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Abstract: In this article, we investigate the single-machine scheduling problem with truncated learn-
ing effect and resource allocation, where the actual processing time of a job is a general function of
its additional resources and position in a sequence. The goal is to determine the optimal resource al-
location and optimal sequence such that a weighted sum of scheduling cost and resource consumption
cost is minimized. We show that the problem can be solved in O(n3) time by using an assignment
formulation, where n is the number of jobs.
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1. Introduction

Planning and scheduling are important problems in industrial engineering, logistics and supply
chain management (see Wu et al. [1], Zhang et al. [2], Polverini et al. [3], Yang et al. [4]). In the
traditional scheduling models, the processing time of jobs is a fixed constant, but in many real produc-
tions, the processing time of jobs often decreases with the repetition of certain jobs, this phenomenon is
called learning effects (see the survey Azzouz et al. [5]). Recently, Pei et al. [6] examined the single-
machine and parallel-machine serial batching scheduling with a learning effect and time-dependent
setup time. The objective functions is to minimize maximum earliness and total number of tardy jobs,
respectively. For the single-machine scheduling, they proved that the maximum earliness and number
of tardy jobs minimizations can be solved in polynomial time. For the parallel-machine scheduling,
they proposed some algorithms to solve the problems. Qian et al. [7] addressed single-machine re-
lease times scheduling with a learning effect. For the weighted sum of makespan, total completion
time and maximum tardiness, they proposed several heuristic algorithms and a branch-and-bound al-
gorithm to solve the problem. Wang et al. [8] investigated single-machine release dates scheduling
with a position-weighted learning effect. For the total completion time minimization, they proposed
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the heuristic and branch-and-bound algorithms. Wang et al. [9] considered flow shop scheduling with
truncated learning effects. For the makespan and total weighted completion time minimizations, they
proposed some heuristics and a branch-and-bound algorithm. Liang et al. [10] studied flow shop
scheduling with sum-of-logarithm-processing-times-based learning effects. For the total (weighted)
completion time, the makespan, and the sum of the quadratic job completion times minimizations, they
proposed several heuristic algorithms to solve the problems and the worst-case bounds of heuristic al-
gorithms were analyzed. Sun et al. [11] addressed single-machine scheduling with general position
weighted learning effects. For the total weighted completion time minimization, they proposed two
heuristics and their worst-case bounds were analysed. They also proposed some complex heuristics
and a branch-and-bound algorithm.

Another, increasing attention has been paid to scheduling problems with controllable processing
times (resource allocation) (see Shabtay and Steiner [12], Wei et al. [13], Wang and Wang [14],
Mashayekhy et al. [15], Liang et al. [16] and Liu and Xiong [17]) and learning effects (see Lu
et al. [18]). Recently, Zhu et al. [19] studied single-machine scheduling with learning effects and
resource allocation. Under past-sequence-dependent setup times and general resource allocation, they
showed that a regular objective function minimization can be solved in polynomial time. Pei et al.
[20] investigated scheduling with learning effects and resource allocation on a single-machine. For
the makespan minimization under the serial-batching production, they proposed a hybrid GSA-TS
algorithm. Liu and Jiang [21] addressed single machine scheduling problems with learning effects and
resource allocation. For the common and slack due-date assignments with position-dependent weights,
they gave some results. Geng et al. [22] and Liu and Jiang [23] considered flow shop scheduling with
learning effects and resource allocation. Under due date assignments, they proved that some two
machine no-wait flow shop problems can be solved in polynomial time. Wang et al. [24] considered
single machine scheduling with learning effects and resource allocation. Under a convex resource
allocation function, they provided a bicriteria analysis for the total weighted flow time cost and the
total resource consumption cost. Lv and Wang [25] considered flow shop scheduling problem with
learning effect and resource allocation. Under different due-window assignment and two machine no-
wait setting, they provided a bicriteria analysis for the scheduling cost and the resource consumption
cost. They demonstrated that four versions about these both costs remain polynomially solvable. In this
article, we study scheduling problems in a single-machine environment with truncated learning effects
and resource allocation. Under the job processing times function is a general resource consumption
function, we provide a unified approach for a large scheduling objective functions. We show that all
these problems can be solved in polynomial time.

