the oncolytic
virus is governed by

∂v
∂t
= Dv∆v − ηv∇ · (v∇e) + bi − ϱcv − δvv. (2.15)

Here Dv > 0 is a constant random motility coefficient, ηv > 0 is a constant haptotactic coefficient,
b > 0 is a viral replication rate within infected cancer cells, and δv > 0 is the viral death rate.

Finally, the coupled interacting tumour-OV macro-dynamics is governed by Eqs (2.4)–(2.15) in the
presence of initial conditions

c(x, 0) = c0(x), i(x, 0) = i0(x), v(x, 0) = v0(x), ∀x ∈ Ω(0), (2.16)

while assuming zero-flux boundary conditions at the moving tumour interface ∂Ω(t).

2.2. Fibre micro dynamics on the bulk of the tumour

The cancer cells macro-dynamics cause the fibres to undergo a microscopic rearrangement process
in addition to the macroscale fibre degradation mentioned in Eq (2.2). We start by defining the micro-
fibre domain as σY(x) := x + σY,∀x ∈ Y with scale size σ > 0 following [31], in which the fibre
ECM rearrangement occurs reflecting on fibre macroscale orientation as illustrated in Figure 2. At any
macroscale point x ∈ Ω(t), the ECM-fibre phase is described by a macroscale vector field θ f (x, t), which
gives us the amount of fibres distributed at (x, t) and their macroscopic fibres orientation computed by
the revolving barycentral orientation θ f ,σY(x)(x, t) generated by the microscopic mass distribution of
microfibres f (·, t) within the micro-domain σY(x). Based on the approach introduced by [31], the
macroscale fibre orientation θ f (x, t) is defined as follows:

θ f (x, t) =
1

λ(σY(x))

∫
σY(x)

f (z, t)dz ·
θ f ,σY(x)(x, t)∥∥∥θ f ,σY(x)(x, t)

∥∥∥
2

, (2.17)

where λ(·) is the usual Lebesgue measure, ∥ · ∥2 represents the usual Euclidean norm, and

θ f ,σY(x)(x, t) =

∫
σY(x)

f (z, t)(z − x)dz∫
σY(x)

f (z, t)dz
, (2.18)

is the naturally generated revolving barycentral orientation θ f ,δY(x)(x, t) associated with σY(x) and given
by the Bochner-mean-value of the position vectors function σY(x) ∋ z 7→ z − x ∈ RN with respect to
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the density measure f (x, t)λ(·). The macroscopic mean-value fibre representation at any (x, t) is then
given by the Euclidean magnitude of θ f (x, t), namely,

F(x, t) :=
∥∥∥θ f (x, t)

∥∥∥
2
. (2.19)

At any time t and at any spatial location x ∈ Y , the cancer cells realign the micro-fibres through
a microscopic rearrangement process in each micro-domain σY(x) that is triggered by the combined
macroscale spatial flux of both cancer cell subpopulations as follows:

F (x, t) := Fc(x, t) + Fi(x, t)

where

Fc(x, t) := Dc∇c(x, t) − c(x, t)Ac

(
x, t, s(·, t), θ f (·, t)

)
(2.20)

Fi(x, t) := Di∇i(x, t) − φi(s), (2.21)

where φ̄i(s) denotes here the spatial flux triggered by the interactions between the infected cancer cell
population and the surrounding cells and ECM, and is given by

φ̄i(s) :=

i∇e, local haptotactic interactions between i(·, ·) and e(·, ·)
iAi(x, t, s(·, t), θ f (·, t)), for nonlocal adhesion interactions between i(·, ·) and c(·, ·) and e(·, ·).

(2.22)
For simplicity, denoting the total cancer cell population by ctotal(x, t) = c(x, t)+i(x, t). The combined

flux F (x, t) acts upon the micro-scale distribution f (z, t),∀z ∈ σY(x) in accordance to the magnitude
that the total mass of cancer cells has relative to the combined mass of cells and fibres at (x, t), which
is given by the weight

ω(x, t) =
ctotal(x, t)

ctotal(x, t) + F(x, t)
. (2.23)

At the same time, the total spatial flux of cancer cells F (x, t) is balanced in a weighted manner
by the orientation θ f (x, t) of the existing distribution of fibres at (x, t) that is appropriately magnified
by a weight that accounts for the magnitude of fibres versus the combined mass of cells and fibres
at (x, t) and is given by (1 − ω(x, t)). As a consequence, the micro-scale distribution of micro-fibres
f (z, t),∀z ∈ σY(x) is therefore acted upon uniformly by the resultant force given by the following
rearrangement vector-valued function

r(σY(x), t) := ω(x, t)F (x, t) + (1 − ω(x, t))θ f (x, t). (2.24)

