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Abstract: The closed-loop supply chain (CLSC) plays an important role in sustainable development 
and can help to increase the economic benefits of enterprises. The optimization for the CLSC network 
is a complicated problem, since it often has a large problem scale and involves multiple constraints. 
This paper proposes a general CLSC model to maximize the profits of enterprises by determining the 
transportation route and delivery volume. Due to the complexity of the multi-constrained and large-
scale model, a genetic algorithm with two-step rank-based encoding (GA-TRE) is developed to solve 
the problem. Firstly, a two-step rank-based encoding is designed to handle the constraints and increase 
the algorithm efficiency, and the encoding scheme is also used to improve the genetic operators, 
including crossover and mutation. The first step of encoding is to plan the routes and predict their 
feasibility according to relevant constraints, and the second step is to set the delivery volume based on 
the feasible routes using a rank-based method to achieve greedy solutions. Besides, a new mutation 
operator and an adaptive population disturbance mechanism are designed to increase the diversity of 
the population. To validate the efficiency of the proposed algorithm, six heuristic algorithms are 
compared with GA-TRE by using different instances with three problem scales. The results show that 
GA-TRE can obtain better solutions than the competitors, especially on large-scale instances. 

Keywords: closed-loop supply chain network design; genetic algorithm; constrained optimization; 
large-scale optimization 
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1. Introduction 

Global competition and the demand for integration among enterprises have been pushing the 
development of the supply chain network (SCN). SCN has been applied in many fields in reality, which 
is generally composed of different members and materials flowing between the members, such as 
electronics [1] and the food industry [2]. The common members of SCN include suppliers, warehouses, 
distributors and so on [3,4]. The main purpose of supply chain network design is to maximize the profit 
of the whole network and to meet the demands of different facilities at the same time. 

Recently, the researchers have paid more attention to the closed-loop supply chain (CLSC) under 
the background of the deepening environmental awareness and the development of remanufacturing 
industry [5]. A CLSC network consists of the forward and reverse networks that consider both 
production and recycling [6]. The forward supply chain concentrates on delivering products for 
customers effectively. In contrast, the reverse supply chain aims to decrease the cost of customers and 
lower pollution by helping the collection and distribution of the recycling products to the appropriate 
facilities. Therefore, the CLSC model has great practical application foreground. Mosallanezhad et 
al. [7] proposed a shrimp CLSC model to meet the growing market demand for fresh food and to 
minimize the total cost, which also considers the balance for demands of poultry and livestock food 
market at supplying the shrimp products. Salehi-Amiri et al. [8] designed a sustainable CLSC network 
for the walnut industry, which considers meeting the demand of different markets and provides the 
channel of returned products for the second use. Cheraghalipour et al. [9] proposed a bi-objective 
CLSC model for citrus fruits, which aims to minimize the total cost of the whole CLSC network and 
satisfy the customers’ demands as much as possible. The uncertainty generally exists in CLSC due to 
various factors, such as the economy or environment [10,11]. Chouhan et al. [12] developed a CLSC 
network with uncertain demands. The line balancing strategy is addressed to handle uncertainty. 
Fathollahi-Fard et al. [13] proposed a dual-channel CLSC network under uncertainty for the tire 
industry, and a fuzzy approach called Jimenez’s method is applied to tackle the uncertain parameters.  

The network design of CLSC is proved to be an NP-hard problem [14], and therefore it is hard 
for most traditional approaches to get the satisfied solutions for this problem. Moreover, commercial 
software such as CPLEX and GAMS usually require a lot of time or even are unsolvable when they 
solve the large-scale and complex mathematical CLSC models. As intelligent algorithms have a good 
global searching ability, many intelligent algorithms are used for solving this kind of problem and 
specific methods can be designed according to the specific problem [15–18].  

Genetic algorithm (GA) as a popular and efficient intelligent algorithm has been widely applied 
in CLSC problems. HJ et al. [19] proposed a GA-based heuristic algorithm that was based on the 
dynamic integrated distribution network and simplex transshipment algorithm, and this method was 
used to optimize the integrated network for third-party logistics providers. Hamed et al. [20] proposed 
a new hybrid algorithm that used the operators of particle swarm optimization (PSO) to improve the 
performance of GA for solving the large-scale CLSC problems. Abir et al. [21] constructed a multi-
objective CLSC model to minimize both carbon emission and the total cost, and the multi-objective 
GA and the weight sum method were used to solve the proposed problem. Besides, other heuristic 
algorithms are also applied to the CLSC problems, such as PSO [22–24], ant colony optimization 
(ACO) [25], red deer algorithm [26], and hybrid heuristic algorithms [27,28]. 

For the optimization of CLSC network design, the solution encoding is an important part of a 
competitive algorithm. However, few researches focus on it. Gen et al. [29] proposed an improved GA 
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to solve the supply chain problem, and developed an improved priority-based encoding method for 
chromosomes. A freight matrix is used to calculate the transportation route’s priority, and the gene 
information is composed of corresponding priority. The advantage is that the chromosomes can contain 
more information with fewer genes. However, if there are many constraints to satisfy, encoding and 
decoding operations will be time-consuming due to the constraint verification. In addition, the CLSC 
problem often has multiple complex constraints, and the complexity of the problem would increase 
significantly with large scale networks [30]. Therefore, how to deal with multiple constraints and obtain 
high-quality solutions is also a key problem for an intelligent algorithm to solve the CLSC problem.  

This paper focuses on the proposed model of the CLSC and develops a genetic algorithm with 
two-step rank-based encoding (GA-TRE) to solve the multi-constrained and large-scale CLSC 
problem. According to the characteristics of the CLSC problem and GA operators, a new encoding 
method is proposed, called two-step rank-based encoding. Since, the main problems of the proposed 
model are the decision of route planning and delivery volume, this encoding scheme decomposes the 
encoding process into two steps, and different encoding steps are used to solve different subproblems. 
The first step encoding is used to determine the alternative transportation routes, and the second step 
encoding is to determine the specific route and the delivery volume among the CLSC network. 
Moreover, a rank-based method is used to achieve greedy solutions in the second step encoding. The 
two-step encoding mechanism can help to relieve the multi-constrained challenges, since the feasibility 
of the transportation routes will be predicted according to the relevant constraints after the first step of 
encoding. In this way, the constraints can be verified separately according to different subproblems, 
which can reduce the difficulty of solving the problem and find illegal solutions as soon as possible. 

