
MBE, 19(6): 6124–6140.

DOI: 10.3934/mbe.2022286

Received: 28 February 2022

Revised: 01 April 2022

Accepted: 06 April 2022

Published: 14 April 2022

http://www.aimspress.com/journal/MBE

Research article

Identification of propagated defects to reduce software testing cost via

mutation testing

Dong-Gun Lee and Yeong-Seok Seo*

Department of Computer Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

* Correspondence: Email: ysseo@yu.ac.kr; Tel: +82538103534; Fax: +82538104630.

Abstract: In software engineering, testing has long been a research area of software maintenance.
Testing is extremely expensive, and there is no guarantee that all defects will be found within a single
round of testing. Therefore, fixing defects that are not discovered by a single round of testing is
important for reducing the test costs. During the software maintenance process, testing is conducted
within the scope of a set of test cases called a test suite. Mutation testing is a method that uses mutants
to evaluate whether the test cases of the test suite are appropriate. In this paper, an approach is proposed
that uses the mutants of a mutation test to identify defects that are not discovered through a single
round of testing. The proposed method simultaneously applies two or more mutants to a single program
to define and record the relationships between different lines of code. In turn, these relationships are
examined using the defects that were discovered by a single round of testing, and possible defects are
recommended from among the recorded candidates. To evaluate the proposed method, a comparative
study was conducted using the fault localization method, which is commonly employed in defect
prediction, as well as the Defects4J defect prediction dataset, which is widely used in software defect
prediction. The results of the evaluation showed that the proposed method achieves a better
performance than seven other fault localization methods (Tarantula, Ochiai, Opt2, Barinel, Dstar2,
Muse, and Jaccard).

Keywords: software testing; mutation testing; software cost; test suite; fault localization

1. Introduction

In software engineering, the maintenance stage accounts for the greatest cost out of all software

6125

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

development stages [1]. Corrective maintenance is a discipline that deals with finding and fixing the
defects contained in software [2–4]. The testing stage is used to determine whether the software
contains any defects, and is a research area that has been studied for the longest time in the field of
maintenance [4–8]. Testing consists of unit, integration, and system testing [8–12]. Unit testing, which
is first conducted to detect defects in specific modules, is generally applied through the following
steps [12–14].
1) Choosing the target function to be tested.
2) Creation of test cases for the target function and building a test suite.
3) Conduction of tests based on the test suite.
4) Dealing with the target function according to the test results (test case pass/fail).

The testing is finished or returns to step 1) based on the test results. Figure 1 shows a visualization
of the unit testing process.

Figure 1. Overview of unit testing.

Even when testing a single function, multiple test cases must be conducted, and numerous
functions need to be applied in a single project [15,16]. For this reason, the size of the test suite
becomes extremely large, and testing is generally quite expensive because it must be conducted based
on the test suite [17,18]. It is therefore necessary to use test cases that properly identify dangerous
defects starting when the initial testing is conducted [19–23]. However, even if the performance of the
test cases is improved, it still cannot be guaranteed that all defects will be discovered by an initial unit

6126

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

testing (single round of testing) [24–29]. The following assumptions are therefore made.
 Original code and test case (Code A)
The original code is a perfect code without defects, and test cases exist for verification.
 Code including a single defect (Code B)
In this case, a single defect is included in code A. The defect then becomes a problem, and the

test case that uses code A cannot be passed.
 Code including two defects (Code C)
This is the code containing another defect in code B. In other words, two different defects are

present. However, unlike the test results of code B, code C passes the test case (the test results are the
same as those of code A).

Figure 2. Occurrence of propagated defects.

In such a scenario, the defects that are added to codes B and C influence each other. More
specifically, the defect in code B hides the one in code C. From the developer’s perspective, the test
results do not contain any problem; therefore, a code containing two flaws can be passed on as perfect

6127

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

code. However, because the code passes this test case, it may cause significant problems in the future.
Even if the test suite is strengthened through mutation testing or other methods, and the defect in code
C can be discovered and fixed by other test cases added to the strengthened process, the defect in code
B will continue to exist, and the program will remain imperfect. Therefore, the developer will need to
conduct new tests, which increases the cost.

In this study, we define the connectivity of related defects to “propagated defects”. To fix
propagated defects, developers are required to repeat testing. However, testing over a single round may
not be sufficient because it is impossible to determine the number of post-propagated defects. Thus,
the cost of fixing propagated defects cannot be determined in advance, and if the propagated defects
are identified without proper planning, astronomical costs are incurred. Figure 2 shows the process of
occurrence of propagated defects. In the figure, the solid lines and dotted lines represent the propagated
defects that can and cannot be identified with a single round of testing, respectively. In the case of an
initial defect, developers can only address such a defect only through testing. As a general procedure
of software testing and maintenance, developers perform testing to fix the defects. Then, in the status
after the defect fix, the problem happened. However, if only the initial defect is fixed, its influences
are propagated to other source codes including functions, libraries, and files. As a result, more defects
occur, and their influences are then propagated to other source codes.

