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Abstract: A new swarm-based optimization algorithm called the Aquila optimizer (AO) was just 

proposed recently with promising better performance. However, as reported by the proposer, it almost 

remains unchanged for almost half of the convergence curves at the latter iterations. Considering the 

better performance and the lazy latter convergence rates of the AO algorithm in optimization, the 

multiple updating principle is introduced and the heterogeneous AO called HAO is proposed in this 

paper. Simulation experiments were carried out on both unimodal and multimodal benchmark 

functions, and comparison with other capable algorithms were also made, most of the results confirmed 

the better performance with better intensification and diversification capabilities, fast convergence rate, 

low residual errors, strong scalabilities, and convinced verification results. Further application in 

optimizing three benchmark real-world engineering problems were also carried out, the overall better 

performance in optimizing was confirmed without any other equations introduced for improvement. 

Keywords: Aquila optimization algorithm; meta-heuristic algorithm; nature-inspired algorithm; 

multiple updating principle 

 

1. Introduction  

Along with the development of modern science and technology, the details of problems in nature 

are considered so much as to every influential factor being considered. These factors would play the 

roles influencing both the apparent showing to human and each other. As a result, analytical solutions 
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could be no longer obtained whenever the problems are a little complicated. To conquer such 

difficulties, the nature-inspired algorithms had been proposed several decades of years ago. 

Genetic algorithm (GA) [1] might be the first candidate in literature, it soon became a hot spot to 

solve most of the problems human met. Convinced by the better performance, other optimization 

algorithms were soon proposed, such as the ant colony optimization (ACO) [2] algorithm, the particle 

swarm optimization (PSO) [3] algorithm and so on.  

Talking about the PSO algorithm, scientists and engineers around the world were soon addicted 

to the beautiful and simple structure. Thorough details were contributed, the reason why it converged 

so fast, its stability together with the constraints of variables 𝑐1, 𝑐2 were confirmed [4]. Researches 

applied the PSO algorithm to solve every optimization problem they found, and they were also not 

satisfied with its current performance. Finding ways to improve the performance, in either convergence 

ratio or residual errors, soon became a hot spot at those years. Inertia weights [5], local unimodal 

sampling [6], regrouping [7], guaranteed convergence [8], and other improvements were soon 

proposed and better performance confirmed. Literally speaking, the improvements could be classified 

as: 1) improvements of variables, such as the chaotic mapping [9], Levy flight [10]. 2) re-constructions 

of updating equations, such as the guaranteed convergence, regrouping methods. 3) improvements of 

controlling parameters, for instance, the inertia weights. 4) Hybridizations, such as the hybridization 

of PSO with GA [11], PSO with ACO [12]. 

Among all of the improved PSO algorithms, the heterogeneous PSO (HPSO) improvement [13] 

was a most shining one, it might be an inspiration of most of the modern optimization algorithms 

proposed recently.  

In the early years of computational optimization, all of the individuals in swarms would following 

a same style to update their positions. For example, in the GA, they would crossover, mutate, while in 

the PSO algorithm, all of the individuals would update their positions according to their current velocities, 

the global best candidate, and their current best trajectories. Individuals in swarms of the bat algorithm 

(BA) [14] would also follow a same equation to update their current positions. While in the HPSO 

algorithm, individuals in swarms would select a way randomly among the cognitive-only, social-only, 

barebones, and modified barebones operations. The HPSO was also confirmed better in optimization.  

Heterogeneous improvements would give individuals in swarm multiple ways [15] or tunnels [16] 

to update their positions. In such conditions, individuals could seek help for more variable operations. 

Some of them could take larger steps for a better exploration capability, some of them could take 

smaller steps to exploit the local optima and confirm whether it is the global one or not, and they would 

not follow a same way, which could increase their capability in both exploration and exploitation 

procedure. We can see that individuals in the sine cosine algorithm (SCA) [17] have two choices to 

update their positions, the arithmetic optimization algorithm (AOA ) [18] and Harris hawk 

optimization (HHO) algorithm have four choices. More ways to update their positions might not 

always achieve in better performance, individuals in swarms with such operations could indeed afford 

variable choices and multiple characteristics. Henceforth, the heterogeneous improvements could be 

induced to be a multiple updating principle. 

Aquila optimizer (AO) [19] was just proposed recently, it was claimed and verified with fast 

convergence rate and better performance than most of the other algorithms, it have been applied in 

intrusion detection [20], production forecasting [21]. 