Besides, for the canonical GA, it is difficult to obtain legal solutions after genetic operators and 
time-consuming to handle large-scale constrained problems. Therefore, in this paper, the genetic 
operators are only used for the chromosome of the route for reinforcing the exploring ability of GA to 
tackle this kind of problem. Since the chromosome of the transportation route can be represented by 
binary encoding, it involves fewer constraints than the complete problem. This method will help to 
reduce the probability of generating illegal solutions. To reduce the chance of the population being 
trapped into the local optimum and explore the solution space, a new mutation operator which is called 
stage-mutation, and an adaptive population disturbance mechanism are designed. Stage-mutation can 
increase the diversity of chromosomes based on the characteristics of the CLSC problem, and the 
adaptive population disturbance mechanism can effectively explore more search space by adding new 
individuals in different periods of the algorithm. Comprehensive validation of the proposed algorithm 
is conducted by comparing it with other algorithms in the different scales of instances. The 
experimental results show that GA-TRE has a better performance on the CLSC problem. 

In conclusion, the main contributions of the proposed algorithm are as follows:  
1) A two-step rank-based encoding scheme for the CLSC problems is proposed to handle the 

constraints and increase the algorithm efficiency, which is also used for improving the crossover and 
mutation operators; 

2) The constraints handling and greedy solutions achieving are considered on different 
encoding steps; 

3) A new mutation operator based on CLSC problems and an adaptive population disturbance 
mechanism are designed to improve the population diversity of the GA-TRE algorithm.  

The rest of this paper is organized as follows. Section 2 outlines the problem description and the 
detailed model formulation. Section 3 describes the proposed encoding method and algorithm, 
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respectively. Section 4 shows the exhaustive experiment which is conducted to validate the 
performance of the GA-TRE, and the conclusion follows in Section 5. 

2. CLSC problem definition 

2.1. Problem description 

Nowadays, environmental protection has attracted increasing attention. A variety of closed-loop 
supply chains have been designed for recycling, such as the recycling of plastic products, tires [31], 
and leather products [32]. However, the design of the CLSC network for different industries and 
different scenarios will bring burden on manpower and material resources, especially for small and 
medium-sized enterprises. Hence, this paper aims to propose a CLSC model to match more application 
scenarios. The proposed CLSC network contains seven kinds of members: suppliers (S), manufacturers 
(M), retailers (R), customer regions (CR), collection points (CP), recycling centers (RC), and waste 
disposal plants (WDP). The proposed CLSC network structure is shown in Figure 1. 

 

Figure 1. Schematic of the CLSC network design. 

In this model, certain facilities have their capacity/demand (𝑐◻
◻/𝑑◻), opening fixed cost (𝑓◻

◻), 
and variable cost (𝑥◻). The transportation cost (𝑚௝௞, 𝑐𝑟௩௟, etc.) exists when a certain quantity of raw 
materials or products are transported among different facilities (𝑞◻

◻). Moreover, to be closer to reality, 
the customers in the model do not refer to a single buyer but represent a not fixed customer region, 
and the total customer demands in this model must be met. In the process of customers buying products 
from retailers, the specific number of customers, positions, and quantity of commodities are difficult 
to determine. Therefore, the concept of customer region is used in this model, and the route from 
retailers to customer regions is not planned. The demand of retailers comes from the demand of the 
customer, and therefore the sum of all the retailer demand must be met by the manufacturers. 

Because the products exceed the service cycle or are damaged, customers will discard them. At 
present, the used product collection points have been set up in most cities in China. Each point will 
receive the used products and transport them to the recycling center after centralized sorting (S). For 
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customers, they will get a certain amount of subsidy (𝑝ଶ). Besides, because the government supports 
the environmental protection industry, the price of raw materials from the recycling center is cheaper 
than from manufacturers, which contributes to the smooth flow of the reverse supply chain to a certain 
extent. The minimal recycling rate of customer regions (𝜇௩) is preset in this model. The used products 
are transported from the collection points to the recycling centers for recycling and processing. During 
the whole process, most parts of products can be recycled as raw materials and be transported to the 
manufacturers. Some parts which cannot be recycled will be disposed of by the waste disposal plant 
for burning or landfills. The maximal disposal rate (φ) is also preset in this model. 

Some assumptions are applied in this model.  
1) Recycled materials from the recycling centers have the same quality as the materials from 

suppliers.  
2) There are no products or materials to flow among the members from the same level.  
3) The maximum manufacturing capacity and storage capacity of each member are fixed.  
4) In the first time, the supply chain flows after the customer purchases the product, and the 

recycling center receives the used product. In this way, the manufacturer can receive raw materials 
from both suppliers and recycling centers. 

2.2. Model formulation 

The notations of indices, parameters, and decision variables about this model are shown as follows: 
Indices 

i      index of suppliers,  1,2, ,i I   

j      index of manufacturers,  1,2, ,j J   
k   index of retailers,  1,2,k K   

v      index of customer regions,  1,2,v V   

l   index of collection points,  1,2,l L   
m   index of recycling centers,  1,2m M   
w   index of waste disposal plants,  1,2m W   

Parameters 
s
ic   capacity of supplier i  
m
jc   capacity of manufacturer j  
cp
lc   capacity of collection point l  
rc
mc   capacity of recycling center m 

kd   demand of retailer k  

vd   demand of customers in customer region v  

ijs   unit cost of transportation from supplier i  to manufacturer j  

jkm      unit cost of transportation from manufacturer j  to retailer k  

vlcr  unit cost of transportation from customer region v  to collection point l  

lmcp  unit cost of transportation from collection point l  to recycling center m 
mjrc  unit cost of transportation from recycling center m  to manufacturer j  
mwrc    unit cost of transportation from recycling center m  to waste disposal plant w  
m
jf    fixed cost of manufacturer j  
cp

lf    fixed cost of collection point l  
rc

mf      fixed cost of recycling center m  
s  unit cost of sorting out the used products 
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0x   unit cost of producing new products 

1x   unit cost of purchasing raw materials from suppliers 

2x      unit cost of purchasing recycled materials from recycling center 

3x   unit cost of disposing the material which cannot be recycled 

4x   unit cost of decomposing the used products in recycling centers 

1p   unit price of new products 

2p   unit cost that collection point pay to customers for the used products 

v   the minimal recycling rate of customer region v  

   the maximal disposal rates 
Decision variables 

s
ijq   number of raw materials shipped from supplier i  to manufacturer j  
m
jkq   number of products from manufacturer j  to retailer k  
cr
vlq   number of used products from customers region v  to collection point l  
cp
lmq   number of used products from collection point l  to recycling center m  
rc
mjq   number of recycled materials from recycling center m  to manufacturer j  
rc
mwq   number of waste materials from recycling center m  to waste disposal plant w  
new
jq  number of new produced products in manufacturer j  

1  if products are produced at manufacturer 

0 otherwisej

j



 

 

1  if collection point  is open

0 otherwisel

l





 

1  if recycling center  is open

0 otherwisem

m






 

Objective function 
The objective function of the proposed closed-loop supply chain problem is to maximize the total 

profit which is equal to the total income minus total expenditure as shown in Eq (1). 