The remaining of this paper is as follows: Section 2 gives the description of the problem. In Section
3, we give some positional weights results. In Section 4, the optimal properties and the optimal solution
algorithms are proposed. A special case is given in Section 5. Section 6 concludes the paper.

2. Problem description

A set J = {J1, J2, ..., Jn̆} of n̆ independent jobs are processed on a single machine, and all the jobs are
available at time 0 and not allowed to be preempted. Suppose that job Jh is scheduled in rth position,
the actual processing time is

PA
h (uh) = Ph(uh) max{rβh , δ}, (1)
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where βh ≤ 0 is the learning rate of job Jh, 0 < δ ≤ 1 is a truncation parameter, function Ph(uh)
satisfies P′h(uh) ≤ 0, P′′h (uh) ≥ 0, P′h(uh) =

dPh(uh)
duh

is the first derivative of uh, P′′h (uh) =
d2Ph(uh)

d(uh)2 is the
second derivative of uh, uh is the amount of resource allocated to job Jh such that umin

h ≤ uh ≤ umax
h ,

umin
h and umax

h are the lower and upper bound of the resource allocation uh. Note that the linear resource

allocation PA
h (uh) = ah − bhuh and convex resource allocation PA

h = ah +
(

wh
uh

)θ
are special cases of Eq

(1), where ah is the basic processing time of job Jh, bh is the compression rate of job Jh, θ > 0 is a
constant, and wh is the workload of job Jh.

Let [h] be the job that is placed in hth position, PA
[h] denote the actual processing time of job J[h],

the scheduling cost of this article can be expressed as
∑n̆

h=1 ηhPA
[h], and the resource consumption cost

is
∑n̆

h=1 g[h]u[h], where ηh is the positional weight of hth position and gh is the cost allocated to job Jh.
The goal is to find the optimal sequence π of all jobs, and optimal resource allocation to minimize

F(π, u[h]) = α̂

n̆∑
h=1

ηhPA
[h] + β̂

n̆∑
h=1

g[h]u[h], (2)

where α̂ ≥ 0 and β̂ ≥ 0 are given constants. By using extensions of the notation, the problem can be
denoted:

1
∣∣∣PA

h (uh) = Ph(uh) max{rβh , δ}
∣∣∣ α̂ n̆∑

h=1

ηhPA
[h] + β̂

n̆∑
h=1

g[h]u[h]. (3)

3. Positional weights results

3.1. Case 1

Note that the scheduling cost
∑n̆

h=1 ηhPA
[h] can be applied to many scheduling cost, such as, for the

makespan Cmax =
∑n̆

h=1 PA
[h], i.e., ηh = 1; for the total completion time

∑n̆
h=1 Ch =

∑n̆
h=1

∑h
j=1 PA

[ j] =∑n̆
h=1(n̆ − h + 1)PA

[h], i.e., ηh = n̆ − h + 1; for the total absolute differences in completion times (see
Kanet [26])

∑n̆
h=1

∑h
j=1 |Ch −C j| =

∑n̆
h=1(h − 1)(n̆ − h + 1)PA

[h], i.e., ηh = (h − 1)(n̆ − h + 1); for the total
absolute differences in waiting times (see Bagchi [27])

∑n̆
h=1

∑h
j=1 |Wh − W j| =

∑n̆
h=1 h(n̆ − h)PA

[h], i.e.,
ηh = h(n̆ − h), where Wh is the waiting time of job Jh.

Under due date assignment, let dh be the due date of job Jh, Eh = max{0, dh − Ch} and Th =

max{0,Ch − dh} be the earliness and tardiness of job Jh. For the common (CON) due date assignment
(see Panwalkar et al. [28]),

∑n
h=1(φEh +ϕTh +χd) =

∑n̆
h=1 ηhPA

[h], where φ, ϕ, and χ are given constants,
dh = d is the common due date (d is a decision variable) and ηh = min{n̆χ+(h−1)φ, (n̆+1−h)ϕ}. For the
slack due date assignment (see Adamopoulos and Pappis [29]),