In this context, a mass distribution of the micro-fibres f (z, t) on σY(x) is exercised under the in-
fluence of this rearrangement vector r(σY(x), t), resulting in spatial relocation of micro-fibres on both
σY(x) and its neighbouring micro-domains. Indeed, under the incidence of r(σY(x), t), a certain frac-
tion of the micro-fibres positioned at a given z ∈ σY(x) get transported at new micro-scale position z∗,
given by

z∗ := z + νσY(x)(z, t), (2.25)

where νσY(x)(z, t) is the emerging relocation vector:

νσY(x)(z, t) = (xdir(z) + r(σY(x), t)) ·
f (z, t) ( fmax − f (z, t))

f ∗(z, t) + ∥r(σY(x)) − xdir(z)∥2
· χ{ f (·,t)>0}(z). (2.26)
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Here, xdir(z) = −→xz is the barycentric position vector pointing to z in σY(x) see Figure 3, fmax rep-
resents the maximum level of fibres that could reside at the micro-location z ∈ σY at any given time,
and f ∗ := f (z, t)/ fmax is the local micro-fibres saturation fraction. Finally, the relocation magnitude in
the direction xdir(z) + r(σY(x), t) is simultaneously mediated by the ability of micro-fibres to dislocate
(which is exercised when these are not at the maximum level) and is attenuated by the level of the
micro-fibres mass fraction f ∗ at z in conjunction with the barycentric position defect quantified here by
∥r(σY(x)) − xdir(z)∥2. Therefore, provided that micro-fibres levels at z are not at their maximum level

Figure 3. Illustration to show σY(x) with x is red star and the green vector field showing
xdir(z). The other black stars are the neighbours of point x with their respected σY showing
full direction from the centred x to all z belong to σY(x) and its surrounding boxes.

fmax a micro-fibres mass transport from z to the location z∗ is exercised, while lower levels of micro-
fibres saturations at z combined with a better flux alignment provided by a smaller position defect result
in a relocation of the micro-fibres mass in direction (xdir(z) + r(σY(x), t)) at a greater distance. Finally,
this transport occur provided that a enough room is available at position z. This being is naturally
mediated through the movement probability

Pmove := max
(
0,

fmax − f (z∗, t)
fmax

)
, (2.27)

that quantifies the capacity that is still available at z∗, and enables only the amount f (z, t)Pmove of
micro-fibres to be transported to the new location and the rest f (z, t)(1−Pmove) remain at their location.

2.3. MDEs microscale dynamics at the leading edge and the induced tumour boundary movement

In addition to the fibres micro-dynamics that occurs in the bulk of the tumour, a second type of
tumour micro-dynamics is generated by the cell scale activity of the matrix degrading enzymes (MDEs)
along the tumour invasive edge [40, 41]. Indeed, secreted by the cancer cell population from the outer
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proliferating rim of the tumour, the MDEs are transported across the tumour interface within a cell-
scale (micro-scale) neighbourhood of the tumour boundary in the peritumoural region, where they
cause degradation to the ECM distribution that they meet, giving rise to further tumour progression.
To capture this process mathematically, we adopt here a similar approach to the one developed in [30],
whereby the entire cross-interface MDEs transport micro-process along ∂Ω(t) is decomposed into a
union of boundary micro-processes that take place on a appropriately constructed covering bundle
{ϵY}ϵY∈Pϵ (t) of ϵ−size overlapping micro-domains ϵY , whose union form the cell scale neighbourhood
Nϵ(∂Ω(t)), i.e.,

Nϵ(∂Ω(t)) :=
⋃

ϵY∈P(t)

ϵY

where the entire enzymatic process and its consequences are explored. Thus, to explore the MDEs
enzymatic activity over a small time range ∆t > 0, denoting by m(y, τ) the micro-scale density of
MDEs at the micro-scale spatio-temporal location (y, τ) ∈ ϵY × [0,∆t], we have that a micro-scale
source of MDEs GϵY : ϵY × [0,∆t] → [0,∞) is induced naturally as a collective contribution of the
cancer cells that are within a small distance ρ > 0 from each y ∈ ϵY , and so this can be formalised
mathematically as

