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Abstract: In software engineering, testing has long been a research area of software maintenance. 
Testing is extremely expensive, and there is no guarantee that all defects will be found within a single 
round of testing. Therefore, fixing defects that are not discovered by a single round of testing is 
important for reducing the test costs. During the software maintenance process, testing is conducted 
within the scope of a set of test cases called a test suite. Mutation testing is a method that uses mutants 
to evaluate whether the test cases of the test suite are appropriate. In this paper, an approach is proposed 
that uses the mutants of a mutation test to identify defects that are not discovered through a single 
round of testing. The proposed method simultaneously applies two or more mutants to a single program 
to define and record the relationships between different lines of code. In turn, these relationships are 
examined using the defects that were discovered by a single round of testing, and possible defects are 
recommended from among the recorded candidates. To evaluate the proposed method, a comparative 
study was conducted using the fault localization method, which is commonly employed in defect 
prediction, as well as the Defects4J defect prediction dataset, which is widely used in software defect 
prediction. The results of the evaluation showed that the proposed method achieves a better 
performance than seven other fault localization methods (Tarantula, Ochiai, Opt2, Barinel, Dstar2, 
Muse, and Jaccard). 
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1. Introduction  

In software engineering, the maintenance stage accounts for the greatest cost out of all software 
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development stages [1]. Corrective maintenance is a discipline that deals with finding and fixing the 
defects contained in software [2–4]. The testing stage is used to determine whether the software 
contains any defects, and is a research area that has been studied for the longest time in the field of 
maintenance [4–8]. Testing consists of unit, integration, and system testing [8–12]. Unit testing, which 
is first conducted to detect defects in specific modules, is generally applied through the following 
steps [12–14]. 
1) Choosing the target function to be tested. 
2) Creation of test cases for the target function and building a test suite. 
3) Conduction of tests based on the test suite. 
4) Dealing with the target function according to the test results (test case pass/fail). 

The testing is finished or returns to step 1) based on the test results. Figure 1 shows a visualization 
of the unit testing process. 

 

Figure 1. Overview of unit testing. 

Even when testing a single function, multiple test cases must be conducted, and numerous 
functions need to be applied in a single project [15,16]. For this reason, the size of the test suite 
becomes extremely large, and testing is generally quite expensive because it must be conducted based 
on the test suite [17,18]. It is therefore necessary to use test cases that properly identify dangerous 
defects starting when the initial testing is conducted [19–23]. However, even if the performance of the 
test cases is improved, it still cannot be guaranteed that all defects will be discovered by an initial unit 
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testing (single round of testing) [24–29]. The following assumptions are therefore made. 
 Original code and test case (Code A) 
The original code is a perfect code without defects, and test cases exist for verification. 
 Code including a single defect (Code B) 
In this case, a single defect is included in code A. The defect then becomes a problem, and the 

test case that uses code A cannot be passed. 
 Code including two defects (Code C) 
This is the code containing another defect in code B. In other words, two different defects are 

present. However, unlike the test results of code B, code C passes the test case (the test results are the 
same as those of code A).   

 

Figure 2. Occurrence of propagated defects. 

In such a scenario, the defects that are added to codes B and C influence each other. More 
specifically, the defect in code B hides the one in code C. From the developer’s perspective, the test 
results do not contain any problem; therefore, a code containing two flaws can be passed on as perfect 
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code. However, because the code passes this test case, it may cause significant problems in the future. 
Even if the test suite is strengthened through mutation testing or other methods, and the defect in code 
C can be discovered and fixed by other test cases added to the strengthened process, the defect in code 
B will continue to exist, and the program will remain imperfect. Therefore, the developer will need to 
conduct new tests, which increases the cost. 

In this study, we define the connectivity of related defects to “propagated defects”. To fix 
propagated defects, developers are required to repeat testing. However, testing over a single round may 
not be sufficient because it is impossible to determine the number of post-propagated defects. Thus, 
the cost of fixing propagated defects cannot be determined in advance, and if the propagated defects 
are identified without proper planning, astronomical costs are incurred. Figure 2 shows the process of 
occurrence of propagated defects. In the figure, the solid lines and dotted lines represent the propagated 
defects that can and cannot be identified with a single round of testing, respectively. In the case of an 
initial defect, developers can only address such a defect only through testing. As a general procedure 
of software testing and maintenance, developers perform testing to fix the defects. Then, in the status 
after the defect fix, the problem happened. However, if only the initial defect is fixed, its influences 
are propagated to other source codes including functions, libraries, and files. As a result, more defects 
occur, and their influences are then propagated to other source codes. 