 Maximize      TP TI TE   (1) 

The total income is the sum of the cost of all new products, which is displayed in Eq (2). 

 1 k
k

TI p d   (2) 

The total expenditure consists of the total transportation cost, the total fixed cost, and total 
processing cost as represented by Eq (3). 

 TE TC FC PC    (3) 

Equation (4) shows the total transportation cost. 

 

s m cr cp
ij ij jk jk vl vl lm lm

i j j k v l v m

rc r
mj mj mw mw

m j m w

TC s q m q cr q cp q

rc q rc q

   

 

   

 
 (4) 
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Equation (5) shows the total fixed costs of the manufacturers, collection points, and recycling centers. 

 m cp rc
j j l l m m

j l m

FC f f f        (5) 

Maintaining the operation of the closed-loop supply chain also needs some necessary costs. Eq (6) 
shows the total processing cost which is equal to the sum of seven parts, including the cost of obtaining 
used products to pay customers in collection points, the cost of sorting out and classifying used 
products in collection points, the cost of recycling used products in the recycling centers, the cost of 
dealing with non-recyclable waste, the cost of producing new products, and the cost of purchasing 
materials in manufacturers. 

 
2 4 3

0 1 2

cp rc
v v v v lm mw

v v l m m w

new s rc
j ij mj

j i j m j

PC p d s d x q x q

x q x q x q

    

  

   

  
 (6) 

Subject to 

 s s
ij i

j

q c i I    (7) 

 s m
ij j j

i

q c j J    (8) 

Constraints (7) and (8) make sure the quantity of raw materials between manufacturers and 
suppliers should not exceed the capacity of each supplier and manufacturer. 

 m m
jk j j

k

q c j J    (9) 

 m
jk k

j

q d k K    (10) 

 k v
k v

d d   (11) 

Constraint (9) shows the quantity of products supplied by each manufacturer to retailers should 
not exceed the capacity of the manufacturer. Constraints (10) and (11) restrict that the demand of 
retailers and customers must be satisfied.  

 cr
vl v v

l

q d v V    (12) 

 cr cp
vl l l

v

q c l L    (13) 

Constraint (12) guarantees the number of used products provided by each customer region must be 
more than minimum collection rates. Constraint (13) shows the capacity limitation of collection points. 

 cp cp
lm l l

m

q c l L    (14) 
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 cp rc
lm m m

l

q c m M    (15) 

Constraints (14) and (15) formulate the quantity of used products between collection points and 
recycling centers should not violate the capacity limitation of collection points and recycling centers, 
respectively. 

 rc rc
mj m m

j

q c m M    (16) 

 rc s m
mj ij jk

m i k

q q q j J       (17) 

Constraint (16) shows the capacity limitation between manufacturers and recycling centers. 
Constraint (17) restricts suppliers and recycling centers providing raw materials for each manufacturer 
should be equal to the quantity of transporting to retailers. 

 cr cp
vl lm

v m

q q l L     (18) 

 rc cp
mj lm

j l

q q m M     (19) 

Constraints (18) and (19) restrict the inflow and outflow quantity of collection points, recycling 
centers, and manufacturers. 

 new m
j jk

j j k

q q    (20) 

Constraint (20) restricts the total quantity of new products should be equal to the total quantity of 
products transported from manufacturers to retailers. 

 rc rc cp
mw mj lm

w j l

q q q m M       (21) 

 rc cp
mw lm

w l

q q m M     (22) 

Constraint (21) restricts the quantity of recycled materials and the waste materials of each 
recycling center should be less than the quantity of used products from collection points to the 
recycling centers. Constraint (22) shows the quantity of waste materials from recycling centers to 
waste disposal plants should be less than the maximum value preset. 

  , , 0,1 , ,j l m j J l L m M           (23) 

 , , , , , , , , , , , ,s m cr cp rc rc new
ij jk vl lm mj mw jq q q q q q q N i I j J k K v V l L m M w W                (24) 

Constraints (23) and (24) show the value ranges of decision variables. 
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3. The proposed GA 

Compared with the traditional optimization method based on mathematical analysis, heuristic 
algorithms have the advantages of optimizing black-box problems, have a good global search 
capability, and are simple to implement and use. Therefore, heuristic algorithms are widely applied for 
various challenging optimization problems, such as scheduling [33,34], vehicle routing [35], online 
learning [36], multi-objective optimization [37,38], and feature selection [39,40]. In this paper, an 
improved GA was designed to optimize the proposed CLSC problems. 

3.1. Two-step rank-based encoding 

Due to the complexity of the CLSC optimization problem proposed in this paper, it is important 
to propose a new encoding method in GA. Firstly, according to the definition of the problem model, 
the chromosome should contain the information of the transportation routes, the quantity of materials 
or products among the facilities, and the open state of the facilities. Secondly, the encoding should be 
helpful to generate feasible solutions. Thirdly, the design of chromosomes needs to be convenient for 
genetic operators. This paper proposes a two-step rank-based encoding method to solve the above 
problems. Figure 2 shows the chromosome in the encoding of each step with the numerical example 
of I = 3, J = 4, K = 5, V = 3, L= 4, M = 2, W = 1. 

 

Figure 2. The chromosome after each step encoding. 

The first step of encoding is only to determine the transportation route. The chromosome can use 
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binary encoding to express the information of the route and each gene is generated randomly. For the 
binary number, 1 means this route can be used, and 0 means not. As shown in Figure 2(1), the 
chromosome has six sections corresponding to different stages of CLSC. In the first section, 12 (3   4) 
genes represent the route information of suppliers supplying raw materials to manufacturers. For 
example, the first four genes (1, 0, 1, 1) represent that supplier 1 can supply raw materials to 
manufacturers 1, 3 and 4, but not supply materials to manufacturer 2. In the second section, 20 (4   5) 
genes represent the route information of the manufacturer supplying new products to the retailers. For 
example, the first five genes (0, 1, 1, 0, 1) represent that manufacturer 1 can supply products to 
retailers 2, 3 and 5, but not provide products to retailers 1 and 4 and so on. The length of a chromosome 
can be calculated as . It should be noted that the route 
of retailers to customer regions is not considered as mentioned before in the problem description.  