GϵY(z, τ) =


∫

B(z,ρ)∩Ω(t0)
γcc(x, t0 + τ) + γii(x, t0 + τ)dx

λ(B(z, ρ) ∩Ω(t0))
, z ∈ ϵY ∩Ω(t0),

0, otherwise,

(2.28)

Here λ(·) is the standard Lebesgue measure on RN , and B(z, r) := {x ∈ Y : ∥z − x∥∞ ≤ ρ} is the small
active tumour region closed to the tumour interface where the cancer cells collectively contribute to
the creation of the source of MDEs at z ∈ ϵY over the time interval ([t0, t0 + ∆t]. Finally, and γc > 0,
γi > 0 represent constant MDEs secretion contributions of the uninfected and infected cancer cells,
respectively. Finally, in the presence of the MDEs source GϵY(z, τ), the MDES are assumed here to
exercise a diffusive transport within the entire micro-domain ϵY , which is mathematically formulated
through the following reaction-diffusion equation

∂m
∂τ
= Dm∆m + GϵY(z, τ), z ∈ ϵY, τ ∈ [0,∆t]. (2.29)

Furthermore, as no memory of pre-existing distributions of MDEs are assumed for the enzymatic
process, and no molecular transfer is assumed across the boundaries of ϵY , the proteolytic boundary
micro-dynamics (2.29) that takes place on each ϵY is assumed to take place with null initial conditions
and flux-zero boundary conditions, i.e.,

m(z, 0) = 0,

n
ϵY · ∇m

∣∣∣∣∣
∂ϵY
= 0,

(2.30)

where n
ϵY is the usual outward unit normal direction on ∂ϵY .

Finally, the pattern of ECM degradation within the peritumoural region of the microscale neigh-
bourhood Neϵ(∂Ω(t)) will correspond to the pattern of significant MDEs transport within each micro-
domain ϵY . In this context, following the multiscale mathematical modelling approach developed
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in [30], we obtain the law for the macro-scale boundary movement, which is specified in terms of
direction and displacement magnitude for the spatial relocation of the tumour interface ϵY ∩ ΩY for
each boundary micro-domain. By determining the law of macro-scale tumour boundary movement,
the MDEs micro-dynamics occurring along the tumour interface influences directly the tumour macro-
dynamics, completing this way a bottom-up feedback from micro- to macro-scale, contributing signif-
icantly to the invasion and spread of tumour within the surrounding tissue [30, 42].

2.4. Summary of multiscale model

In summary, the multiscale moving boundary model that we obtained for the tumour-OV-ECM
interactions (see Figure 2 for an illustrative sketch) consists of the following parts:

the tumour-OV-ECM macro-dynamics:
∂c
∂t
= ∇ ·

[
Dc∇c − cAc(t, x, s, θ f )

]
+ µ1c(1 − ρ(s)) − ϱcv, (2.31a)

∂i
∂t
= Di∆i − φi(s) + ϱcv − δii, (2.31b)

∂E
∂t
= −E(αc c + αi i) + µ2E(1 − ρ((s))), (2.31c)

∂F
∂t
= −F(αcF c + αiF i), (2.31d)

∂v
∂t
= Dv∆v − ηv∇ · (v∇e) + bi − ϱcv − δvv, (2.31e)

micro-dynamics of fibres triggered by the macro-scale-induced rearrangement flux

r(σY(x), t):= ω(x, t)F (x, t) + (1 − ω(x, t))θ f (x, t) (2.31f)

induced on each σY by the total cell flux F (x, t), with ω(x, t) :=
ctotal(x, t)

ctotal(x, t) + F(x, t)
(2.31g)

the MDEs boundarymicro-dynamics:
∂m
∂τ
= Dm∆m + GϵY(z, τ) (2.31h)

The macro-dynamics and the two micro-dynamics are connected through two double feedback loops:

• a tumour bulk top-down link by which the macro-scale cell flux triggers the micro-scale fibres
rearrangement
• a bottom-up fibres link by which the micro-scale distribution of fibres naturally induces a spatial

orientation that alters the tumour macro-dynamics
• a leading edge top-down link through which the tumour macro-dynamics induces a micro-scale

MDEs molecular source in the cell-scale neighbourhood of ∂Ω(t)
• a bottom-up link through which the MDEs micro-dynamics induces the law for macro-scale tu-

mour boundary movement.
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3. Brief overview of the computational approach for a couple of tumour-OV-ECM interaction
scenarios

The numerical approach and computational implementation of the novel multiscale moving bound-
ary model proposed in this work builds directly on the multiscale moving boundary computational
framework initially introduced by [30] and further expanded in [24,25,31], and so while for full details
we defer the reader to these references, in the following we will give a brief summary of this approach.