∑n
h=1(φEh + ϕTh + χq) =

∑n̆
h=1 ηhPA

[h],
where dh = PA

h + q, q is the common flow allowance (q is a decision variable) and ηh = min{n̆χ +

hφ, (n̆−h)ϕ}. For the different due date assignment (see Seidmann et al. [30]),
∑n

h=1(φEh +ϕTh +χdh) =∑n̆
h=1 ηhPA

[h], where dh is a decision variable and ηh = min{χ(n̆ + 1 − h), ϕ(n̆ + 1 − h)}.
Under due window assignment, let [d′h, d

′′
h ] be the due window of job Jh, d′h (d′′h ) is the starting

(finishing) time of the due window of job Jh, and Dh = d′′h − d′h is the size of due window [d′h, d
′′
h ],

Eh = max{0, d′h − Ch} and Th = max{0,Ch − d′′h }) are the earliness and tardiness of job Jh. For the
common due window assignment (see Liman et al. [31]), d′h = a′ (d′′h = d′′, such D = d′′h − d′ ),∑n

h=1(φEh + ϕTh + χd′ + ψD) =
∑n̆

h=1 ηhPA
[h], where ψ is a given constant, and ηh = min{n̆χ + (h −
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1)φ, n̆ψ, (n̆ + 1 − h)ϕ}. For the slack due window assignment (see Wu et al. [32]),
∑n

h=1(φEh + ϕTh +

χd′+ψD) =
∑n̆

h=1 ηhPA
[h], where d′i = pi +q′, d′′i = pi +q′′, D = q′′−q′, ηh = min{n̆χ+hφ, n̆ψ, (n̆−h)ϕ};

For the different due window assignment (see Wang et al. [33]), d′h and d′′h are decision variables,∑n
h=1(φEh + ϕTh + χd′h + ψDh) =

∑n̆
h=1 ηhPA

[h], where ηh = min{χ(n̆ + 1 − h), (n̆ + 1 − h)ϕ}.

3.2. Case 2

For the scheduling problems with past-sequence-dependent setup times (see Koulamas and Kypari-
sis [34], Liu et al. [35] and Wang et al. [36]), i.e., the setup time of job Jh is s[h] = ε

∑h−1
j=1 PA

[ j], where
ε ≥ 0 is a constant, we have the following results:

For the makespan Cmax =
∑n̆

h=1(s[h] + PA
[h]) =

∑n̆
h=1[1 + (n̆ − h)ε]PA

[h], i.e., ηh = 1 + (n̆ − h)ε; for
the total completion time

∑n̆
h=1 Ch =

∑n̆
h=1

∑h
j=1(s[h] + PA

[h]) =
∑n̆

h=1(n̆ − h + 1)
[
1 +

ε(n−h)
2

]
PA

[h], i.e.,

ηh = (n̆− h + 1)
[
1 +

ε(n−h)
2

]
; for the total absolute differences in completion times

∑n̆
h=1

∑h
j=1 |Ch −C j| =∑n̆

h=1(h − 1)(n̆ − h + 1)(s[h] + PA
[h]) =

∑n̆
h=1

[
(h − 1)(n̆ − h + 1) + ε

∑n̆
j=h+1( j − 1)(n̆ − j + 1)

]
PA

[h], i.e.,
ηh = (h − 1)(n̆ − h + 1) + ε

∑n̆
j=h+1( j − 1)(n̆ − j + 1); for the total absolute differences in waiting

times
∑n̆

h=1
∑h

j=1 |Wh − W j| =
∑n̆

h=1 h(n̆ − h)(s[h] + PA
[h]) =

∑n̆
h=1

[
h(n̆ − h) + ε

∑n̆
j=h+1 j(n̆ − j)

]
PA

[h], i.e.,
ηh = h(n̆ − h) + ε

∑n̆
j=h+1 j(n̆ − j).

For the common due date assignment,
∑n

h=1(φEh + ϕTh + χd) =
∑n̆

h=1 $h(s[h] + PA
[h]) =∑n̆

h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h], where $h = min{n̆χ + (h − 1)φ, (n̆ + 1 − h)ϕ} and ηh = $h +

ε
∑n̆

j=h+1 $ j. For the slack due date assignment,
∑n

h=1(φEh + ϕTh + χdh) =
∑n̆

h=1 $h(s[h] + PA
[h]) =∑n̆

h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h], where$h = min{n̆χ+hφ, (n̆−h)ϕ} and ηh = $h +ε
∑n̆

j=h+1 $ j. For the dif-

ferent due date assignment,
∑n

h=1(φEh+ϕTh+χdh) =
∑n̆

h=1 $h(s[h]+PA
[h]) =

∑n̆
h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h],
where $h = min{χ(n̆ + 1 − h), ϕ(n̆ + 1 − h)} and ηh = $h + ε

∑n̆
j=h+1 $ j.