 

Figure 3. An instance for delivery volume decision. 

After the first step, a chromosome representing the transportation route has been established. The 
second step encoding is to decide the quantity of transportation materials or products according to the 
route, which is called delivery volume decision. As shown in Figure 2(2), the chromosome of the 
second encoding remains the same structure as the first step encoding, but the content has been 
changed. For example, the first four genes (276, 0, 324, 0) in the first section represent that supplier 1 
provides 276 and 324 units of raw materials to manufacturers 1 and 3, respectively but provides 
nothing to manufacturers 2 and 4. In order to explain the encoding process of the second step clearly, 
Figure 3 shows the details of delivery volume decision in the stage of manufacturers to retailers, which 
uses the numerical example of Figure 2. Figure 3(1) shows the rank level table, and the lowest value 
means the highest rank. The rank level of the routes is built according to the transportation cost, and 

I J J k V L L M M J M W          
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the lower cost corresponds to the higher rank. The transportation route will be allocated from the higher 
rank to the lower rank. Figure 3(2) shows the matrixes of transportation cost. Figure 3(3) shows the 
result after the delivery volume decision, and the numbers in parentheses are the rank level of the route. 
The numbers in the circles and parallelograms are the capacity of the manufacturer and demand of the 
retailer, respectively. The detailed methods of second step encoding are as follows: 

Step 1:  Build a rank table by using the matrixes of transportation costs. 
Step 2: Set the routes of the top rank level as the current allocation routes. For example, in Figure 3(3), 

the route from manufacturer 2 (M2) to retailer 4 (R4) is the first to allocate. 
Step 3: Check whether the current allocation routes only have one route. If yes, go to Step 4a. 

Otherwise, go to Step 4b. 
Step 4a: Compare the provider's capacity and receiver's demand of the route, and the delivery volume 

can be set as the smaller one. Update the capacity and demand value of the corresponding 
facilities. For example, in Figure 3(3), the capacity of manufacturer 2 (M2) is 600 units and 
the demand of retailer 4 (R4) is 500 units, and therefore the route’s delivery volume will be 
500 units. The remaining capacity of manufacturer 2 is updated as 100, and the demand of 
retailer 4 is updated as 0. 

Step 4b: Multiple routes with the same rank level will be classified into three situations.  
Situation 1: If the route’s provider and receiver facility are all different from other routes 
in this level, allocate the delivery volume as step 4a until all routes in this situation have 
been allocated. 
Situation 2: If the route’s provider facility is the same as other routes in this level, then let N 

denote the number of these routes. Randomly generate a number ( 1, 2 1)ix i N    that 

ranges from 0 to the value of provider’s capacity as provider’s ‘temporary capacity’ for the 
random route and allocate the delivery volume as step 4a. Repeat this step for all the first (N-1) 

routes, and let Nx  be the provider’s remaining capacity and allocate the delivery volume as 

Step 4a for the last route. 
For example, in rank level 2 in Figure 3(3), the routes manufacturer 1 (M1) to retailers 2 and 5 
(R2 and R5) have the same provider facility and rank level, and therefore randomly generate 
a number 206 as the ‘temporary capacity’ of the manufacturer 1 and randomly select one route 
which is the route of M1 to R2. The remaining capacity of M1 is updated as 294 (500–206) 
units and the remaining demand of R2 as 94 (300–206) units after allocated. Then, M1 
allocates 294 units to R5 as the last route in this situation. The remaining capacity of M1 is 
updated as zero units and the demand of R5 as 306 (600–294) units. 
Situation 3: If the route’s receiver facility is the same as the other route in this level, the 
allocation method is the same as situation 2. 

Step 5:  Update the rank level table, and then repeat Steps 2 to 5 until the encoding of this stage of 
CLSC ends.  

The customer demand must be satisfied in this model. Therefore, the second step encoding starts 
from manufacturer to retailer and ends from supplier and recycling center to manufacturer, and the 
detailed encoding sequence is shown in Figure 4. It should be noted that the procedure of the encoding 
is simultaneously in the section of supplier and recycling center to the manufacturer. Therefore, the 
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routes of suppliers to manufacturers and recycling centers to manufacturers need to be ranked together.  

 

Figure 4. The sequence of second step encoding. 

 

Figure 5. The whole encodes for the problem model corresponding to the example in 
Figure 2(2). 

The diagram of the final encodes of the proposed problem model is shown in Figure 5, which 
corresponds to Figure 2(2). The numbers below the abbreviation of CLSC network members represent 
the capacity. The numbers in the routes represent the delivery volume. The numbers in the rectangular 
box under the customer regions represent the final delivery volume to the collection points. 
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3.2. Constraint check 

There are many constraints in the proposed model, and therefore the constraints checking step is 
necessary. Constraints check is not only used for the legitimacy examining of newly generated 
chromosomes, but also for the offspring after the operators of GA such as crossover and mutation. In 
this paper, constraints check includes the capacity check of routes and delivery volume check. 

The purpose of the delivery volume check is to test whether the chromosome satisfies the 
constraints (7) to (22) after the second step encoding. Capacity check of routes aims to check whether 
binary chromosome satisfies the capacity constraints after the first step encoding. If the chromosome 
fails to pass the capacity check, it means that no matter how the delivery volume is allocated, it will 
violate the constraints finally. Therefore, the route that violates the constraint will be regenerated. The 
details of the capacity check are shown below. 
1) The total capacity of active manufacturers must be able to satisfy the total demand of all retailers. 
2) The total capacity of active recycling centers and suppliers must be able to satisfy the total 

demand of all customers. 
3) The quantity of products of each customer to recycling centers cannot be zero simultaneously, 

which means the customer must return the used products. 
4) If the used products are transported to an active recycling center, then the delivery volume of the 

recycling center to waste disposal plants should not be zero simultaneously. 

3.3. GA operators 

3.3.1. The overall procedure of the proposed GA 

In this paper, for preserving high-quality solutions, an elite strategy is used. The best E individuals 
of the parent are saved as the elites. If the best E individuals of the next generation are changed, the E 
elites will replace the worst individuals of the current population to avoid losing high-quality solutions, 
and E can be set according to the problem scale. The flowchart of the proposed algorithm shows in 
Figure 6. 