Macro-scale numerical approach For all the computational simulations we consider the macro-
scale tissue domain Y := [0, 4]×[0, 4], and we discretise this with a uniform grid Yd := {(x1

i , x
2
j)}i, j=1...N ,

with N = [4/h] + 1, of spatial step size ∆x = ∆y := h, with h > 0. Correspondingly, the discretised
version of the evolving spatial tumour support is denoted by Ωd(t) (i.e., Ωd(t) = Yd ∩ Ω(t)), with
∂Ωd(t) standing for the evolving tumour boundary. In brief, for the approximation of the macro-scale
dynamics on the evolving tumour domain Ωd(t), we used a method of lines type approach as proposed
initially in [30], with the specific off-grid-type approximation for the cell-adhesion fluxes Ac(·, ·, ·, ·)
and the novel non-local time-marching scheme that were proposed and developed in [31], and adapted
here to our particular context of cancer-OV interacting dynamics. Finally, as detailed in [30], the
discrete domain Ωd(t) of the progressing tumour is appropriately evolved with additional spatial nodes
corresponding to the new locations reached by the invading cancer which are determined by the MDEs
micro-dynamics that takes place within a micro-scale neighbourhood of the tumour interface (of micro-
scale radius ϵ > 0, see [30, 42] for complete details).

Approximating the two micro-dynamic processes that occur simultaneously In this model we
have two types of micro-scale processes that link to the same macro-dynamics, namely the MDEs
boundary micro-dynamics at the leading edge of the tumour and fibre micro-dynamics. Thus, for
the MDEs boundary micro-dynamics part, proceeding as detailed in [30], the boundary MDEs micro-
dynamics is approximated involving central finite differences for the spatial operators on each micro-
domain ϵY , with a backward Euler time marching scheme. Finally, for the fibres micro-dynamics and
their rearrangements, the implementation follows closely the modelling details given in Section 2.2.
Thus, for that part, considering the fibres micro-scale taking place on square micro-domains σY that
have their vertices at the dual mesh nodes (i.e., the barycentres of each square pixels formed by the
macro-scale grid nodes), we proceed with the evaluation of the spatial flux operators and rearrangement
vectors as well as the final numerical inference of the emerging spatial fibres orientation, as detailed
in [31].

3.1. Local vs non-local directed migration due to cell adhesion

Our simulations of the multiscale model explore two distinct scenarios regarding the directed mi-
gration of infected cancer cell subpopulation: local and non-local migration at macro-scale (see Eq
(2.31b)). Specifically, we consider the following cases:

(1) Local advective flux for the infected cancer cells: in Eq (2.31b) we have φi(s) = ηi∇·
(
i∇e

)
, and thus

the macro-dynamics takes the following form:

∂c
∂t
= ∇ ·

[
Dc∇c − cAc(t, x, s, θ f )

]
+ µ1c(1 − ρ(s)) − ϱcv, (3.1a)

∂i
∂t
= Di∆i − ηi∇·

(
i∇e

)
+ ϱcv − δii, (3.1b)
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∂E
∂t
= −E(αc c + αi i) + µ2E(1 − ρ((s))), (3.1c)

∂F
∂t
= −F(αcF c + αiF i), (3.1d)

∂v
∂t
= Dv∆v − ηv∇ · (v∇e) + bi − ϱcv − δvv. (3.1e)

Since φ̄i(s) = i∇e, the macroscale spatial flux for Fi in Eq (2.21) becomes

Fi(x, t) := Di∇i(x, t) − i∇e. (3.2)

The numerical results for this case are shown in Figures 6–8.