The individuals in swarms of the AO algorithm also have four ways to update their positions, 

however, they can only choose two of them during the first 2/3 full procedure in exploration, and two 
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of them at the rest exploitation procedure. Although the overall results were quite promising as reported 

by the proposer, individuals in swarms could not always take further operations to obtain better results 

in the exploitation procedure, which could be easily found in figure 9 in referenced paper [19]. This 

paper would report a heterogeneous improvement of the Aquila optimization algorithm with 

abbreviation HAO. The constant value 2/3 which constraint the individuals to follow two ways each 

during their exploration and exploitation procedure would be changed to a probability value, and 

consequently, individuals in the HAO swarms could have four ways to update their positions. 

The main contribution of this paper would be: 

1) The heterogeneous improvement of the AO algorithm was proposed in this paper, which did 

not introduce any further equations and improve the computer complexity. The proposed HAO 

algorithm only reconstructed the strategies which were proposed by the proposer. 

2) The four strategies were classified by two groups with two proportional values 𝑝1 and 𝑝2, 

their influence of the convergence rate was simulated and a best set was chosen. 

3) Qualitative analysis, intensification, diversification, and scalability capability of the proposed 

HAO algorithm were simulated and the acceleration rate were tested on either unimodal or multimodal 

benchmark functions. 

4) Simulation experiments on unimodal, multimodal, together with three classical real-world 

engineering problems were carried out and comparison were made. Results confirmed the better 

performance of the propose HAO algorithm than the original AO algorithm together with some other 

well-known optimization algorithms. 

The rest of this paper would be arranged as follows: In Section 2, the original AO algorithm was 

briefly reported, and the improved HAO was proposed. Simulation experiments would be carried out 

both on benchmark functions in Section 3 and real-world engineering problems in Section 4. 

Discussions would be made and conclusions would be drawn in Section 5. 

2. The AO and proposed HAO algorithms  

2.1. Strategies in the AO algorithm 

There are four strategies for individuals in the AO algorithm: 

Strategy 1: Expanded exploration. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + 𝑋𝑀(𝑡) − 

𝑋𝑏𝑒𝑠𝑡(𝑡) ∗ 𝑟1            (1) 

where 𝑋𝑖(𝑡 + 1), 𝑋𝑏𝑒𝑠𝑡(𝑡), 𝑋𝑀(𝑡) represent the position of i-th individuals at iteration t + 1, the best 

location at the current iteration and the mean positions of all individuals at the current iteration 

respectively. 𝑋𝑀(𝑡) would be calculated as follows: 

𝑋𝑀(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)
𝑁
𝑖=1                (2) 

where 𝑋𝑖(𝑡)  represents the position of i-th individuals at iteration t. N represents the number of 

individuals in swarms. 𝑟1 is the random number in Gaussian distribution with the interval of 0 and 1. 

Strategy 2: Narrowed exploration. 
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𝑋𝑖(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) + (𝑦 − 𝑥) ∗ 𝑟2      (3) 

where 𝐿𝑒𝑣𝑦(𝐷) represents the Levy flights following equations: 

Levy(D) = s ×
μ×σ

|𝜈|
1
𝛽

          (4) 

where 𝑠 = 0.01 is a constant parameter, 𝑟2 is another random number. 𝜇, 𝜈 are random numbers 

between 0 and 1. 𝜎 is calculated as follows: 

𝜎 =
Γ(1+𝛽)×sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

𝛽−1
2

           (5) 

where 𝛽 = 1.5 is a constant value. 𝑋𝑅(𝑡) is a random selected candidate at the current iteration. 𝑦 

and 𝑥 represent the spiral shape: 

𝑦 = 𝑟 × cos(𝜃)           (6) 

𝑥 = 𝑟 × sin(𝜃)           (7) 

𝑟 = 𝑟1 + 𝑈 × 𝐷1          (8) 

𝜃 = −𝜔 × 𝐷1 + 𝜃1          (9) 

𝜃1 =
3𝜋

2
            (10) 

where 𝑟1 is a fixed number between 1 and 20. 𝐷1 is integer numbers from 1 to the length of the 

problems. 𝜔 = 0.005 is a fixed constant number. 

Strategy 3: Expanded exploitation. 

𝑋𝑖(𝑡 + 1) = 𝛼 × [𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)] 

+𝛿 × [(𝑈𝐵 − 𝐿𝐵) × 𝑟3 + 𝐿𝐵]        (11) 

where [LB, UB] is the definitional domain of the given problem. 𝛼  and 𝛿  are two fixed small 

numbers. 𝑟3 is the third random number in Gaussian distribution. 