Unfortunately, recent studies on software testing have focused on single rounds of testing [2,23] 
and the defects that arise as a result of it [30,31]. Although we believe that the findings of these studies 
will help improve the efficiency of defect identification and fixing, they do not facilitate the 
identification of propagated defects, but rather only highlight propagated defects because of the high 
accuracy of initial defect identification. In short, simply improving the performance of the test cases 
does not guarantee that all the defects can be identified via initial testing alone. However, from another 
perspective, fixing defects that cannot be identified through initial testing may help reduce the number 
of test rounds. If a method to identify particular defects is available, it may become possible to identify 
propagated defects through initial testing alone; this will play a key role in reducing testing costs. That 
is, once an initial defect occurs, huge costs are incurred, which hampers the entire project [32,33]. 
Because the propagated defects often cause software project failure and significant cost to fix all the 
defects, academic researchers and practitioners are studying to address critical issues [34,35]. 

In this paper, a new method is proposed for identifying these propagated defects. The proposed 
method uses mutants that are applied in mutation testing to identify defects that are not discovered in 
a single round of testing. Two or more mutants are applied to different lines of code, and by doing so, 
the relationships between such lines are defined and recorded. As a result, these relationships are found 
using defects that are discovered through a single round of testing, and possible defects are suggested 
from among the recorded candidates. To evaluate the proposed method, Defects4J, which has been 
widely applied in the field of defect prediction, is used in this study to evaluate the extent to which the 
proposed method actually identifies propagated defects. 

The contributions of this paper are as follows. 
 A method is proposed to reduce the cost of software testing by identifying propagated defects. 
 Data used in an actual project are applied to evaluate whether the proposed method is better 

than other conventional methods. 
The remainder of this paper is as follows. Section 2 examines related studies, and Section 3 

explores how the proposed method actually identifies propagated defects. Section 4 presents the 
experiments on the proposed method. Finally, Section 5 provides some concluding remarks as well as 
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areas of future research. 

2. Related work 

2.1. Mutation testing 

In general, in software engineering, mutation testing refers to a method of using mutants to 
evaluate the appropriateness of the test cases of a test suite [36,37]. This is a fault-based testing method 
that modifies a portion of the program code to deliberately induce errors. As shown in Figure 3, through 
this process, the existing program and a program that is slightly different from the original are created, 
and both the original and modified programs are run through prepared test cases to determine whether 
they can be distinguished (identifying errors that were inserted to create the modified program) using 
the current test suite [38–41]. If the execution results of the modified program differ from those of the 
original program, it indicates that the modified program can be distinguished by the current test suite. 
In this case, the modified program is treated as “killed” and is no longer of interest to the developer. 
By contrast, if the execution results of the modified program are the same as those of the original 
program, it means that the modified program cannot be distinguished by the current test suite. In this 
case, the modified program is called a “live mutant,” and is proof that the test cases of the current test 
suite do not access all areas of the deliberately changed code. In other words, the existence of a live 
mutant means that the test suite was insufficient to kill the modified program. In mutation testing, the 
goal of the developer is to add new test cases to the test suite such that all of the live mutants that were 
identified by the testing results can be killed [42–45]. 

 

Figure 3. General process of Mutation testing. 
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Research on mutation testing is being actively conducted. In particular, studies [46,47] have used 
Higher Order Mutants (HOMs), created by combining two or more mutants, rather than mutants that 
are used in normal mutation tests. Although mutation testing that applies HOMs yields robust results, 
it is difficult for HOMs themselves to survive, and studies are being conducted to improve on this. As 
mentioned before, the goal of mutation testing is basically to improve the quality of the test cases. 
Therefore, in related studies, mutation testing has been used in combination with test cases, and it is 
difficult to find studies that have only used mutation testing to identify defects [45]. In this paper, a 
method is proposed that uses nested mutation testing to find propagated defects, which are generally 
difficult to find during the initial round of testing.   

2.2. Software defect prediction 

Software defect prediction (SDP) refers to predicting whether defects exist in a program before 
actually confirming the existence of defects through testing or maintenance [30,48]. The simplest code-
based SDP method collects examples of defects occurring in the code of several projects (buggy code) 
and then finds code that is similar to the buggy code [49–51]. However, this incurs a problem in which 
only patterns that are similar to the collected defects can be found, and even when defects are collected, 
if the quantity is small compared to categories with a large number of data, the classifier may not cover 
such defects properly [52]. The most common method used in SDP is a method based on learning 
models that treat the project code as features [53,54]. By learning the code, the method learns for itself 
the meaning and methods by which the code was written and finds any faulty or updated code that no 
longer needs to be used. The learning performance of model-based methods is extremely dependent 
on the data used as features; therefore, there are often cases in which efforts are made to preprocess 
the data through methods such as normalization or resampling. 