Unfortunately, recent studies on software testing have focused on single rounds of testing [2,23]
and the defects that arise as a result of it [30,31]. Although we believe that the findings of these studies
will help improve the efficiency of defect identification and fixing, they do not facilitate the
identification of propagated defects, but rather only highlight propagated defects because of the high
accuracy of initial defect identification. In short, simply improving the performance of the test cases
does not guarantee that all the defects can be identified via initial testing alone. However, from another
perspective, fixing defects that cannot be identified through initial testing may help reduce the number
of test rounds. If a method to identify particular defects is available, it may become possible to identify
propagated defects through initial testing alone; this will play a key role in reducing testing costs. That
is, once an initial defect occurs, huge costs are incurred, which hampers the entire project [32,33].
Because the propagated defects often cause software project failure and significant cost to fix all the
defects, academic researchers and practitioners are studying to address critical issues [34,35].

In this paper, a new method is proposed for identifying these propagated defects. The proposed
method uses mutants that are applied in mutation testing to identify defects that are not discovered in
a single round of testing. Two or more mutants are applied to different lines of code, and by doing so,
the relationships between such lines are defined and recorded. As a result, these relationships are found
using defects that are discovered through a single round of testing, and possible defects are suggested
from among the recorded candidates. To evaluate the proposed method, Defects4J, which has been
widely applied in the field of defect prediction, is used in this study to evaluate the extent to which the
proposed method actually identifies propagated defects.

The contributions of this paper are as follows.
 A method is proposed to reduce the cost of software testing by identifying propagated defects.
 Data used in an actual project are applied to evaluate whether the proposed method is better

than other conventional methods.
The remainder of this paper is as follows. Section 2 examines related studies, and Section 3

explores how the proposed method actually identifies propagated defects. Section 4 presents the
experiments on the proposed method. Finally, Section 5 provides some concluding remarks as well as

6128

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

areas of future research.

2. Related work

2.1. Mutation testing

In general, in software engineering, mutation testing refers to a method of using mutants to
evaluate the appropriateness of the test cases of a test suite [36,37]. This is a fault-based testing method
that modifies a portion of the program code to deliberately induce errors. As shown in Figure 3, through
this process, the existing program and a program that is slightly different from the original are created,
and both the original and modified programs are run through prepared test cases to determine whether
they can be distinguished (identifying errors that were inserted to create the modified program) using
the current test suite [38–41]. If the execution results of the modified program differ from those of the
original program, it indicates that the modified program can be distinguished by the current test suite.
In this case, the modified program is treated as “killed” and is no longer of interest to the developer.
By contrast, if the execution results of the modified program are the same as those of the original
program, it means that the modified program cannot be distinguished by the current test suite. In this
case, the modified program is called a “live mutant,” and is proof that the test cases of the current test
suite do not access all areas of the deliberately changed code. In other words, the existence of a live
mutant means that the test suite was insufficient to kill the modified program. In mutation testing, the
goal of the developer is to add new test cases to the test suite such that all of the live mutants that were
identified by the testing results can be killed [42–45].

Figure 3. General process of Mutation testing.

6129

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

Research on mutation testing is being actively conducted. In particular, studies [46,47] have used
Higher Order Mutants (HOMs), created by combining two or more mutants, rather than mutants that
are used in normal mutation tests. Although mutation testing that applies HOMs yields robust results,
it is difficult for HOMs themselves to survive, and studies are being conducted to improve on this. As
mentioned before, the goal of mutation testing is basically to improve the quality of the test cases.
Therefore, in related studies, mutation testing has been used in combination with test cases, and it is
difficult to find studies that have only used mutation testing to identify defects [45]. In this paper, a
method is proposed that uses nested mutation testing to find propagated defects, which are generally
difficult to find during the initial round of testing.

2.2. Software defect prediction

Software defect prediction (SDP) refers to predicting whether defects exist in a program before
actually confirming the existence of defects through testing or maintenance [30,48]. The simplest code-
based SDP method collects examples of defects occurring in the code of several projects (buggy code)
and then finds code that is similar to the buggy code [49–51]. However, this incurs a problem in which
only patterns that are similar to the collected defects can be found, and even when defects are collected,
if the quantity is small compared to categories with a large number of data, the classifier may not cover
such defects properly [52]. The most common method used in SDP is a method based on learning
models that treat the project code as features [53,54]. By learning the code, the method learns for itself
the meaning and methods by which the code was written and finds any faulty or updated code that no
longer needs to be used. The learning performance of model-based methods is extremely dependent
on the data used as features; therefore, there are often cases in which efforts are made to preprocess
the data through methods such as normalization or resampling.