Under the common due window assignment,
∑n

h=1(φEh + ϕTh + χd′ + ψD) =
∑n̆

h=1 $h(s[h] + PA
[h]) =∑n̆

h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h], where$h = min{n̆χ+(h−1)φ, n̆ψ, (n̆+1−h)ϕ}. For the slack due window

assignment,
∑n

h=1(φEh + ϕTh + χd′ + ψD) =
∑n̆

h=1 ηh(s[h] + PA
[h]) =

∑n̆
h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h], where
$h = min{n̆χ + hφ, n̆ψ, (n̆ − h)ϕ}; For the different due window assignment, d′h and d′′h are decision
variables,

∑n
h=1(φEh + ϕTh + χd′h + ψDh) =

∑n̆
h=1 $h(s[h] + PA

[h]) =
∑n̆

h=1

[
$h + ε

∑n̆
j=h+1 $ j

]
PA

[h], where
$h = min{χ(n̆ + 1 − h), (n̆ + 1 − h)ϕ}.

4. Main results

Lemma 1. For a given sequence π = [J[1], J[2], . . . , J[n̆]], the optimal resource allocation of the problem
1
∣∣∣PA

h (uh) = Ph(uh) max{rβh , δ}
∣∣∣ α̂∑n̆

h=1 ηhPA
[h] + β̂

∑n̆
h=1 g[h]u[h] is:

u∗[h] =


umin

[h] , i f P′[h](u
min
[h] ) ≥ −β̂g[h]

α̂ηh
,

ü[h], i f P′[h](u
min
[h] ) < −β̂g[h]

α̂ηh
< P′[h](u

max
[h] ),

umax
[h] , i f P′[h](u

max
[h] ) ≤ −β̂g[h]

α̂ηh
.

(4)

Proof. Taking the derivative of Eq (2) with respect to u[h] and setting the derivative value as 0, it follows
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that
∂F(π, u[h])
∂u[h]

=
d(α̂

∑n̆
h=1 ηhPA

[h] + β̂
∑n̆

h=1 g[h]u[h])

du[h]
= α̂ηhP′[h](u[h]) + β̂g[h] = 0, (5)

then we obtain:

P′[h](u[h]) =
−β̂g[h]

α̂ηh
. (6)

Let the solution of Eq (6) is ü[h], if P′[h](u
min
[h] ) ≥ 0, it follows that ∂F(π,u[h])

∂u[h]
≥
−β̂g[h]

α̂ηh
, which indicates

F(π, u[h]) is a non-decreasing function of u[h], the optimal solution of minimizing F(π, u[h]) is u∗[h] =

umin
[h] .

If P′[h](u
max
[h] ) ≤ −β̂g[h]

α̂ηh
, it follows that ∂F(π,u[h])

∂u[h]
≤ 0, which indicates F(π, u[h]) is a non-increasing

function of u[h], the optimal solution of minimizing F(π, u[h]) is u∗[h] = umax
[h] .

If P′[h](u
min
[h] ) <

−β̂g[h]

α̂ηh
< P′[h](u

max
[h] ), based on the properties of P′[h](u[h]), the optimal solution of

minimizing F(π, u[h]) is u∗[h] = ü[h].
Let zhr = 1 if job Jh is placed in position r, and zhr = 0; otherwise. Then, the optimal job sequence

of the problem 1
∣∣∣PA

h (uh) = Ph(uh) max{rβh , δ}
∣∣∣ α̂∑n̆

h=1 ηhPA
[h] + β̂

∑n̆
h=1 g[h]u[h] can be formulated as the

following assignment problem (denoted by
︷︸︸︷

AP ):

Min
n̆∑

h=1

n̆∑
r=1

Ω̂hrzhr (7)

s.t.