In defect document based SDP, text-based analysis and learning are common [55]. The main issue 
in defect documents is the automation of the defect document classification process based on severity 
and priority, which is known as triage. Various benefits can be obtained by applying such triage; for 
example, developers can deal with higher-priority and fatal defects first, and duplicated defect 
documents or documents that are not defects can be processed in advance to improve the task efficiency. 
Therefore, triage is an extremely important task in software engineering. Triage is normally applied 
manually. There have recently been cases in which image and video data are included according to the 
software; in general, however, most defect documents consist of natural language and code, and 
therefore triage often uses Natural Language Processing (NLP) and Recurrent Neural Network (RNN)-
type deep learning methods, which have advantages in regard to text learning [56–58]. 

Fault localization makes up the main part of SDP. The most commonly used type of fault 
localization is spectrum-based [29,31], and fault localization is applied using a program spectrum 
that illustrates which parts of a program are active. Fault localization methods are called Ochiai 
method [60–63] or Jaccard method [64–67]. The methods according to the correlation coefficient used. 

3. Approach 

This section explains how the proposed method can be used to identify propagated defects. Figure 4 
shows the overall process of the proposed method   
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3.1. Analyzing defects with dual mutation testing 

 

Figure 4. Overall approach of the proposed method for identifying propagated defects. 

The proposed method receives the source code and test suite of the original target program as 
input. First, mutation testing was performed through a set of mutation operations applied to the existing 
source code with the prepared test suite (the first-round mutation testing which is called single mutation 
testing in this study), and then the mutation testing was conducted again to the generated mutants (the 
second-round mutation testing which is called as dual mutation testing in this study). That is, the 
proposed method uses two types of mutations: in which a mutation operation is applied from the single 
mutation testing, in which a mutation operation is applied one more time on mutants generated from 
the single mutation testing. In order to perform the above testing process, a single defect is deliberately 
inserted into the original source code, and the modified source code is then evaluated based on the 
prepared test case. Another single defect is then deliberately inserted into the source code that was just 
modified, and the modified source code is evaluated using the prepared test case (from the perspective 
of the original source code, two different defects are inserted). In the results, the mutation is saved as 
killed if it fails to pass even one test case, and is saved as live if it passes all test cases. 
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3.2. Building a defect relationship table 

If the single mutation test result is killed and the dual mutation test result is live, the single and 
dual mutation results (including the modification information), as well as the test case in which the 
single mutation is killed, are all saved. If the single mutation is killed, it means the defect caused by 
the mutant can be identified by the current test suite, and if the dual mutation is live, it means that the 
defect caused by the mutant cannot be identified by the current test suite. Therefore, a defect found in 
a single mutant state is influenced by the dual mutant and obscured, and thus cannot be identified by 
the current test suite. As such, propagated defects can be found by creating a defect relationship table 
by saving the modified code for creating each mutant as well as the test cases by which the defects 
were discovered. 

3.3. Identifying propagated defects 

After the defect relationship table is completed, if there are test cases that cannot be passed in the 
test results of the software during the program operation, the developer finds the reason why the test 
case failed and fixes the defect that fails during the testing. As a result, the code is changed during the 
process of fixing the defects. However, because hidden defects may still exist in the code, the developer 
can explore whether additional propagated defects exist by searching for test cases related to the fixed 
defects in the defect relationship table or searching for changed lines of code in the defect relationship 
table. This process also saves killed single mutation test cases; therefore, the test costs can be reduced 
by applying only the saved test cases without the need for complete testing. If the test cases fail and it 
is discovered that a defect exists in the program, the developer can fix the defect at a low cost, and if 
there are no defects, the test cases will succeed, which does not incur significant problems in regard to 
the overall test costs.  

4. Evaluation 

4.1. Experimental design 

The Defects4J dataset was used to evaluate the proposed method [68]. Defects4J provides 835 
defects from 17 actual projects using Java. Defects4J provides not only the defect information of the 
project but also documents and code regarding the version containing the defect, allowing it to be 
known how the defect and the defect document have affected each other. In addition, it also contains 
a test suite for the testing itself, as well as the compiled and testing functions such that the same results 
are guaranteed in whatever environment the testing is run. Table 1 shows a brief summary of the 
projects and defects that are provided by Defects4J (version 2.0.0). 
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Table 1. Summary of Defects4J (version 2.0.0). 