In defect document based SDP, text-based analysis and learning are common [55]. The main issue
in defect documents is the automation of the defect document classification process based on severity
and priority, which is known as triage. Various benefits can be obtained by applying such triage; for
example, developers can deal with higher-priority and fatal defects first, and duplicated defect
documents or documents that are not defects can be processed in advance to improve the task efficiency.
Therefore, triage is an extremely important task in software engineering. Triage is normally applied
manually. There have recently been cases in which image and video data are included according to the
software; in general, however, most defect documents consist of natural language and code, and
therefore triage often uses Natural Language Processing (NLP) and Recurrent Neural Network (RNN)-
type deep learning methods, which have advantages in regard to text learning [56–58].

Fault localization makes up the main part of SDP. The most commonly used type of fault
localization is spectrum-based [29,31], and fault localization is applied using a program spectrum
that illustrates which parts of a program are active. Fault localization methods are called Ochiai
method [60–63] or Jaccard method [64–67]. The methods according to the correlation coefficient used.

3. Approach

This section explains how the proposed method can be used to identify propagated defects. Figure 4
shows the overall process of the proposed method

6130

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

3.1. Analyzing defects with dual mutation testing

Figure 4. Overall approach of the proposed method for identifying propagated defects.

The proposed method receives the source code and test suite of the original target program as
input. First, mutation testing was performed through a set of mutation operations applied to the existing
source code with the prepared test suite (the first-round mutation testing which is called single mutation
testing in this study), and then the mutation testing was conducted again to the generated mutants (the
second-round mutation testing which is called as dual mutation testing in this study). That is, the
proposed method uses two types of mutations: in which a mutation operation is applied from the single
mutation testing, in which a mutation operation is applied one more time on mutants generated from
the single mutation testing. In order to perform the above testing process, a single defect is deliberately
inserted into the original source code, and the modified source code is then evaluated based on the
prepared test case. Another single defect is then deliberately inserted into the source code that was just
modified, and the modified source code is evaluated using the prepared test case (from the perspective
of the original source code, two different defects are inserted). In the results, the mutation is saved as
killed if it fails to pass even one test case, and is saved as live if it passes all test cases.

6131

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

3.2. Building a defect relationship table

If the single mutation test result is killed and the dual mutation test result is live, the single and
dual mutation results (including the modification information), as well as the test case in which the
single mutation is killed, are all saved. If the single mutation is killed, it means the defect caused by
the mutant can be identified by the current test suite, and if the dual mutation is live, it means that the
defect caused by the mutant cannot be identified by the current test suite. Therefore, a defect found in
a single mutant state is influenced by the dual mutant and obscured, and thus cannot be identified by
the current test suite. As such, propagated defects can be found by creating a defect relationship table
by saving the modified code for creating each mutant as well as the test cases by which the defects
were discovered.

3.3. Identifying propagated defects

After the defect relationship table is completed, if there are test cases that cannot be passed in the
test results of the software during the program operation, the developer finds the reason why the test
case failed and fixes the defect that fails during the testing. As a result, the code is changed during the
process of fixing the defects. However, because hidden defects may still exist in the code, the developer
can explore whether additional propagated defects exist by searching for test cases related to the fixed
defects in the defect relationship table or searching for changed lines of code in the defect relationship
table. This process also saves killed single mutation test cases; therefore, the test costs can be reduced
by applying only the saved test cases without the need for complete testing. If the test cases fail and it
is discovered that a defect exists in the program, the developer can fix the defect at a low cost, and if
there are no defects, the test cases will succeed, which does not incur significant problems in regard to
the overall test costs.

4. Evaluation

4.1. Experimental design

The Defects4J dataset was used to evaluate the proposed method [68]. Defects4J provides 835
defects from 17 actual projects using Java. Defects4J provides not only the defect information of the
project but also documents and code regarding the version containing the defect, allowing it to be
known how the defect and the defect document have affected each other. In addition, it also contains
a test suite for the testing itself, as well as the compiled and testing functions such that the same results
are guaranteed in whatever environment the testing is run. Table 1 shows a brief summary of the
projects and defects that are provided by Defects4J (version 2.0.0).

6132

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

Table 1. Summary of Defects4J (version 2.0.0).