(2) Nonlocal advective flux for the infected cancer cells: in Eq (2.31b) we have φi(u) = ∇·
(
iAi(·,·,s(·,·))

)
,

and thus the macro-dynamics take the following form:

∂c
∂t
= ∇ ·

[
Dc∇c − cAc(t, x, s, θ f )

]
+ µ1c(1 − ρ(s)) − ϱcv, (3.3a)

∂i
∂t
= ∇ ·

[
Di∇i − iAi(t, x, s, θ f )

]
+ ϱcv − δii, (3.3b)

∂E
∂t
= −E(αc c + αi i) + µ2E(1 − ρ((s))), (3.3c)

∂F
∂t
= −F(αcF c + αiF i), (3.3d)

∂v
∂t
= Dv∆v − ηv∇ · (v∇e) + bi − ϱcv − δvv, (3.3e)

Since φ̄i(s) = iAi(x, t, s(·, t), θ f (·, t)), the macroscale spatial flux for Fi in Eq (2.21) becomes

Fi(x, t) := Di∇i(x, t) − iAi(x, t, s(·, t), θ f (·, t)), (3.4)

The numerical results for this case are shown in Figures 9–11.

Finally, in all our numerical experiments we choose to avoid simple overcrowding by imposing
the regime that the cumulated sum of the total volume of cells and ECM to be always kept below 1.
This is obtained by taking unitary volume fractions for each of the involved tissue constituents, i.e.,
νc = νe = 1, as indicated in Table 1, which obviously leads to a simplified formula for the volume of
occupied space, namely: ρ(s(x, t)) := e(x, t) + c(x, t) + i(x, t).

3.2. Initial conditions

The initial condition for the uninfected cancer cell population, c(x, 0) is chosen to describe a small
localised pre-existing tumour aggregation. This is given by

c0(x) = 0.5
(
exp

(
−
∥x − (2, 2)∥22

2h

)
− exp (−3.0625)

) (
χB((2,2),0.5−γ) ∗ ψγ

)
, ∀ x ∈ Y, (3.5)
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whose plot is shown in Figure 4(a). Here ψγ : RN → R+ is the usual standard mollifier of radius
γ << ∆x

3 given by

ψγ(x) :=
1
γNψ

(
x
γ

)
, (3.6)

with the smooth compact support function ψ given by

ψ(x) :=

exp 1
∥x∥22−1

if ∥x∥2 < 1,

0 otherwise.
(3.7)

We assume no infection at this stage, i.e. zero infected cancer cells (i(x, 0)):

i0(x) = 0, ∀ x ∈ Y. (3.8)

Motivated by several biological works underscoring the importance of the highly heterogeneous
character of the fibrous microenvironment where tumours develop [43–45], we adopt the following in
silico initial conditions the two-phase ECM considered in this modelling. Specifically, the initial con-
dition for the non-fibre ECM density, E(x, 0), is given by an arbitrarily chosen heterogeneous pattern
described by the following equations (as in [31])

E(x, 0) =
1
2

min{h(ζ1(x), ζ2(x)), 1 − c0
p(x)}, (3.9)

and is shown in Figure 4(c). Here, we have

h(ζ1(x), ζ2(x)) := 1
2 +

1
4 sin(ξζ1(x)ζ2(x))3 · sin

(
ξ
ζ2(x)
ζ1(x)

)
,

(ζ1(x), ζ2(x)) := 1
3 (x + 3

2 ) ∈ [0, 1]2, ∀x ∈ Y, and ξ = 7π.
(3.10)

Furthermore, the initial condition for one micro-scale fibre domain σY(x) is shown in Figure 4(d),
and it is repeated for all macro-scale locations. To determine the density of the fibres at any macro-
point x, we integrate the corresponding fibre-micro domain σY(x). Due to visibility reason, we avoid
presenting the pattern of the microscale fibres on the macroscale.For the baseline simulations presented
here, we choose the ratio of fibres to non-fibres components of ECM at 20% : 80%.

Finally, the initial condition for the OV population (v(x, 0)) is chosen to describe one single injection
in the middle of the tumour aggregation, as in [24, 25]:

v0(x) = Φ(x) · θ(v), (3.11)

where

Φ(x) = 1
8

(
exp

(
−
∥x − (2, 2)∥22

2h

)
− exp (−1.6625)

)
,

and

θ(v) =

1 if Φ(x) > 5 × 10−5,

0 otherwise,

(3.12)

which is smoothed out on the frontier of the viral density support Γv := ∂{x ∈ Y | v0(x) > 0}.
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Figure 4. Initial conditions used for the numerical simulations: (a) uninfected cancer cells
density (c), as given by Eq (3.5); (b) OV density (v), as given by Eq (3.11); (c) non-fibre
ECM density (E), as given by Eq (3.9); (d) one micro-fibre domain which is repeated for
every point on the macro-scale. The white curve in sub-panels (a)–(c) indicates the tumour
boundary.

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6157–6185.