Identifier Project name Number of defects Active defect IDs 
Deprecated 

defect IDs 

Chart jfreechart 26 1–26 None 

Cli commons-cli 39 1–5, 7–49 6 

Closure closure-compiler 174 1–62, 64–92, 94–176 63, 93 

Codec commons-codec 18 1–18 None 

Collections commons-collections 4 25–28 1-24 

Compress commons-compress 47 1–47 None 

Csv commons-csv 16 1–16 None 

Gson gson 18 1–18 None 

JacksonCore jackson-core 26 1–26 None 

JacksonDatabind jackson-databind 112 1–112 None 

JacksonXML jackson-dataformat-xml 6 1–6 None 

Jsoup jsoup 93 1–93 None 

JxPath commons-jxpath 22 1–22 None 

Lang commons-lang 64 1, 3–65 2 

Math commons-math 106 1–106 None 

Mockito mockito 38 1–38 None 

Time joda-time 26 1–20, 22–27 21 

* A description of each column 

- Identifier: acronym to distinguish projects in Defects4J. 

- Project name: actual project name searched in Java library. 

- Number of defects: the number of defects provided by Defects4J. 

- Active defect IDs: ID numbers for defects used in Defects4J 

- Deprecated defect IDs: ID number for defects no longer used in Defects4J. 

Among the Defects4J projects, JacksonXML is used in our experiment, because the enough 
number of propagated defects exist. In general, the projects with the smaller number of defects (e.g., 
Collections) cannot build any propagated defects, while the projects with the greater number of defects 
(e.g., Lang, Time) spend too much time on buildng propagated defects. Our experiments were 
conducted by applying the proposed method to the original code of JacksonXML. Although Defects4J 
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does not directly provide mutation testing functions, because it is limited to single mutations, single 
mutation operators were extracted, and dual mutations were then applied. The modified code of each 
mutant and the test results were recorded when the single mutation result was killed and the dual 
mutation result was live. Next, pairs of defects were prepared from the six defects of JacksonXML to 
create 30 ordered pairs. Supposing that the defect ordered pairs were expressed in the form of (a, b), 
defect a was first applied to the original code, and defect b was then additionally applied. The 30 
propagated defects that were obtained as a result were used as targets for identification based on the 
recorded nested mutation results. In order to evaluate the proposed method, the existing seven fault 
localization methods shown in Table 2 are applied to determine whether the methods could identify 
the 30 propagated defects. 

Table 2. Seven fault localization methods used in our experiments. 

Fault localization methods Description of the core formulas 

Tarantula [60,61,64] 
೑ೌ೔೗೐೏ሺೞሻ

೟೚೟ೌ೗೑ೌ೔೗೐೏
೑ೌ೔೗೐೏ሺೞሻ

೟೚೟ೌ೗೑ೌ೔೗೐೏
ା

೛ೌೞೞ೐೏ሺೞሻ
೟೚೟ೌ೗೛ೌೞೞ೐೏

  

Ochiai [60,64] 
௙௔௜௟௘ௗሺ௦ሻ

ඥ௧௢௧௔௟௙௔௜௟௘ௗ∙ሺ௙௔௜௟௘ௗሺ௦ሻା௣௔௦௦௘ௗሺ௦ሻሻ
  

Opt2 [64] 𝑓𝑎𝑖𝑙𝑒𝑑ሺ𝑠ሻ െ
௣௔௦௦௘ௗሺ௦ሻ

௧௢௧௔௟௣௔௦௦௘ௗାଵ
  

Barinel [61,64] 1 െ
௣௔௦௦௘ௗሺ௦ሻ

௣௔௦௦௘ௗሺ௦ሻା௙௔௜௟௘ௗሺ௦ሻ
  

Dstar2 [60,61,64] 
௙௔௜௟௘ௗሺ௦ሻమ

௣௔௦௦௘ௗሺ௦ሻାሺ௧௢௧௔௟௙௔௜௟௘ௗି௙௔௜௟௘ௗሺ௦ሻሻ
  

Muse [64] 
𝑎𝑣𝑔

𝑚 ∈ 𝑚𝑢𝑡ሺ𝑠ሻ ቂ𝑓𝑎𝑖𝑙𝑒𝑑ሺ𝑚ሻ െ
௧௢௧௔௟௙௔௜௟௘ௗ

௧௢௧௔௟௣௔௦௦௘ௗ
𝑝𝑎𝑠𝑠𝑒𝑑ሺ𝑚ሻቃ  

Jaccard [60,64] 
௙௔௜௟௘ௗሺ௦ሻ

௧௢௧௔௟௙௔௜௟௘ௗା௣௔௦௦௘ௗሺ௦ሻ
  

* A description of each column 

- Fault localization methods: the name of methods used in the experiments. 