Identifier Project name Number of defects Active defect IDs
Deprecated

defect IDs

Chart jfreechart 26 1–26 None

Cli commons-cli 39 1–5, 7–49 6

Closure closure-compiler 174 1–62, 64–92, 94–176 63, 93

Codec commons-codec 18 1–18 None

Collections commons-collections 4 25–28 1-24

Compress commons-compress 47 1–47 None

Csv commons-csv 16 1–16 None

Gson gson 18 1–18 None

JacksonCore jackson-core 26 1–26 None

JacksonDatabind jackson-databind 112 1–112 None

JacksonXML jackson-dataformat-xml 6 1–6 None

Jsoup jsoup 93 1–93 None

JxPath commons-jxpath 22 1–22 None

Lang commons-lang 64 1, 3–65 2

Math commons-math 106 1–106 None

Mockito mockito 38 1–38 None

Time joda-time 26 1–20, 22–27 21

* A description of each column

- Identifier: acronym to distinguish projects in Defects4J.

- Project name: actual project name searched in Java library.

- Number of defects: the number of defects provided by Defects4J.

- Active defect IDs: ID numbers for defects used in Defects4J

- Deprecated defect IDs: ID number for defects no longer used in Defects4J.

Among the Defects4J projects, JacksonXML is used in our experiment, because the enough
number of propagated defects exist. In general, the projects with the smaller number of defects (e.g.,
Collections) cannot build any propagated defects, while the projects with the greater number of defects
(e.g., Lang, Time) spend too much time on buildng propagated defects. Our experiments were
conducted by applying the proposed method to the original code of JacksonXML. Although Defects4J

6133

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

does not directly provide mutation testing functions, because it is limited to single mutations, single
mutation operators were extracted, and dual mutations were then applied. The modified code of each
mutant and the test results were recorded when the single mutation result was killed and the dual
mutation result was live. Next, pairs of defects were prepared from the six defects of JacksonXML to
create 30 ordered pairs. Supposing that the defect ordered pairs were expressed in the form of (a, b),
defect a was first applied to the original code, and defect b was then additionally applied. The 30
propagated defects that were obtained as a result were used as targets for identification based on the
recorded nested mutation results. In order to evaluate the proposed method, the existing seven fault
localization methods shown in Table 2 are applied to determine whether the methods could identify
the 30 propagated defects.

Table 2. Seven fault localization methods used in our experiments.

Fault localization methods Description of the core formulas

Tarantula [60,61,64]

Ochiai [60,64] ∙

Opt2 [64] 𝑓𝑎𝑖𝑙𝑒𝑑 𝑠

Barinel [61,64] 1

Dstar2 [60,61,64]

Muse [64]
𝑎𝑣𝑔

𝑚 ∈ 𝑚𝑢𝑡 𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝑚 𝑝𝑎𝑠𝑠𝑒𝑑 𝑚

Jaccard [60,64]

* A description of each column

- Fault localization methods: the name of methods used in the experiments.

- Description of the core formula: formulas for applying the fault localization methods

* A description of each argument in the formulas

- totalfailed: the total number of tests that failed.

- totalpassed: the total number of tests that passed.

- failed(s): the number of tests that failed for the statement s.

- passed(s): the number of tests that passed for the statement s.

- mut(s): a set of mutants for s.

- failed(m): the number of tests that failed for the mutant m.

- passed(m): the number of tests that passed for the mutant m.

Table 2 shows a summary of fault localization methods. The range of the core formula applied

6134

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

for the methods is from 0 to 1, and the result of this formula is called “suspiciousness”. The closer the
suspiciousness is to 1, the more similar the source code line is to a defect. There is no a clear value
that a source code line is a defect. In this paper, we use that the criteria for determination of propagated
defects is average suspiciousness of the defects on current source codes. That is, we do not allow them
as propagated defects unless the suspiciousness of propagated defects exceeds suspiciousness of the
defects on current source codes.

4.2. Experimental results

The experimental results showed that 5 out of the 30 propagated defects could be identified in
Table 3. Table 3 provides a simple summary of the propagated defects that the proposed method was
able to identify. The proposed method could discern that defects 2 and 3 affected the other defects
twice and were therefore obscured. In addition, it was seen that defects 5 and 6 did not affect the other
defects when the proposed method was used.

Table 3. Propagated defects identified using the proposed method.

Defects Pair Single mutants file
Single mutant

line number
Dual mutant file Dual mutant line number

1-2 FromXmlParser.java 321 FromXmlParser.java 506

1-3 FromXmlParser.java 321 XmlTokenStream.java 322

2-3 FromXmlParser.java 563 XmlTokenStream.java 315

3-4 FromXmlParser.java 713 FromXmlParser.java 660

4-2 FromXmlParser.java 656 FromXmlParser.java 427

* A description of each column

- Defects Pair: Active defect ID pair of propagated defects identified by the proposed method.

- Single mutants file: a file name with the single mutation applied.

- Single mutant line number: a line number modified with the single mutation applied.

- Dual mutants file: a file name with the dual mutation applied.

- Dual mutant line number: a line number modified with the dual mutation applied.