6172

Table 1. Nondimensional baseline parameters values used for our multiscale computations.
These baseline parameters were obtained from other articles (see references in the last col-
umn) or our own estimates.

Param. Value Description Reference
Dc 0.00035 Uninfected cancer cell diffusion coefficient [11]
Di 0.0054 Infected cancer cell diffusion coefficient [46]
Dv 0.0036 Constant diffusion coefficient for OV [46]
ηi 0.0285 Infected migrating cancer cell haptotaxis coefficient [26]
ηv 0.0285 OV haptotaxis coefficient [24]
µ1 0.5 Proliferation rate for uninfected migrating cancer cells [37]
S cc 0.1 Maximum rate of cell-cell adhesion strength [10]
S ii 0.1 Maximum rate of cell-cell adhesion strength [25]
S ci 0 Maximum rate of cell-cell cross adhesion strength Estimated
S ic 0 Maximum rate of cell-cell cross adhesion strength Estimated
S ce 0.5 Rate of Cell-ECM adhesion strength [47]
S ie 0.5 Rate of Cell-ECM adhesion strength [25]
S cF 0.2 Rate of Cell-fibre-ECM adhesion strength [31]
S iF 0.2 Rate of Cell-fibre-ECM adhesion strength Estimated
αc 0.15 ECM degradation rate by uninfected cancer cells [26]
αim 0.075 ECM degradation rate by infected cancer cells [26]
αcF 0.75 Macroscopic fibre degradation rate by c cells Estimated
αiF 0.75 Macroscopic fibre degradation rate by i cells Estimated
µ2 0 Remodelling term coefficient [31]
ϱ 0.079 Infection rate of c cells by OV [26]
δi 0.05 Death rate of infected cancer cells [46]
b 20 Replicating rate of OVs in infected cancer cells c [46]
δv 0.025 Death rate of OV [46]
νe 1 The fraction of physical space occupied by the ECM [31]
νc 1 The fraction of physical space occupied by cancer cells [31]
γc 1 MDEs secretion rate by uninfected cancer cell [48]
γi 1.5 MDEs secretion rate by infected cancer cell [48]
Dm 0.0025 MDE diffusion coefficient [49]
RF 20% : 80% The ratio of fibres and non-fibres components of ECM [31]

4. Results

The numerical results shown in this section are computed using the parameter values listed in Ta-
ble 1, which we refer to as ‘baseline parameters’ for ease of reference. Whenever we change these
parameters, we clearly specify the new values we use for the simulations.

We start in Section 4.1 by investigating numerically the impact of fibre-ECM local approach for
the infected cancer cells i used to describe the cell-cell and cell-matrix adhesion flux on cancer-OV
interaction. Then, in Section 4.2, we investigate the impact of varying the amount of fibres in the

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6157–6185.



6173

ECM (RF). Next, in Section 4.3 we increase the cell-fibre-ECM adhesion strength for some of the
cases studied in the previous sections. In Section 4.4 we investigate numerically the impact of fibre-
ECM non-local approach for the infected cancer cells i used to describe the cell-cell and cell-matrix
adhesion flux on cancer-OV interaction and comparing it to a variety of distinct adhesion strengths.
In section 4.5 we investigate the impact of increasing the amount of fibre in ECM for the non-local
system. Finally, in Section 4.6 we investigate the impact of different cross cell-cell adhesion strengths.

4.1. Baseline dynamics for the model with local flux of infected cells

In Figures 5 and 6 we present the numerical simulations obtained for the system (3.1), with the
baseline parameters in Table 1, under the assumption that the directed movement of infected cancer
cells is described by a local flux term. While Figure 5 shows a time-series progression of the spatial
distributions of uninfected cancer cells, infected cancer cells, and oncolytic virus, Figure 6 shows the
spatial distribution of all macroscopic variables only at final simulation time 75∆t. Figure 6 includes
also the distributions of non-fibre ECM and full ECM, which, due to lack of visible differences between
the two, will be omitted in the next figures, and only results of the oriented fibre-ECM field will be
shown in the next sections.

4.2. The effect of varying the amount of fibres in the ECM

In Figure 7 we show simulations of system (3.1) using the parameters in Table 1, when we vary
the ratio RF of fibres and non-fibres components of ECM. In Figure 7(a) (first column) we consider
RF = 30% : 70%, in Figure 7(b) (second column) we consider RF = 35% : 65%, and in Figure 7(c)
(third column) we consider RF = 40% : 60%. We note that as we increase the ratio RF , the amount
of fibres increases forcing the uninfected cancer cells to migrate away from the centre of the domain,
where they were initially located. This also leads to higher OV and overall lower tumour spread.