3.3.2. Initialization and selection 

An initial population includes a certain number of chromosomes generated based on two-step 
rank-based encoding and verified by constraint check. In this way, there are all feasible solutions in 
the initial population, since it is difficult for GA without the initialization based on the two-step rank-
based encoding to generated feasible solutions, which is verified in the experiment in Sections 4.2 
and 4.4. In the iteration of GA-TRE, the roulette selection is used as the selection operator [41]. 
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Figure 6. The flow chart of the proposed algorithm. 

3.3.3. Crossover 

For the proposed encoding method in this paper, the value of genes and their positions in the 
chromosome represent different information. It is difficult for the new individuals after crossover to 
satisfy the constraints. Hence, dramatic changes in the parent chromosomes are unfavorable for the 
preservation of the promising part of solutions. In this paper, the genes in the parent chromosome will 
degrade to binary encoding, and the single point crossover operation is implemented to minimize the 
change of the parent chromosomes. The position of the crossover point is random. The rank-based 
method of the second step encoding is used to reallocate delivery volume for child chromosomes. The 
offspring needs to be checked for constraints after crossover, and the crossover operator will be 
executed again if constraints are not met. An example of the crossover process and the pseudo-code of 
the crossover are shown in Figures 7 and 8, respectively. 
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Figure 7. The pseudo code of crossover. 

 

Figure 8. Crossover process. 

3.3.4. Stage-mutation 

Stage-mutation is designed by combining with the characteristics of the problem in this paper, 
which aims to reduce the probability of population trapped into the local optimum. In the stage-
mutation, the chromosomes degrade to binary and one section of the chromosome is randomly selected 
which corresponds to a kind of member of the CLSC, such as manufacturers to retailers. The binary 
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encoding of the selected section is randomly generated. If the new chromosome with binary 
representation passes the capacity check, the rank-based method of the second step encoding is used 
for reallocation. Moreover, the constraints check is used for the new chromosome. The mutation 
operator will be executed again if constraints are not met. The pseudo-code of stage-mutation and an 
example of the process are shown in Figures 9 and 10, respectively. 

 

Figure 9. The pseudo code of stage-mutation. 

 

Figure 10. Stage-mutation process. 
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3.3.5. The diversity-increasing method 

To enhance the diversity of individuals in the population and explore more solution space, if the 
best X individuals remain unchanged after T iterations, X new solutions will be generated to replace 
the worst X solutions in the population. T can be set according to the problem scale, and X can be 
changed adaptively according to different periods of population iteration. In detail, at the initial stage 
of the iteration, the population aims to explore, and therefore it is better to have a smaller X. In the 
middle of the iteration, the population will gradually converge. To prevent premature convergence and 
search for better solutions, X needs to be larger. At the later stage of iteration, the algorithm needs fast 
convergence. Therefore, X is not suitable for too large. To obtain different values of X in different 
periods of the iteration, an adaptive method of setting X is designed: 

 
2

2

(1 4 ) ( _ )
_

_

Iter Max iteration Iter
Jump rate

Max iteration

     
   (25) 

 _ _X N pop Jump rate   (26) 

where Jump_rate is the proportion of the population, X is the number of individuals updated in the 
population, Iter is the current number of iterations, Max_iteration is the maximum number of iterations, 
α is the minimum value of Jump_rate, and β is the maximum value of Jump_rate, and N_pop is the 
number of individuals in the population. 

4. Experimental results and analysis  

4.1. Experimental setting 

To evaluate the performance of the proposed algorithms for solving the CLSC problem, three 
different scales are used. Each scale includes three instances. There are 3(scales)   3(instances) = 9 
instances in total. Moreover, the dimension of the problem-scale Ⅲ is up to 292, and the range of each 
dimension is zero to hundreds, which is large-scale for an integer programming problem. The instance 
data are generated randomly according to the reality [29]. The details of each problem scale are 
reported in Tables 1 and 2. 

Table 1. Scale configurations and execution time of the instance sets. 

Scale Size (S, M, Rt, Cu, Co, Rc, WDP) Dimension (D) Execution time (Seconds) 
Ⅰ (3, 2, 3, 2, 2, 1) 21 30 
Ⅱ (6, 4, 5, 3, 4, 2, 1) 74 180 
Ⅲ (12, 8, 10, 6, 8, 4, 1) 292 360 

Six algorithms were compared and implemented, including the classical algorithm GA, DE 
(differential evolution) [42], CSO (competitive swarm optimizer, which is designed for the large-scale 
optimization) [43], the current relatively new algorithms MPA (marine predators algorithm) [44], RDA 
(red deer algorithm) and SLPSO (social learning particle swarm optimization) [45,46]. For a fair 
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comparison, the solution structure is the same as GA-TRE for the compared algorithms as Figure 2 (2), 
and the variables are generated randomly from zero to the corresponding boundary value. The penalty 
function method is used on infeasible solutions in these compared algorithms for meeting the 
constraints. GA uses single-point crossover and mutation, and DE uses the binomial crossover in 
Reference [42]. The specific parameters of the algorithms are shown in Table 3. 

Table 2. Optimal parameter settings of algorithms. 

Algorithm Tuned Parameters 
GA-TRE N_pop = 100, Crossover_rate = 0.9, Mutation_rate = 0.2, α = 0.25, β = 0.6, T =10 
GA N_pop = 100, Crossover_rate = 0.9, Mutation_rate = 0.1 
DE N_pop = 100, Crossover_rate = 0.6, F = 0.4 
MPA N_pop = 100, FADS = 0.2, β = 1.5 
RDA N_pop = 500, Nmale = 75, α = 0.9, β = 0.4, γ = 0.7 
SLPSO N_pop = 100, M = 100, α = 0.5, β = 0.02 
CSO N_pop = 100 

Table 3. The Parameters and their surfaces for test instances. 

Parameters Surfaces 

𝑐௜
௦, 𝑐௝

௠ Rand ~ [100, 1000] 

𝑐௟
௖௣, 𝑐௠

௥௖, 𝑑௞, 𝑑௩ Rand ~ [100, 800] 
𝑠௜௝, 𝑚௝௞, 𝑐𝑟௩௟, 𝑐𝑝௟௠, 𝑟𝑐௠௝, 𝑟𝑐௠௪ Rand ~ [1, 30] 

𝜇௩ Rand ~ {0.4, 0.45, 0.5, 0.55} 

φ Rand ~ {0.1, 0.13, 0.15, 0.18} 

Each instance was tested with 30 replications, and the best, the worst, the average, and the 
standard deviation (std) values were recorded. All the algorithms were implemented in python 3.8 and 
run on a PC with the Intel Core i7-11700 and 16.0-GB memory. 