Strategy 4: Narrowed exploitation. 

𝑋𝑖(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝐺1 × 𝑋𝑖(𝑡) × 𝑟4 

−𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟5 × 𝐺1        (12) 

where 𝑄𝐹 denotes to a quality function used to equilibrium the search strategy, and calculated with 

the following equation: 

𝑄𝐹(𝑡) = 𝑡
2×𝑟6−1

(1−𝑇)2           (13) 

𝐺1 = 2𝑟7 − 1           (14) 

𝐺2 = 2 × (1 −
𝑡

𝑇
)                                                                       (15) 

𝑟4, 𝑟5, 𝑟6, 𝑟7 are the fourth to seventh random numbers involved in this algorithm. 
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2.2. Proposed HAO improved algorithm 

Although individuals in the original AO swarm have four strategies and four ways to update their 

positions, however, according to the status of the prey and the Aquila, individuals could only choose 

the first two strategies in the early 2/3 iteration times called exploration procedure, while they would 

choose the latter two strategies at the rest of exploitation procedure. Apparently, the first two strategies 

would be more aggressive and could result in fast convergence, however, the latter two involve the re-

initializing operations, which would give the individuals a chance to jump out of the local optima. 

Both of the first and latter two strategies have their own merits and result in better performance of the 

original AO algorithm. 

Table 1. Pseudo code of HAO algorithm. 

Stage Pseudo-code 

Initializing 

Maximum iteration number M 

population size N 

dimensionality D 

constraint variables 

probabilities 𝑝1, 𝑝2, 𝑝3 

Exploration and 

Exploitation 

While iteration <M 

calculate the fitness values 

calculate Xbest, 𝑋𝑀 

for i=1 to N 

    update parameters 

    random number r1, 𝑟2, 𝑟3 

    if r1<𝑝1 

        if 𝑟2 < 𝑝2 

          strategy 1 

        else 

          strategy 2 

        end if 

    else 

        if 𝑟3 < 𝑝2 

strategy 3 

        else 

          strategy 4 

        end if 

     end if 

end for 

end while 

output the best candidate 

However, we can easily find that the latter two strategies lack capability in approaching global 

optima, especially for the multimodal benchmark functions. Figure 9 in the referenced paper [19] showed 

that individuals would fail to obtain better positions any more in the later iterations for F5–F10, F12–
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F15, F17–23, who were some unimodal benchmark functions and most of the multimodal benchmark 

functions. To eliminate such defects, the choice of strategies could be a random way with different 

probabilities, let alone the solemn separation of exploration and exploitation. The individuals are 

recommended to choose a way with different probabilities to explore or exploit the whole definitional 

domain with their own willing. Therefore, we introduce the heterogeneous improvement for the original 

AO algorithm, and proposed an improvement called the heterogeneous Aquila Optimizer (HAO). For 

simplicity, a pseudo code of the proposed HAO algorithm would be shown in Table 1. 

The complexity would remain as 𝑂(𝑀 × 𝑁 × 𝐷) with a minimum change in proportional values. 

3. Simulation experiments on benchmark functions 

In this section, simulation experiments on benchmark functions would be carried out, simulation 

results would be discussed to find whether the proposed HAO algorithm would perform better than 

the original AO algorithm or not. And furthermore, considering the development of swarm intelligence 

and better performance, several other algorithms would also be involved in comparison, such as 

original AO, the antlion optimization (ALO) [22], African vultures optimization (AVOA) [23], 

equilibrium optimizer (EO) [24], grasshopper optimization algorithm (GOA) [25], the grey wolf 

optimizer (GWO) [26], Harris hawk optimization (HHO) [27], Moth-frame optimization (MFO) [28], 

mayfly optimization algorithm (MOA) [29], PSO, SCA and whale optimization algorithm (WOA) [30]. 

The parameters of all of the compared algorithms are shown in Table 2. 

Table 2. Parameters setup. 