- Description of the core formula: formulas for applying the fault localization methods 

* A description of each argument in the formulas 

- totalfailed: the total number of tests that failed. 

- totalpassed: the total number of tests that passed. 

- failed(s): the number of tests that failed for the statement s. 

- passed(s): the number of tests that passed for the statement s. 

- mut(s): a set of mutants for s. 

- failed(m): the number of tests that failed for the mutant m. 

- passed(m): the number of tests that passed for the mutant m. 

Table 2 shows a summary of fault localization methods. The range of the core formula applied 
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for the methods is from 0 to 1, and the result of this formula is called “suspiciousness”. The closer the 
suspiciousness is to 1, the more similar the source code line is to a defect. There is no a clear value 
that a source code line is a defect. In this paper, we use that the criteria for determination of propagated 
defects is average suspiciousness of the defects on current source codes. That is, we do not allow them 
as propagated defects unless the suspiciousness of propagated defects exceeds suspiciousness of the 
defects on current source codes. 

4.2. Experimental results 

The experimental results showed that 5 out of the 30 propagated defects could be identified in 
Table 3. Table 3 provides a simple summary of the propagated defects that the proposed method was 
able to identify. The proposed method could discern that defects 2 and 3 affected the other defects 
twice and were therefore obscured. In addition, it was seen that defects 5 and 6 did not affect the other 
defects when the proposed method was used. 

Table 3. Propagated defects identified using the proposed method. 

Defects Pair Single mutants file 
Single mutant 

line number 
Dual mutant file Dual mutant line number

1-2 FromXmlParser.java 321 FromXmlParser.java 506 

1-3 FromXmlParser.java 321 XmlTokenStream.java 322 

2-3 FromXmlParser.java 563 XmlTokenStream.java 315 

3-4 FromXmlParser.java 713 FromXmlParser.java 660 

4-2 FromXmlParser.java 656 FromXmlParser.java 427 

* A description of each column 

- Defects Pair: Active defect ID pair of propagated defects identified by the proposed method. 

- Single mutants file: a file name with the single mutation applied. 

- Single mutant line number: a line number modified with the single mutation applied. 

- Dual mutants file: a file name with the dual mutation applied. 

- Dual mutant line number: a line number modified with the dual mutation applied. 

As presented in Table 4, the existing fault localization methods were unable to identify most of 
the propagated defects. Only Tarantula, Opt2, and Muse were able to identify propagated defects (1, 2), 
and the other methods were unable to identify any of the given propagated defects. The existing 
methods could identify defects in current original source code. However, they did not show the enough 
performance to identify the propagated defects because fault localization methods require testing 
results. That is, if developers cannot test all source codes related to all the propagated defects, they cannot 
predict where the propagated defects will occur. This issue is the critical limitation of the existing 
methods and is why the existing methods are not suitable for the identification of propagated defects. 
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Table 4. Propagated defects identified through existing fault localization. 

Fault localization methods Defects pair 

Tarantula [60,61,64] 1-2 

Ochiai [60,64] - 

Opt2 [64] 1-2 

Barinel [61,64] - 

Dstar2 [60,61,64] - 

Muse [64] 1-2. 4-2 

Jaccard [60,64] - 

* A description of each column 
- Fault localization methods: the name of methods used in the experiments. 
- Defects pair: Active defect ID pairs of propagated defects identified by fault localization methods.

5. Conclusions 

In software engineering, testing is an area of software maintenance that has been studied for a 
long time. However, testing is extremely expensive, and it cannot be guaranteed that all defects will 
be found during a single round of testing. Therefore, the resolution of defects that are not discovered 
by a single round of testing is important for reducing the test costs. In this paper, an approach is 
proposed that uses the mutants in a mutation test to identify defects that are not discovered by a single 
round of testing. The proposed method simultaneously applies two or more mutants to a program to 
define and record the relationships between different lines of code. In turn, these relationships are 
examined using the defects that were discovered by a single round of testing, and possible defects are 
recommended from among the recorded candidates. To evaluate the proposed method, a comparative 
study was conducted using the fault localization method, which is commonly employed in defect 
prediction, as well as the Defects4J defect prediction dataset, which provides code and defects 
extracted from actual projects and is widely used in software defect prediction. The results of the 
evaluation showed that the proposed method achieves a better performance than the seven fault 
localization approaches. In addition to applying the proposed method for defect detection, in future 
studies, the relationships between codes will be considered to determine the conversion sequences. 
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