4.2. Experimental comparisons with other algorithms 

The experimental results of the algorithms for different scales and instances are shown in 
Tables 4–6. The results in italic type mean that the global optimal solution is illegal and the results in 
bold type are the best solutions among all the algorithms.  

As it is seen in Table 4, GA-TRE obtains the maximum profit results on all the tested instances, 
and its mean result is 2000 higher than other algorithms at least. On account of the problem scale being 
small, most algorithms can obtain feasible solutions. SLPSO and MPA have similar results on instance 1, 
and SLPSO performs better than other algorithms on the rest of the instances. The results of DE, MPA, 
CSO, and SLPSO do not have a dramatic gap in general. In addition, RDA and GA cannot obtain 
feasible solutions on all the instances. In Table 5, the results show that GA-TRE yields the maximum 
profit results on all the tested instances with an obvious advantage. With the problem-scale increasing, 
GA, DE, CSO, and RDA cannot obtain feasible solutions in all the tested instances. MPA and SLCSO 
sometimes can obtain feasible solutions in some instances. From the observation of Table 6, the 
performance of GA-TRE does not deteriorate in the largest problem-scale, and all results are still the 
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best on all the tested instances. Besides, all the compared algorithms cannot obtain feasible solutions 
in this problem scale. 

Table 4. The results of scale I. 

Instances Algorithms 
Results 

Worst Best Average Std 

1 

GA-TRE 26125 26501 26282.43 74 
GA -3.16E + 19 -3.02E + 18 -7.13E + 18 1.14E + 19 
DE 20769 22068 21322.1 486 
MPA 22575 23449 23208.67 460 
CSO 18751 22251 21506.14 991 
SLPSO 22032 23507 22935.5 360 
RDA -4.614E + 19 -1.13E + 19 -2.71E + 19 1.48E + 19 

2 

GA-TRE 29164 29240 29206.7 127 
GA -4.05E + 19 -2.36E + 18 -1.46E + 19 1.36E + 19 
DE 25128 26731 26133.9 617 
MPA 24452 26292 25533.6 576 
CSO 22597 26312 24466.2 1223 
SLPSO 26173 26472 26297.3 259 
RDA -7.13E + 19 -2.53E + 18 -2.61E + 19 2.37E + 19 

3 

GA-TRE 27650 27981 27831.6 251 
GA -5.48E + 19 -2.33E + 17 -1.42E + 19 1.75E + 19 
DE 20484 22149 21295 992 
MPA 19802 23188 21996.7 896 
CSO 17972 20198 18753.9 1099 
SLPSO 23098 24987 24017.9 561 
RDA -4.18E + 20 -1.46E + 19 -5.93E + 19 1.94E + 20 

From the perspective of solution quality, GA-TRE obtains the best results in different problem 
scales, and therefore it shows an absolute advantage over the compared algorithms. DE and the three 
recent popular algorithms—MPA, CSO and SLPSO can also obtain promising results on a small 
problem scale. However, with the problem scale increasing, these algorithms cannot obtain feasible 
solutions. It indicates that these algorithms are ineffective to handle multi-constraints when facing 
large-scale problems. Besides, GA and RDA cannot obtain feasible solutions on all the problem scales. 
The reason may be that the randomly generated initial population of GA and RDA almost do not have 
feasible solutions, and it is difficult to improve the feasibility of the infeasible solutions with the 
classical genetic operators, such as crossover and mating commander. 

The standard deviation values were recorded to evaluate the reliability of the algorithms, as shown 
in Tables 4–6. The results show that GA-TRE achieves the minimal value in different instances with 
three problem scales, which means it has a better robust ability. SLPSO, MPA and DE have near results 
in the small problem scale and outperform the rest algorithms. As for the algorithms achieving the 
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unfeasible solutions, the standard deviation value seems to have little effect on the evaluation of the 
performance. 

Table 5. The results of scale II. 

Instances Algorithms 
Results 

Worst Best Average Std 

1 

GA-TRE 50729 51877 51368.1 373 
GA -1.74E + 20 -2.07E + 18 -1.12E + 20 4.34E + 19 
DE -1.87E + 19 -2.10E + 8 -4.67E + 15 2.63E + 18 
MPA 37890 40257 38819.8 798 
CSO -1.03E  + 21 -5.43E + 19 -8.20E + 20 3.96E + 20 
SLPSO -5.45E + 12 41719 -1.82E + 11 1.67E + 12 
RDA -5.35E + 22 -8.70E + 21 -1.08E + 22 2.01E + 22 

2 

GA-TRE 60115 63498 61997.9 588 
GA -1.97E + 20 -1.31E + 19 -4.94E + 19 7.65E + 19 
DE -5.09E + 16 -1.98E + 8 -1.33E + 14 5.82E + 15 
MPA -41537852 42711 -1364431.2 18461524 
CSO -5.61E  + 17 -7.29E + 14 -1.26E + 16 3.36E + 16 
SLPSO -9.39E + 12 46832 -1.72E + 12 2.98E + 12 
RDA -4.72E + 22 -2.71E + 20 -2.34E + 21 3.91E + 21 

3 

GA-TRE 44009 46921 45566.7 674 
GA -1.23E + 20 -1.28E + 19 -4.91E + 19 5.36E + 19 
DE -1.73E + 19 -1.10E + 8 -7.87E + 17 5.82E + 18 
MPA 11912 30792 26758.9 8903 
CSO -3.76E  + 19 -5.59E + 16 -6.44E + 18 1.29E + 18 
SLPSO -3.14E + 14 36818 -1.24E + 13 2.98E + 13 
RDA -5.56E + 23 -7.37E + 20 -9.31E + 22 1.20E + 23 

 

Figure 11. Interval plot for the scale Ⅰ problems based on the algorithms which achieve 
feasible solutions (at 95% confidence interval)  
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Table 6. The results of scale III. 