As presented in Table 4, the existing fault localization methods were unable to identify most of
the propagated defects. Only Tarantula, Opt2, and Muse were able to identify propagated defects (1, 2),
and the other methods were unable to identify any of the given propagated defects. The existing
methods could identify defects in current original source code. However, they did not show the enough
performance to identify the propagated defects because fault localization methods require testing
results. That is, if developers cannot test all source codes related to all the propagated defects, they cannot
predict where the propagated defects will occur. This issue is the critical limitation of the existing
methods and is why the existing methods are not suitable for the identification of propagated defects.

6135

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

Table 4. Propagated defects identified through existing fault localization.

Fault localization methods Defects pair

Tarantula [60,61,64] 1-2

Ochiai [60,64] -

Opt2 [64] 1-2

Barinel [61,64] -

Dstar2 [60,61,64] -

Muse [64] 1-2. 4-2

Jaccard [60,64] -

* A description of each column
- Fault localization methods: the name of methods used in the experiments.
- Defects pair: Active defect ID pairs of propagated defects identified by fault localization methods.

5. Conclusions

In software engineering, testing is an area of software maintenance that has been studied for a
long time. However, testing is extremely expensive, and it cannot be guaranteed that all defects will
be found during a single round of testing. Therefore, the resolution of defects that are not discovered
by a single round of testing is important for reducing the test costs. In this paper, an approach is
proposed that uses the mutants in a mutation test to identify defects that are not discovered by a single
round of testing. The proposed method simultaneously applies two or more mutants to a program to
define and record the relationships between different lines of code. In turn, these relationships are
examined using the defects that were discovered by a single round of testing, and possible defects are
recommended from among the recorded candidates. To evaluate the proposed method, a comparative
study was conducted using the fault localization method, which is commonly employed in defect
prediction, as well as the Defects4J defect prediction dataset, which provides code and defects
extracted from actual projects and is widely used in software defect prediction. The results of the
evaluation showed that the proposed method achieves a better performance than the seven fault
localization approaches. In addition to applying the proposed method for defect detection, in future
studies, the relationships between codes will be considered to determine the conversion sequences.

Acknowledgments

This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2020R1I1A3073313).

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

6136

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

References

1. R. H. Ur, R. Mushtaq, A. Palwasha, K. Mukhtaj, I. Nadeem, K. H. Ullah, Making the sourcing
decision of software maintenance and information technology, IEEE Access, 9 (2021), 11492–
11510. https://doi.org/10.1109/ACCESS.2021.3051023

2. F.S. Ana M, M. R. Chaudron, M. Genero, An industrial case study on the use of UML in software
maintenance and its perceived benefits and hurdles, Empirical Software Eng., 23 (2018), 3281–
3345. https://doi.org/10.1007/s10664-018-9599-4

3. E. Vahid, O. Bushehrian, G. Robles, Task assignment to counter the effect of developer turnover
in software maintenance: A knowledge diffusion model, Inf. Software Technol., 143 (2022),
106786. https://doi.org/10.1016/j.infsof.2021.106786

4. K. Jang, W. Kim, A method of activity-based software maintenance cost estimation for package
software, J. Supercomput., 78 (2021), 8151–8171. https://doi.org/10.1007/s11227-020-03610-6

5. T. Masateru, M. Akito, M. Kenichi, O. Sawako, O. Tomoki, Analysis of work efficiency and
quality of software maintenance using cross-company dataset, IEICE Trans. Inf. Syst., 104 (2021),
76–90. https://doi.org/10.1587/transinf.2020MPP0004

6. K.W. Kim, Y. Son, Software weakness evaluation method for secure software development, in
Proceedings on 2021 International Conferences on Multimedia Information Technology and
Applications, (2021), 322–325.

7. C. Kim, D. Kim, H. Kang, Detecting defect in headlamp housing with machine learning techniques,
in Proceedings on 2021 International Conferences on Multimedia Information Technology and
Applications, (2021), 428–430.

8. Y. J. Choi, Y. W. Lee, B. G Kim, Residual-based graph convolutional network for emotion
recognition in conversation for smart Internet of Things, Big Data, 9 (2021), 279–288.
https://doi.org/10.1089/big.2020.0274

9. P. P. Roy, P. Kumar, B.G. Kim, An efficient sign language recognition (SLR) system using
Camshift tracker and hidden Markov model (hmm), SN Comput. Sci., 2 (2021), 1–15.
https://doi.org/10.1007/s42979-021-00485-z

10. B. George, F. Stefan, M. Michael, P. Josef, An early investigation of unit testing practices of
component-based software systems, in 2020 IEEE Workshop on Validation, Analysis and
Evolution of Software Tests, (2020), 12–15. https://doi.org/10.1109/VST50071.2020.9051632