∑n

h=1 zhr = 1, r = 1, 2, ..., n̆,∑n
r=1 zhr = 1, h = 1, 2, ..., n̆,

zhr = 0 or 1,
(8)

where

Ω̂hr =


α̂ηrPh(umin

h ) max{rβh , δ} + β̂ghumin
h , i f P′h(umin

h ) ≥ −β̂gh
α̂ηr

,

α̂ηrPh(üh) max{rβh , δ} + β̂ghüh, i f P′h(umin
h ) < −β̂gh

α̂ηr
< P′h(umax

h ),

α̂ηrPh(umax
h ) max{rβh , δ} + β̂ghumax

h , i f P′h(umax
h ) ≤ −β̂gh

α̂ηr
.

(9)

From Lemma 1 and the above analysis, for solving 1
∣∣∣PA

h (uh) = Ph(uh) max{rβh , δ}
∣∣∣ α̂∑n̆

h=1 ηhPA
[h]

+β̂
∑n̆

h=1 g[h]u[h], the following algorithm can be summarized.

Algorithm 1
Step 1. Calculate Ω̂hr (see Eq (9), h, r = 1, 2, ..., n̆), solve

︷︸︸︷
AP Eq (7)–(8) to determine an optimal

sequence.
Step 2. Calculate optimal resource allocation u∗[h] by using Lemma 1 (see Eq (4)).

Theorem 1. The problem 1
∣∣∣PA

h (uh) = Ph(uh) max{rβh , δ}
∣∣∣ α̂∑n̆

h=1 ηhPA
[h] + β̂

∑n̆
h=1 g[h]u[h] can be solved

by Algorithm 1 in O(n̆3) time.

Proof. In Step 1, solving
︷︸︸︷

AP needs O(n̆3) time; Step 2 requires O(n̆) time, hence, the total time of
Algorithm 1 is O(n̆3).
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Example 1. Assume a 8-job instance, where Ph(uh) = ah +
(

wh
uh

)θ
, α̂ = β̂ = 1, δ = 0.65, θ = 2, the

positional weights are η1 = 26, η2 = 5, η3 = 27, η4 = 9, η5 = 4, η6 = 25, η7 = 8, η8 = 3, and the other
parameters are given in Table 1.

Table 1. Data of Example 1.
Jh J1 J2 J3 J4 J5 J6 J7 J8

ah 4 9 7 6 11 5 10 8
wh 2 4 12 8 14 7 9 5
gh 3 5 10 9 9 11 6 7
βh -0.25 -0.32 -0.28 -0.3 -0.35 -0.27 -0.33 -0.29
umin

h 1 2 1 3 3 1 2 1
umax

h 4 5 5 6 8 4 5 3

Solution: By Algorithm 1, P′h(uh) =
dPh(uh)

duh
= −θ (wh)θ (uh)−(θ+1), Ω̂hr are given in Table 2, optimal

sequence is π∗ = J6 → J3 → J4 → J2 → J7 → J1 → J8 → J5, optimal resource allocations (see Table
3) are u∗6 = 3.2105, u∗3 = 5, u∗4 = 4.5789, u∗2 = 3.8620, u∗7 = 2.2894, u∗1 = 4, u∗8 = 2.2525, u∗5 = 3 and
α̂
∑n̆

h=1 ηhPA
[h] + β̂

∑n̆
h=1 g[h]u[h] = 963.5719.

Table 2. Values Ω̂hr of Example 1.

Jh\r 1 2 3 4 5 6 7 8
J1 122.5000 26.9227 99.1911 37.1688 19.5118 23.0500 19.8360 20.0723
J2 275.6400 58.2802 208.1311 78.2355 42.9253 181.6500 71.4005 35.2899
J3 381.7600 102.5451 303.2914 127.8962 82.6715 257.3500 116.3520 72.2260
J4 278.0840 80.2477 217.0011 101.9026 61.0889 189.8816 94.3878 52.5667
J5 597.3798 155.5846 429.4433 216.0268 112.2222 391.9662 197.4444 90.9167
J6 288.9171 100.2855 229.1521 115.4353 74.9721 195.4044 104.0816 66.0552
J7 400.9958 107.5475 295.1536 129.1500 79.9169 261.8131 119.9299 68.4855
J8 301.2222 73.7615 232.6059 91.9896 53.6511 196.1389 82.9895 45.4476

Table 3. Values uh scheduled at r position of Example 1.