Algorithm values 

AO U = 0.00565; r1 = 10; ω = 0.005; α = 0.1; δ = 0.1; G1∈[−1, 1]; G2∈[2, 0] 

ALO r1∈[0, 1]; I = 10w; w = 2,3,4,5,6 

AVOA p1 = 0.6; p2 = 0.4; p3 = 0.6; α = 0.8; β = 0.2; γ = 2.5 

EO V = 1; a1 = 2; a2 = 1; GP = 0.5 

GOA cMax = 1; cMin = 4e-5 

GWO a0 = 2; r1, r2∈[0, 1] 

HHO q∈[0, 1]; r∈[0, 1]; E0∈[−1, 1]; E1∈[2, 0]; E∈[−2, 2]; 

MFO b = 1 

MOA 
g = 0.8; gdamp = 0.8; a1 = 1.0; a2 = 1.5; a3 = 1.5;β = 2; dance = 5; fl = 1; 

dance_damp = 0.8; fl_damp = 0.99; 

PSO c1 = 1.5; c2 = 1.5; 

SCA r1∈[1, 0];r2∈[0, 2𝜋]; r3∈[0, 2] 

WOA r1, r2∈[0, 1]; a0 = 2; b = 1;p∈[1, 0] 

3.1. Benchmark functions  

Verifying the capability of an algorithm with benchmark functions is a classical way in 

optimization. In this paper, the improved HAO would be also applied in optimization benchmark 

functions. 5 unimodal, 5 unimodal with three-dimensional basin-like landscapes, and 11 multimodal 

benchmark functions would be involved [31], as shown in Table 3–5. 
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Table 3. unimodal scalable benchmark functions (D = 10). 

No. Names Equations domain[lb,ub] 

F1  Ackley 1 
𝑓(𝑥) = −20𝑒

−0.02√
∑ 𝑥𝑖

2𝑑
𝑖=1
𝑑 − 𝑒

∑ cos(2𝜋𝑥𝑖)
𝑑
𝑖=1

𝑑 + 20 + 𝑒 
[−100, 100] 

F2  Exponential 𝑓(𝑥) = 1 − 𝑒−0.5∑ 𝑥𝑖
2𝑑

𝑖=1  [−3, 3] 

F3  Powell Sum 𝑓(𝑥) =∑|𝑥𝑖|
𝑖+1

𝑑

𝑖=1

 [−1, 1] 

F4  Sargan 𝑓(𝑥) =∑𝑑(𝑥𝑖
2 + 0.4 ∑ 𝑥𝑖𝑥𝑗

𝑑

𝑗=1,𝑗≠𝑖

)

𝑑

𝑖=1

 [−100, 100] 

F5  Sphere 𝑓(𝑥) =∑𝑥𝑖
2

𝑑

𝑖=1

 [−100, 100] 

Table 4. unimodal scalable benchmark functions with three-dimensional basin-like- 

landscapes (D = 10). 

No. Names Equations domain[lb,ub] 

F6  Chung Reynolds 𝑓(𝑥) = (∑𝑥𝑖
2

𝑑

𝑖=1

)

2

 
[−100, 100] 

F7  Csendes 𝑓(𝑥) =∑𝑥𝑖
6 (2 + sin

1

𝑥𝑖
)

𝑑

𝑖=1

 [−100, 100] 

F8  Holzman’s 2 𝑓(𝑥) =∑𝑖𝑥𝑖
4

𝑑

𝑖=1

 [−100, 100] 

F9  Hyper-Ellipsoid 𝑓(𝑥) =∑𝑖2𝑥𝑖
2

𝑑

𝑖=1

 [−100, 100] 

F10  Schumer Steiglitz 2 𝑓(𝑥) =∑𝑥𝑖
4

𝑑

𝑖=1

 [−100, 100] 
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Table 5. multimodal scalable benchmark functions (D = 10). 

No. Names Equations domain[lb,ub] 

F11  Alpine 1 𝑓(𝑥) =∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑑

𝑖=1

 [−100, 100] 

F12  Cosine Mixture 𝑓(𝑥) =
𝑑

10
+∑𝑥𝑖

2

𝑑

𝑖=1

−
1

10
∑cos (5𝜋𝑥𝑖)

𝑑

𝑖=1

 [−100, 100] 

F13  Griewank 𝑓(𝑥) =∑
𝑥𝑖
2

4000

𝑑

𝑖=1

− −cos∏(
𝑥𝑖

√𝑖
) + 1 [−100, 100] 

F14  
Inverted 

Cosine-Wave 
𝑓(𝑥) = 𝑑 − 1 − ∑ {𝑒

[
−(𝑥𝑖

2+𝑥𝑖+1
2 +0.5𝑥𝑖𝑥𝑖+1)