Instances Algorithms 
Results 

Worst Best Average Std 

1 

GA-TRE 95176 99738 97662.3 760 
GA -1.51E + 22 -2.79E + 20 -7.96E + 20 5.87E + 21 
DE -1.66E + 23 -9.98E + 22 -1.32E + 23 5.59E + 22 
MPA -6.91E + 17 -1.77E + 15 -4.09E + 16 2.31E + 17 
CSO -2.21E + 23 -1.18E + 23 -1.34E + 23 7.08E + 22 
SLPSO -9.64E + 22 -1.76E + 22 -4.81E + 22 3.11E + 22 
RDA -2.11E + 23 -2.39E + 22 -3.43E + 22 6.38E + 22 

2 

GA-TRE 99834 122280 109987.4 1321 
GA -7.12E + 20 -8.99E + 19 -1.97E + 20 3.01E + 20 
DE -1.27E + 23 -8.93E + 22 -1.07E + 23 5.31E + 22 
MPA -1.91E + 15 -3.38E + 13 -4.26E + 14 7.28E + 14 
CSO -7.62E + 23 -2.43E + 22 -2.81E + 23 2.16E + 23 
SLPSO -9.17E + 22 -2.92E + 22 -5.48E + 22 4.11E + 22 
RDA -4.11E + 23 -5.39E + 21 -7.10E + 22 1.31E + 23 

3 

GA-TRE 110175 129657 121147.5 1766 
GA -4.01E + 20 -1.23E + 20 -2.36E + 20 2.12E + 20 
DE -6.51E + 23 -1.15E + 23 -1.68E + 23 1.93E + 23 
MPA -5.29E + 16 -1.51E + 13 -7.49E + 14 1.72E + 15 
CSO -4.62E + 23 -1.88E + 22 -6.33E + 22 1.17E + 23 
SLPSO -7.29E + 23 -2.67E + 19 -2.88E + 21 2.40E + 23 
RDA -6.11E + 22 -8.11E + 21 -2.46E + 22 2.17E + 22 

 

Figure 12. Interval plot for the scale Ⅱ problems based on the algorithms which achieve 
feasible solutions (at 95% confidence interval). 

Furthermore, the relative percentage deviation (RPD) is used to evaluate and compare the 
performance of the algorithms. For the maximization problem, RPD can be defined as follows: 



5946 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5925-5956. 

 
lg

100sol sol

sol

Max A
RPD

Max


   (27) 

where 𝐴𝑙𝑔௦௢௟ is the value of the objective function in individual trials and 𝑀𝑎𝑥௦௢௟ depicts the best 
solution among trials. To intuitively observe the difference of algorithms’ performance based on the 
RPD, the interval plots for different problem scales at 95% confidence limit are shown in Figures 11 
and 12. It should be noticed that this analysis only includes the algorithms which can achieve feasible 
solutions, and therefore, GA-TRE, DE, MPA, CSO, and SLPSO for the problem scale Ⅰ are drawn in 
Figure 11, and GA-TRE, MPA, and SLPSO for the problem scale Ⅱ are drawn in Figure 12. As shown 
in Figure 11 for the problem scale I, GA-TRE outperforms all other algorithms, and there is a minor 
difference among DE, MPA, and SLPSO. Figure 12 demonstrates that GA-TRE still maintains the best 
performance among the algorithms with the problem scale increasing. 

Finally, the one-way analysis of variance (ANOVA) is applied to verify the statistical validity of 
the results (based on standard deviation). The three problem scales have been all included in this 
analysis. The crucial measure parameter in ANOVA analysis is the p value, if it is lower than 0.05 that 
means the algorithms exist different. The results were calculated by the Minitab, and the obtained p 
value is equal to zero. Therefore, it proves that there are obvious differences between the performances 
of algorithms. 

4.3. Analysis of convergence speed 

 

Figure 13. Convergence curves of all algorithms (scale Ⅰ). 

To analyze the convergence speed of algorithms, the convergence curves are drawn for different 
scales, as shown in Figures 13–15. From the observation of figures, the convergence curves of GA-
TRE are rising gradually under different scales. Other algorithms will stagnate after several 
generations of iteration. Therefore, GA-TRE can obtain better solutions than other algorithms. The 
convergence speed of MPA is the slowest on all scales, and GA is the fastest on the contrary. That is 
because MPA has three different phases for exploration and exploitation, but the first two phases for 
exploration consume too much time for the complex constraints, and GA can firstly obtain its best 
solutions. SLPSO, CSO, and DE have similar convergence speed in scales Ⅰ and Ⅲ, and RDA and GA 
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have similar convergence speeds in scales Ⅱ and Ⅲ. In addition, with the problem scale increasing, 
the first iteration time of the GA-TRE is different from other algorithms as shown in Figure 15. The 
reason is that the individuals in the initial population are all feasible solutions, but it will take more 
time to initialize the population.  

 

Figure 14. Convergence curves of all algorithms (scale Ⅱ). 

 

Figure 15. Convergence curves of all algorithms (scale Ⅲ). 

4.4. Effectiveness of two-step rank-based encoding 

To validate the effectiveness of the two-step rank-based encoding, this encoding method is 
combined with other algorithms and tested on different problem scales. Since the proposed encoding 
is designed for the GA, only GA and DE (which has similar evolutionary operators to GA) are 
combined with the proposed encoding. It should be noticed that GA still uses single-point crossover 
and mutation. The experimental results are shown in Table 7.  
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Table 7. Results of algorithms with and without the two-step rank-based encoding.  

Scales Algorithms 
Results 

Worst Best Average 

Ⅰ 

GA -4.23E + 19 -1.87E + 18 -1.23E + 19 
GA-e 26271 26913 26578.9 
DE 22127 23649 22917 
DE-e 25100 25828 25455.7 
GA-TRE 27646 27907 27774 

Ⅱ 

GA -1.65E + 20 -9.23E + 18 -7.02E + 19 
GA-e 46004 49956 47599.8 
DE -1.20E + 19 -1.73E + 8 -2.64E + 17 
DE-e 44595 47476 45955.8 
GA-TRE 51618 54099 52977 

Ⅲ 

GA -5.40E + 21 -1.64E + 20 -4.10E + 20 
GA-e 94273 99065 96136.1 
DE -3.15E + 23 -1.01E + 23 -1.36E + 23 
DE-e 93181 96126 94243.8 
GA-TRE 101728 117225 109599.1 

From the comparison of Table 7, it can be seen that GA-e (which is GA with two-step rank-based 
encoding) can obtain promising feasible solutions on all problem scales, and DE-e (which is DE with 
two-step rank-based encoding) also can obtain feasible solutions on scales Ⅱ and Ⅲ. The important 
reason why GA-e and DE-e can obtain feasible solutions at different scales is that the initial population 
and new individuals of these algorithms are generated based on the two-step rank-based encoding and 
pass the constraint checking. The advantage of the initialization is that all solutions are legal after the 
initialization. However, it will consume more time to initialize the population and generate new 
individuals with the increase of the problem scale. The comparison between GA-e and DE-e in Table 7 
shows that GA-e is better than DE-e on different scales and instances. It indicates that the vector 
difference strategy of DE is not suitable for the proposed encoding method. Moreover, from the 
comparison between GA-TRE and GA-e in Table 7, it can be seen that GA-TRE obtains better results 
on different scales and instances. Therefore, it also proves the proposed operators including stage-
mutation, elite strategy, and the adaptive population disturbance mechanism in this paper are effective 
for the proposed CLSC problems. 