11. M. Alcon, H. Tabani, J. Abella, F. J. Cazorla, Enabling Unit Testing of Already-Integrated AI
Software Systems: The Case of Apollo for Autonomous Driving, in 2021 24th Euromicro
Conference on Digital System Design, (2021), 426–433.
https://doi.org/10.1109/DSD53832.2021.00071

12. D. Xavier, S. Panichella, A. Gambi, Java unit testing tool competition: Eighth round, in
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, (2020), 545–548. https://doi.org/10.1145/3387940.3392265

13. T. Mengqing, J. Yan, W. Xiang, P. Rushu, Black-box approach for software testing based on fat-
property, in MATEC Web of Conferences, 309 (2020), 02008.
https://doi.org/10.1051/matecconf/202030902008

14. S. Bo, Y. Shao, C. Chen, Study on the automated unit testing solution on the linux platform, in
2019 IEEE 19th International Conference on Software Quality, Reliability and Security
Companion, (2019), 358–361. https://doi.org/10.1109/QRS-C.2019.00073

6137

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

15. M. Héctor D, J. Gunel, S. Federica, T. Paolo, C. David, Diversifying focused testing for unit
testing, ACM Trans. Software Eng. Method., 30 (2021), 1–24. https://doi.org/10.1145/3447265

16. X. Wang, L. Wei, B. Tao, S. Ji, A study about unit testing for embedded software of control
system in nuclear power plant, in International Symposium on Software Reliability, Industrial
Safety, Cyber Security and Physical Protection for Nuclear Power Plant, (2020), 157–163.
https://doi.org/10.1007/978-981-16-3456-7_17

17. F. Anfal A, R. G. Alsarraj, A. M. Altaie, Software cost estimation based on dolphin algorithm,
IEEE Access, 8 (2020), 75279–75287. https://doi.org/10.1109/ACCESS.2020.2988867

18. C. Sonia, H. Singh, Optimizing design of fuzzy model for software cost estimation using particle
swarm optimization algorithm, Int. J. Comput. Intell. Appl., 19 (2020), 2050005.
https://doi.org/10.1142/S1469026820500054

19. A. Farrukh, A review of machine learning models for software cost estimation, Rev. Comput. Eng.
Res., 6 (2019), 64–75. https://doi.org/10.18488/journal.76.2019.62.64.75

20. K. Ishleen, N. G. Singh, W. Ritika, J. Vishal, B. Anupam, Neuro fuzzy—COCOMO II model for
software cost estimation, Int. J. Inf. Technol., 10 (2018), 181–187.
https://doi.org/10.1007/s41870-018-0083-6

21. J. Miller, S. Wienke, M. Schlottke-Lakemper, M. Meinke, M. S. Müller, Applicability of the
software cost model COCOMO II to HPC projects, Int. J. Comput. Sci. Eng., 17 (2018), 283–296.
https://doi.org/10.1504/IJCSE.2018.095849

22. A. Asheeri, M. Mohd, M. Hammad, Machine learning models for software cost estimation, in
2019 International Conference on Innovation and Intelligence for Informatics, Computing, and
Technologies, (2019), 1–6. https://doi.org/10.1109/3ICT.2019.8910327

23. A. Shaina, N. Mishra, Software cost estimation using artificial neural network, in Soft Computing:
Theories and Applications, Springer, (2018), 51–58. https://doi.org/10.1007/978-981-10-5699-
4_6

24. S. S. Pratap, V. P. Singh, A. K. Mehta, Differential evolution using homeostasis adaption based
mutation operator and its application for software cost estimation, J. King Saud Univ.-Comput.
Inf. Sci., 33 (2021), 740–752. https://doi.org/10.1016/j.jksuci.2018.05.009

25. S. W. Ahmad, G. R. Bamnote, Whale-crow optimization (WCO)-based optimal regression model
for software cost estimation, Sādhanā, 44 (2019), 1–15. https://doi.org/10.1007/s12046-019-
1085-1

26. J. A. Khan, S. U. R. Khan, J. Iqbal, I. U. Rehman, Empirical investigation about the factors
affecting the cost estimation in global software development context, IEEE Access, 9 (2021),
22274–22294. https://doi.org/10.1109/ACCESS.2021.3055858

27. V. S. Desai, R. Mohanty, ANN-Cuckoo optimization technique to predict software cost estimation,
in 2018 Conference on Information and Communication Technology, (2018), 1–6.
https://doi.org/10.1109/INFOCOMTECH.2018.8722380

28. R. C. A. Alves, D. A. G. Oliveira, G. A. N. Segura, C. B. Margi, The cost of software-defining
things: A scalability study of software-defined sensor networks, IEEE Access 7 (2019), 115093–
115108. https://doi.org/10.1109/ACCESS.2019.2936127

29. D. G. Lee, Y. S. Seo, Testing cost reduction using nested mutation testing, in Proceedings on 2021
International Conferences on Multimedia Information Technology and Applications, (2021),
462–464.