4.3. The effect of increasing cell-fibre ECM adhesion strengths

In Figure 8 we show simulations of system (3.1) for the parameters in Table 1, but with different RF

and different cell-fibre ECM adhesion strengths. In Figure 8(a) (first column) we consider RF = 20% :
80%, in Figure 8(b) (second column) we consider RF = 30% : 70%, and in Figure 8(c) (third column)
we consider RF = 40% : 60%. Moreover, in all these sub-panels we take S cF = 0.5 (compared to
S cF = 0.2 in Figure 7). We note that increasing cell-fibre ECM adhesion strength leads to spatial
pockets of very high cancer density (i.e., max c(x, 75∆t) = 1 in Figure 8(c), versus max c(x, 75∆t) =
0.55 in Figure 7), and even a better spatial cancer spread.

4.4. Dynamics of the model with nonlocal flux of infected cells

In this section we investigate numerically not only the impact of non-local advection fluxes for the
infected cancer cells, but also the effect of varying the cell-cell and cell-matrix adhesion strengths.
In Figure 9(a) we show the baseline dynamics of the system (3.3) (i.e., dynamics obtained with the
baseline parameters in Table 1). In Figure 9(b) we keep most of the parameter the same, with the
exception of S cF = S iF = 0.3. In Figure 9(c) we keep again most of the parameter the same, with
the exception of S ie = 0.001. In this case we note that varying the strengths of nonlocal cell-fibre
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Figure 5. Simulations of system (3.1) using the parameters in Table 1. Here we show the
distributions of uninfected cancer cells (c), infected cancer cells (i), OV (v), over a time-series
of micro-macro stages: 15∆t, 30∆t, 45∆t, 60∆t, and 75∆t.
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Figure 6. Simulations of system (3.1) using the parameters in Table 1. Here we show the
distributions of uninfected cancer cells (c), infected cancer cells (i), OV (v), the non-fibre
ECM (E), fibre ECM (F), and the full ECM (e) at micro-macro stage 75∆t.

interactions for the uninfected or infected cells does not have a significant impact on tumour structure.

4.5. Increasing the amount of fibres for the model with nonlocal flux of infected cells

In Figure 10 we investigate numerically the effect of increasing the amount of fibres in the ECM
from RF = 20% : 80% (the baseline case shown in Figure 9(a)) to RF = 30% : 70% (here) and varying
cell-cell and cell-matrix adhesion strengths. More precisely, in sub-panels (a) we have S cc = 0.1,
S ce = 0.5, while in sub-panels (b) we have S cc = 0.05, S ce = 0.001. The simulation results do not show
significant differences between the two cases. However, if we compare these results in Figure 10(a)
(nonlocal advection of infected cells) with those in Figure 7(a) (local advection for infected cells) we
observe that accounting explicitly for nonlocal interactions leads to a better spread of cancer cells along
the ECM fibres (so the cancer cells “sense” better the direction of the fibres).