4.5. Analysis of Parameters  

There are five key parameters of the GA-TRE algorithm to be investigated, including the 
crossover rate, mutation rate, parameter T of the diversity-increasing method and parameters α and β 
in (25). In this part, these parameters will be taken by a series of different values for observing the 
impact of the results, which aims to find a better combination of parameters. Specifically, the crossover 
rate is set by ten values from 0.1 to 1 (interval for 0.1), the mutation rate is set by six values from 0.1 
to 0.6 (interval for 0.1), α is set from 0.1 to 0.35 (interval for 0.05), β is set from 0.45 to 0.7 (interval 



5949 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5925-5956. 

for 0.05), and T is set from 3 to 17 (interval for 2). Also, the instances of problem scale Ⅱ are selected 
for the test problem, and the results are presented in Figures 16–18. 

 

Figure 16. Fitness behavior for analysis of crossover and mutation rate. 

 

Figure 17. Fitness behavior for analysis of parameters α and β. 

It can be observed from Figure 16, the results become better with the increase of crossover rate 
under different mutation rates and get relatively stable when the crossover rate is about 0.9. It indicates 
that the frequent crossover operations can promote sharing of excellent solutions in the population. 
The change of mutation rate seems to have a relatively smaller effect on the fitness, and the fitness 
value shows an upward to downward trend with the increase of mutation rate. Because mutation 
operation brings better diversity for the population, it also needs to take the algorithm consuming more 
time. As seen in Figure 17, the increase of parameters α will lead to near parabola shape changes for 
the fitness curve. The reason may be that if parameter α is too big, it will bring relatively large 
population changes in the early stage of the algorithm, which affects the exploitation ability. Also, the 
fitness value shows an increasing trend with the increase of parameter β, but it will get worse results 
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when β is higher than about 0.6, and the reason is similar to the former. Besides, parameter T is not 
suitable for setting too large from the observation in Figure 18.  

0 5 10 15 20
46000

48000

50000

52000

F
itn

es
s

Parameter T  

Figure 18. Fitness behavior for analysis of parameters T. 

From the above comparisons and analysis, the five parameters crossover rate, mutation rate, 
parameter α, β and T are set as 0.9, 0.2, 0.25, 0.6 and 10 for the GA-TRE algorithm under problem 
scale Ⅱ, respectively. In addition, the same analysis method is also applied to the other problem scales, 
the results of parameters combination for scale I and scale III are set as (0.9, 0.1, 0.25, 0.6 and 6) and 
(0.9, 0.25, 0.3, 0.65 and 10), respectively. 

4.6. Sensitivity analysis 

In this section, sensitivity analysis for the key parameters of the proposed CLSC model is 
conducted. The problem scale II experimental instance 1 was selected as a test problem and GA-TRE 
was selected as the optimizer. There are three scenarios created for sensitivity analysis to investigate 
the behavior of the objective function under the change of different CLSC members’ capacity/demand, 
and recycling/disposal rate. 

 

Figure 19. Behavior of the objective function for sensitivity analysis (first scenario). 
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Figure 20. Behavior of the objective function for sensitivity analysis (second scenario). 
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tested. The performance of the objective function for the different scenarios is shown in Figures 19–21. 
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Figure 21. Behavior of the objective function for sensitivity analysis (third scenario). 
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materials for manufacturers to increase the total profit. As shown in Figure 21, with the increase in the 
demand of retailers and customers, there is a significant increase in the objective function. However, 
the demand of customers has a greater impact on the supply chain network than the demand of retailers. 
The above analysis of the important parameters of the model can provide a basic reference for decision-
makers who are willing to use the proposed model in this paper. 

5. Managerial insights 

In this paper, a CLSC network is designed to maximize the total profits of the supply chain. The 
goal of the proposed model is to match more application scenarios under considering the development 
of sustainability. It can significantly help in providing the guidelines on how to take strategic decisions 
for the industries which have products with recyclable value, such as electronics and plastic. 

The important managerial insights are generated by the sensitivity analyses of the model as given 
in Figures 19–21. The decision-makers should carefully plan the capacity of recycling centers, and 
each supplier and manufacturer can also avoid waste of production capacity (shown in Figure 19). In 
the reverse supply chain, it is crucial to balance the recycling rate from customers and disposal rate in 
the recycling center by under considering both increasing profits and environmental protection (shown 
in Figure 20). According to Figure 21, the demand of retailers and customers are positively associated 
with profits. In addition, the customer does not refer to a single buyer but represent a not fixed customer 
region for more closing the reality. The relationship between the demand of customer regions and 
retailers needs more detailed investigation for decision-makers. 

As validated in the experiment, the proposed CLSC problem can be well solved by the GA-TRE 
algorithm, and the validation is presented in section 4. It can provide decision-makers to solve their 
similar or specific network design problems. Moreover, the key parameters tuning of GA-TRE refers 
to Figures 16–18. 

6. Conclusions 

Increasing environmental, legislative, and social concerns are forcing companies to take attention 
to green development, and therefore the CLSC model has become more and more popular. This paper 
solves an important practical issue considering the design and optimization of a general CLSC model. 
Due to the complexity of the problem, a novel genetic algorithm named GA-TRE is proposed. For 
handling the complex constraints and facilitating genetic operators, two-step rank-based encoding is 
proposed. Besides, for increasing the diversity, a new mutation operator and an adaptive population 
disturbance mechanism are designed. To validate the proposed algorithm, nine test problems are 
produced in three scales, and the performance and reliability of the proposed algorithm are evaluated 
in comparison with other heuristic algorithms. The experimental results demonstrate that GA-TRE 
outperforms all the compared algorithms on all the instances for the proposed CLSC problem.  

For future studies, the CLSC model can extend as the multi-objective by considering 
sustainability and service quality to improve the versatility [3], and the proposed algorithms can be 
improved further to solve multi-objective problems. Moreover, the model with uncertain factors could 
be designed [10–13,22]. Finally, the evolutionary multitasking algorithm as a new search paradigm 
can also be used to solve supply chain problems as a promising direction for future research [47,48]. 
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