Jh\r 1 2 3 4 5 6 7 8
J1 4 2.3713 4 2.8845 2.2013 4 2.6527 2.7734
J2 5 3.1748 5 3.8620 2.9472 5 3.7133 2.6777
J3 5 5 5 5 4.8658 5 5 4.4208
J4 4.5216 3 4.5789 3.1748 3 4.4629 3.0526 3
J5 4.3248 3 4.3795 3.0366 3 4.2686 3 3
J6 3.2105 1.8531 3.2511 2.2542 1.7203 3.1688 2.1674 1.5630
J7 4.2727 2.4662 4.3267 3 2.2894 4.2172 2.8845 2.0801
J8 3 1.9259 3 2.3427 1.7878 3 2.2525 1.6243
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5. A special case

Lemma 2. (Hardy et al. [37]). “The sum of products
∑n̆

h=1 XhYh is minimized if sequence X1, X2, . . . , Xn

is ordered non-decreasingly and sequence Y1,Y2, . . . ,Yn is ordered non-increasingly or vice versa.”

For the convex resource allocation function PA
h (uh) =

(
wh
uh

)θ
max{rβ, δ} (uh > 0), i.e., ah = 0, βh = β,

it follows that

Lemma 3. For a given sequence π = [J[1], J[2], . . . , J[n̆]], the optimal resource allocation of the problem

1
∣∣∣∣PA

h (uh) =
(

wh
uh

)θ
max{rβ, δ}

∣∣∣∣ α̂∑n̆
h=1 ηhPA

[h] + β̂
∑n̆

h=1 g[h]u[h] is:

u∗[h] =

θα̂ηh max{hβ, δ}
(
w[h]

)θ
β̂g[h]


1

1+θ

. (10)

Proof. Taking the derivative of F(π, u[h]) = α̂
∑n̆

h=1 ηh max{hβ, δ}
(

w[h]

u[h]

)θ
+ β̂

∑n̆
h=1 g[h]u[h] with respect to

u[h] and setting the derivative value as 0, it follows that

∂F(π, u[h])
∂u[h]

= −θα̂ηh max{hβ, δ}
(
w[h]

)θ (u[h]
)−(1+θ)

+ β̂g[h] = 0, (11)

then we obtain: u[h] =

(
θα̂ηh max{hβ,δ}(w[h])θ

β̂g[h]

) 1
1+θ

.

By substituting Eq (10) into F(π, u[h]) = α̂
∑n̆

h=1 ηh max{hβ, δ}
(

w[h]

u[h]

)θ
+ β̂

∑n̆
h=1 g[h]u[h], we have:

F(π, u[h]) = α̂

n̆∑
h=1

ηh max{hβ, δ}
(
w[h]

u[h]

)θ
+ β̂

n̆∑
h=1

g[h]u[h]

= α̂
1

1+θ β̂
θ

1+θ (θ
1

1+θ + θ
−θ
1+θ )

n̆∑
h=1

(ηh max{hβ, δ})
1

1+θ
(
g[h]w[h]

) θ
1+θ . (12)

Equation (12) can be minimized by Lemma 2, i.e., Xh = (ηh max{hβ, δ})
1

1+θ , Yh =
(
g[h]w[h]

) θ
1+θ , hence,

we introduce the following algorithm to solve the problem 1
∣∣∣∣PA

h (uh) =
(

wh
uh

)θ
max{hβ, δ}

∣∣∣∣ α̂∑n̆
h=1 ηhPA

[h] +

β̂
∑n̆

h=1 g[h]u[h].

Algorithm 2
Step 1. By using Lemma 2 (let Xh = (ηh max{hβ, δ})

1
1+θ and Yh = (ghwh)

θ
1+θ ) to determine an optimal job

sequence.
Step 2. Calculate optimal resource allocation by Lemma 3 (see Eq (10)).

Theorem 2. The problem 1
∣∣∣∣PA

h (uh) =
(

wh
uh

)θ
max{rβ, δ}

∣∣∣∣ α̂∑n̆
h=1 ηhPA

[h] + β̂
∑n̆

h=1 g[h]u[h] can be solved by
Algorithm 2 in O(n log n) time.