6138

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

30. N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning techniques for
software defect prediction, Inf. Software Technol., 122 (2020), 106287.
https://doi.org/10.1016/j.infsof.2020.106287

31. F. Keller, L. Grunske, S. Heiden, A. Filieri, A. Hoorn, D. Lo, A critical evaluation of spectrum-
based fault localization techniques on a large-scale software system, in 2017 IEEE International
Conference on Software Quality, Reliability and Security, (2017), 114–125.
https://doi.org/10.1109/QRS.2017.22

32. The cost of poor software quality in the US: A 2020 report, Report of Proc. Consortium Inf. Softw.
QualityTM, 2021. Available from: https://www.disputesoft.com/wp-
content/uploads/2021/01/CPSQ-2020-Software-Report.pdf.

33. ‘Fully weaponized’ software bug poses a threat to Minecraft gamers and apps worldwide
including Google, Twitter, Netflix, Spotify, Apple iCloud, Uber and Amazon, 2021. Available
from: https://www.dailymail.co.uk/news/article-10297693/Global-race-patch-critical-computer-
bug.html.

34. P. Vitharana, Defect propagation at the project-level: results and a post-hoc analysis on inspection
efficiency, Empirical Software Eng., 22 (2017), 57–79. https://doi.org/10.1007/s10664-015-9415-3

35. Z. Wei, T. Shen, X. Chen, Just-in-time defect prediction technology based on interpretability
technology, in 2021 8th International Conference on Dependable Systems and Their Applications
(DSA), (2021), 78–89. https://doi.org/10.1109/DSA52907.2021.00017

36. L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. J. Xu, et al., Deepmutation: Mutation testing of deep
learning systems, in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE), (2018), 100–111. https://doi.org/10.1109/ISSRE.2018.00021

37. G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, R. Just, An industrial application of mutation
testing: Lessons, challenges, and research directions, in 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), (2018), 47–53.
https://doi.org/10.1109/ICSTW.2018.00027

38. Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, J. Zhao, DeepMutation++: A mutation testing framework
for deep learning systems, in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), (2019), 1158–1611. https://doi.org/10.1109/ASE.2019.00126

39. P. Gómez-Abajo, E. Guerra, J. D. Lara, M. G. Merayo, Wodel-Test: a model-based framework
for language-independent mutation testing, Software Syst. Model., 20 (2021), 767–793.
https://doi.org/10.1007/s10270-020-00827-0

40. L. Chen, L. Zhang, Speeding up mutation testing via regression test selection: An extensive study,
in 2018 IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST), (2018), 58–69. https://doi.org/10.1109/ICST.2018.00016

41. N. Humbatova, G. Jahangirova, P. Tonella, DeepCrime: mutation testing of deep learning systems
based on real faults, in Proceedings of the 30th ACM SIGSOFT International, Symposium on
Software Testing and Analysis, (2021), 67–78. https://doi.org/10.1145/3460319.3464825

42. K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez, G. Bavota, C. Vendome, et al.,
MDroid+: A mutation testing framework for android, in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion), (2018), 33–36.
https://doi.org/10.1145/3183440.3183492

6139

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

43. Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, Z. Chen, MuSC: A tool for mutation testing of ethereum
smart contract, in 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), (2019), 1198–1201. https://doi.org/10.1109/ASE.2019.00136

44. D. Mao, L. Chen, L. Zhang, An extensive study on cross-project predictive mutation testing, in
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST), (2019),
160–171. https://doi.org/10.1109/ICST.2019.00025

45. D. Cheng, C. Cao, C. Xu, X. Ma, Manifesting bugs in machine learning code: An explorative
study with mutation testing, in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), (2018), 313–324. https://doi.org/10.1109/QRS.2018.00044

46. S. Lee, D. Binkley, R. Feldt, N. Gold, S. Yoo, Causal program dependence analysis, preprint,
arXiv:2104.09107. https://doi.org/10.48550/arXiv.2104.09107

47. S. Oh, S. Lee, S. Yoo, Effectively sampling higher order mutants using causal effect, in 2021
IEEE International Conference on Software Testing, Verification and Validation Workshops,
(2021), 19–24. https://doi.org/10.1109/ICSTW52544.2021.00017

48. X. Cai, Y. Niu, S. Geng, J. Zhang, Z. Cui, J. Li, et al., An under-sampled software defect
prediction method based on hybrid multi-objective cuckoo search, Concurrency Comput.: Pract.
Exper., 32 (2020), e5478. https://doi.org/10.1002/cpe.5478