4.6. Cross adhesion strength

Finally, in Figure 11, we investigate numerically the effect of varying the cross adhesion strengths.
In sub-panels (a) we assume that the cell-cell adhesion strengths for uninfected cancer cells (S cc and
S ci) are lower than the cell-cell adhesion strengths for infected cancer cells (S ic and S ii). In sub-panels
(b) we make the reversed assumption: the cell-cell adhesion strengths for the uninfected cells are higher
than for the infected cells. We see that in this second case the tumour spreads faster through the domain
(spread which is helped also by a stronger S ce = 0.5, compared to case (a) where S ce = 0.001).
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Figure 7. Simulations of system (3.1) using the parameters in Table 1. Here we show cell (c,
i) and virus (v) distributions, as well as the vector field for the oriented fibre ECM (F), at the
micro-macro stage 75∆t. We vary the ratio RF of fibres to non-fibres components of ECM:
(a)RF = 30% : 70%, (b) RF = 35% : 65%, and (c) RF = 40% : 60%
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Figure 8. Simulations of system (3.1) using the parameters in Table 1. Here we show cells
(c, i) and virus (v) distributions, as well as the vector field for the oriented fibre ECM (F) at
micro-macro stage 75∆t. We vary the ratio RF of fibres to non-fibres components of ECM:
(a) RF = 20% : 80% with S cF = 0.5, (b) RF = 30% : 70% with S cF = 0.5, and (c)
RF = 40% : 60% with S cF = 0.5.
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Figure 9. Simulations of system (3.3) using the parameters in Table 1. Here we show the
distributions of uninfected cancer cells (c), infected cancer cells (i), OV (v), and the vector
field of the oriented fibre ECM (F) at micro-macro stage 75∆t. (a) Baseline parameters; (b)
S cF = S iF = 0.3 (while keeping all other parameters at their baseline values), (c) S ie = 0.001
(while keeping all other parameters at their baseline values).
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Figure 10. Simulations of system (3.3) using the parameters in Table 1. The sub-panels
show the spatial distributions of uninfected cancer cells (c), infected cancer cells (i), OVs (v)
and the vector field of the oriented ECM fibres (F) at micro-macro stage 75∆t, when the ratio
of fibres to non-fibres ECM components is RF = 30% : 70%. (a) S cc = 0.1, S ce = 0.5, (b)
S cc = 0.05, S ce = 0.001.
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Figure 11. Simulations of system (3.3) using the parameters in Table 1. Here we show
the distributions of uninfected cancer cells (c), infected cancer cells (i), OVs (v) and the
vector field of the oriented ECM fibres (F) at micro-macro stage 75∆t. The cell-cell and
cell-matrix adhesion strengths are: (a) S cc = S ci = 0.05, S ic = S ii = 0.1 and S ce = 0.001, (b)
S cc = S ci = 0.1, S ii = S ic = 0.05 and S ie = 0.001.
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5. Conclusions

In this study we extended a nonlocal multi-scale moving boundary model proposed in [24] for
oncolytic virotherapies, by considering cancer cell interactions with a heterogeneous ECM formed
of fibrous and non-fibrous components. With the help of this model, we investigated numerically
the impact of assumptions of local vs. non-local interactions between the infected cancer cells and
uninfected cells and/or ECM. (It is known that the ECM and its components constitute a physical
barrier in the spread of OVs [8], but it is not clear what are the interactions between the infected cancer
cells and the environment, i.e., other cells and ECM.)

The numerical simulations showed that for the case of local advection of infected cells (see Fig-
ures 7and 8), the ratio RF of fibre versus non-fibre components of the ECM combined with the strength
of cell-fibre ECM adhesion played an important role in the extent of spatial spread of tumour cells.
In particular, very large RF ratios seemed to cause an accumulation of OVs at particular positions in
space (see Figures 7(a)–8(c), where tumours exhibited less spatial spread for large RF). Larger RF

ratios also led to a more pronounced tumour cell movement along the ECM fibres. This pronounced
directional movement of cancer cells along the fibres could be obtained also for lower RF ratios, but by
considering explicit non-local interactions for the advection of infected cells (see Figure 10(a) versus
Figure 7(a)). In this case, the spread of the virus inside tumour seemed to depend on the strength of
cell-cell interactions, with larger S cc causing higher viral accumulation at specific positions in space
(Figure 11(b)). The nonlocal interactions between the infected cells and the environment (i.e., other
cells and ECM components) played an important role in tumour and viral spatial spread only when the
magnitude of these interactions was very high (see Figure 11(a)).

All these numerical results suggested that for complex multi-scale biological problems it is diffi-
cult to discern between the different biological mechanisms behind the infected cells distribution (i.e.,
viral infection patterns), and directional versus omni-directional invasion of infected and non-infected
tumour cells into the surrounding tissue. This uncertainty is also because many model parameters (and
parameter ranges) used for the simulations were unknown and were estimated (i.e., “guessed”).

The parametrisation of these types of multi-scale moving-boundary models, to make them more
quantitatively relevant, is an open problem which involves different aspects. First, multi-scale data is
not always available, and when such data exists it is the result of multiple experiments performed in
different conditions for different biological systems and therefore it might not be at all relevant. Second,
to apply the results to clinically-relevant situations one needs to perform an uncertainty and sensitivity
analysis—which again, is an open problem for such multi-scale moving-boundary models. To make
some progress with this issue, one needs to have multi-scale data from one single experimental setting,
parametrise the model using this data, and then make further computational predictions that could be
tested experimentally.

This work can be further generalised to investigate various aspects of the interactions between
oncolytic virus particles and the tumour microenvironment: from the importance of combining OV
therapies with other classical therapies such as chemotherapies, to the investigation of go or grow
hypothesis within a two-phase heterogeneous ECM.
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