Example 2. Assume a 8-job instance, where PA
h (uh) =

(
wh
uh

)θ
max{rβ, δ}, α̂ = β̂ = 1, β = −0.3, δ =

0.65, θ = 2, the positional weights are η1 = 26, η2 = 5, η3 = 27, η4 = 9, η5 = 4, η6 = 25, η7 = 8, η8 = 3,
and the other parameters are given in Table 4.
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Table 4. Data of Example 2.
Jh J1 J2 J3 J4 J5 J6 J7 J8

wh 2 4 12 8 14 7 9 5
gh 3 5 10 9 9 11 6 7

Solution: By Algorithm 2, X1 = (26 max{1−0.3, 0.65})
1

1+2 = 2.9625, X2 = (5 max{2−0.3, 0.65})
1

1+2 =

1.5955, X3 = (27 max{3−0.3, 0.65})
1

1+2 = 2.6879, X4 = (9 max{4−0.3, 0.65})
1

1+2 = 1.8108, X5 =

(4 max{5−0.3, 0.65})
1

1+2 = 1.3751, X6 = (25 max{6−0.3, 0.65})
1

1+2 = 2.5329, X7 = (8 max{7−0.3, 0.65})
1

1+2

= 1.7325, X8 = (3 max{8−0.3, 0.65})
1

1+2 = 1.2493, Y1 = (2 × 3)
2

1+2 = 3.3019, Y2 = (4 × 5)
2

1+2 =

7.3681, Y3 = (12 × 10)
2

1+2 = 24.3288, Y4 = (8 × 9)
2

1+2 = 17.3070, Y5 = (14 × 9)
2

1+2 = 25.1332,
Y6 = (7 × 11)

2
1+2 = 18.0992, Y7 = (9 × 6)

2
1+2 = 14.2886, Y8 = (5 × 7)

2
1+2 = 10.6999, optimal se-

quence is π∗ = J1 → J6 → J2 → J7 → J3 → J8 → J4 → J5, optimal resource allocations are

u∗1 =
(

2×26×max{1−0.3,0.65}×(2)2

3

) 1
1+2

= 4.1082, u∗6 =
(

2×7×max{2−0.3,0.65}×(7)2

11

) 1
1+2

= 3.7000,

u∗2 =
(

2×27×max{3−0.3,0.65}×(4)2

5

) 1
1+2

= 4.9904, u∗7 =
(

2×9×max{4−0.3,0.65}×(9)2

6

) 1
1+2

= 5.4325,

u∗3 =
(

2×4×max{5−0.3,0.65}×(12)2

10

) 1
1+2

= 4.2149, u∗8 =
(

2×25×max{6−0.3,0.65}×(5)2

7

) 1
1+2

= 4.8780,

u∗4 =
(

2×8×max{7−0.3,0.65}×(8)2

9

) 1
1+2

= 4.1975, u∗5 =
(

2×3×max{8−0.3,0.65}×(14)2

9

) 1
1+2

= 4.3957 and

α̂
∑n̆

h=1 ηhPA
[h] + β̂

∑n̆
h=1 g[h]u[h] = (2

1
1+2 + 2

−2
1+2 )

∑n̆
h=1 XhY[h] = (2

1
1+2 + 2

−2
1+2 ) × (2.9625 × 3.3019 + 1.5955 ×

18.0992 + 2.6879 × 7.3681 + 1.8108 × 14.2886 + 1.3751 × 24.3288 + 2.5329 × 10.6999 + 1.7325 ×
17.3070 + 1.2493 × 25.1332) = 389.8396.

6. Conclusions

This article discussed the single-machine scheduling problems with truncated learning effect and re-
source allocation. Under a general resource consumption function, some optimal properties are given
and it is showed that the problem can be solved in O(n3) time. Further research might investigate
multi-machine (e.g., flow shop setting) scheduling with learning effect and resource allocation (most
of the multi-machine problems are NP-hard, and it’s hard to find a quick and exact solution), con-
sider serial-batching scheduling problems with learning effects and resource allocation (most of the
serial-batching problems are NP-hard, and it’s hard to find a quick and exact solution), study medical
(hospital) scheduling problem (Wu et al. [38]) or open job scheduling problem (see Zhuang et al. [39]).
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