49. A. Rahman, J. Stallings, L. Williams, Defect prediction metrics for infrastructure as code scripts
in DevOps, in Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, (2018), 414–415. https://doi.org/10.1145/3183440.3195034

50. A. Amar, P. C. Rigby, Mining historical test logs to predict bugs and localize faults in the test
logs, in 2019 IEEE/ACM 41st International Conference on Software Engineering. (2019), 140–
151. https://doi.org/10.1109/ICSE.2019.00031

51. P. Sangameshwar, B. Ravindran, Predicting software defect type using concept-based
classification, Empirical Software Eng., 25 (2020), 1341–1378.
https://doi.org/10.1142/S1469026820500054

52. S. Wang, T. Liu, J. Nam, L. Tan, Deep semantic feature learning for software defect prediction,
IEEE Trans. Software Eng., 46 (2018), 1267–1293. https://doi.org/10.1109/TSE.2018.2877612

53. X. Yin, L. Liu, H. Liu, Q. Wu, Heterogeneous cross-project defect prediction with multiple source
projects based on transfer learning, Math. Biosci. Eng., 17 (2020), 1020–1040.
https://doi.org/10.3934/mbe.2020054

54. L. Qiao, X. Li, Q. Umer, P. Guo, Deep learning based software defect prediction, Neurocomputing,
385 (2020), 100–110. https://doi.org/10.1016/j.neucom.2019.11.067

55. F. Wu, X. Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, et al., Cross-project and within-project
semisupervised software defect prediction: A unified approach, IEEE Trans. Reliab., 67 (2018),
581–597. https://doi.org/10.1109/TR.2018.2804922

56. D. L. Miholca, G. Czibula, I. G. Czibula, A novel approach for software defect prediction through
hybridizing gradual relational association rules with artificial neural networks, Inf. Sci., 441
(2018), 152–170. https://doi.org/10.1016/j.ins.2018.02.027

57. A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, H. Haghighi, SLDeep: Statement-
level software defect prediction using deep-learning model on static code features, Expert Syst.
Appl., 147 (2020), 113156. https://doi.org/10.1016/j.eswa.2019.113156

6140

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6124-6140.

58. G. G. Cabral, L. L. Minku, E. Shihab, S. Mujahid, Class imbalance evolution and verification
latency in just-in-time software defect prediction, in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), (2019), 666–676.
https://doi.org/10.1109/ICSE.2019.00076

59. A. Perez, R. Abreu, A. Deursen, A test-suite diagnosability metric for spectrum-based fault
localization approaches, in 2017 IEEE/ACM 39th International Conference on Software
Engineering, (2017), 654–664. https://doi.org/10.1109/ICSE.2017.66

60. X. Li, W. Li, Y. Zhang, L. Zhang, Deepfl: Integrating multiple fault diagnosis dimensions for
deep fault localization, in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, (2019), 169–180. https://doi.org/10.1145/3293882.3330574

61. A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, R. A. Rasheed, Multiple fault localization of
software programs: A systematic literature review, Inf. Software Technol., 124 (2020), 106312.
https://doi.org/10.1016/j.infsof.2020.106312

62. Z. Li, Y. Wu, Y. Liu, An empirical study of bug isolation on the effectiveness of multiple fault
localization, in 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS), (2019), 18–25. https://doi.org/10.1109/QRS.2019.00016

63. H. L. Ribeiro, R. P. A. de Araujo, M. L. Chaim, H. A. de Souza, F. Kon, Jaguar: A spectrum-
based fault localization tool for real-world software, in 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), (2018), 404–409.
https://doi.org/10.1109/ICST.2018.00048

64. K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, Y. Le Traon, You cannot fix what you
cannot find! An investigation of fault localization bias in benchmarking automated program repair
systems, in 2019 12th IEEE conference on software testing, validation and verification (ICST),
(2019), 102–113. https://doi.org/10.1109/ICST.2019.00020

65. D. Zou, J. Liang, Y. Xiong, M. D. Ernst, L. Zhang, An empirical study of fault localization
families and their combinations, IEEE Trans. Software Eng., 47 (2019), 332–347.
https://doi.org/10.1109/TSE.2019.2892102

66. J. Kim, J. Kim, E. Lee, Variable-based fault localization, Inf. Software Technol., 107 (2019), 179–
191. https://doi.org/10.1016/j.infsof.2018.11.009

67. Y. Kim, S. Mun, S. Yoo, M. Kim, Precise learn-to-rank fault localization using dynamic and static
features of target programs, ACM Trans. Software Eng. Method. (TOSEM), 28 (2019), 1–34.
https://doi.org/10.1145/3345628

68. Defects4J, 2022. available from: https://github.com/rjust/defects4j.

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