8
]
𝑐𝑜𝑠 (4 × √𝑥𝑖

2 + 𝑥𝑖+1
2 + 0.5𝑥𝑖𝑥𝑖+1)}

𝑑
𝑖=1   [−100, 100] 

F15  Pathological 𝑓(𝑥) = ∑

(

 0.5 +
sin2√100𝑥𝑖

2 + 𝑥𝑖+1
2 − 0.5

1 + 0.001(𝑥𝑖
2 − 2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1

2 )
2

)

 

𝑑−1

𝑖=1

 [−100, 100] 

F16 . Rastrigin 𝑓(𝑥) =∑[𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖) + 10]

𝑑

𝑖=1

 [−100, 100] 

F17  Salomon 𝑓(𝑥) = 1 − cos

(

 2𝜋√∑𝑥𝑖
2

𝑑

𝑖=1
)

 + 0.1√∑𝑥𝑖
2

𝑑

𝑖=1

 [−100, 100] 

F18  Shubert 6 𝑓(𝑥) = ∑0.5 +
sin2√𝑥𝑖

2 + 𝑥𝑖+1
2 − 0.5

[1 + 0.001(𝑥𝑖
2 + 𝑥𝑖+1

2 )]

𝑑−1

𝑖=1

 [−100, 100] 

F19  
Streched V Sine 

Wave 
𝑓(𝑥) = ∑(𝑥𝑖

2 + 𝑥𝑖+1
2 )

0.25
{sin2 [50(𝑥𝑖

2 + 𝑥𝑖+1
2 )

0.1
] + 0.1}

𝑑−1

𝑖=1

 [−100, 100] 

F20  

Venter and 

Sobiezcczanski-

Sobieski’s 

𝑓(𝑥) =∑[𝑥𝑖
2 − 100cos2(𝑥𝑖) − 100cos (

𝑥𝑖
2

30
)]

𝑑

𝑖=1

+ 400 [−100, 100] 

F21  
Xin-She YANG 

6 
𝑓(𝑥) = 1 + {[∑sin2(𝑥𝑖)

𝑑

𝑖=1

] − 𝑒∑ 𝑥𝑖
2𝑑

𝑖=1 } ⋅ 𝑒−∑ sin2(√|𝑥𝑖|)
𝑑
𝑖=1  [−100, 100] 

3.2. Simulation platform 

Simulation experiments would be carried out with a HP server platform whose assembly is shown 

in Table 6. 

Table 6. Hardware for simulation experiments. 

Items Component 

Server HPE ProLiant DL380 Gen10  

CPU Intel Xeon Bronze 3106×2 

RAM Kingston 32GB 

The source code was compiled with Matlab 2021b. And for simplicity, the maximum iteration 

number would be fixed 200, and the population size would be 40. In order to reduce the influence of 
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random numbers involved in the algorithms, Monte Carlo simulation methods would be introduced 

and all of the results, if needed, would be the averaged over 30 separated runs. 

For fair comparison, all the algorithms involved in this paper would be set the same with the 

above setup. 

3.3. Probability parameters 

For the proposed HAO algorithm, there would be three probability parameters 𝑝1,  𝑝2,  𝑝3 . 

According to the source code of the AO algorithm provided by the proposer, 𝑝1 might be a constant 

number near 2/3, and 𝑝2 = 𝑝3 = 0.5. However, we do not know exactly whether it is suitable for the 

HAO algorithm. As a probability value, they all in a definitional domain fallen into [0, 1], and therefore, 

we simulate both 𝑝1 − 𝑝2 and 𝑝1 − 𝑝3 with the mean least iteration number (MLIN) when the best 

fitness values are smaller than 5e–4, which is 0.5‰, a constant number frequently used in engineering. 

Reducing the influence or randomness involved in the algorithm, Monte Carlo method is introduced 

and the final results are the average over 30 separated independent runs. Results were shown in 

Figures 1–6. 

 

 

 

 

 

 

Figure 1. 𝑝1 − 𝑝2 relationship for different benchmark functions. 
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Figure 2. 𝑝1 − 𝑝2 relationship for different benchmark functions-continued. 
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Figure 3. 𝑝1 − 𝑝2 relationship for different benchmark functions-continued. 
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Figure 4. 𝑝1 − 𝑝3 relationship for different benchmark functions. 
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Figure 5. 𝑝1 − 𝑝3 relationship for different benchmark functions-continued. 
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Figure 6. 𝑝1 − 𝑝3 relationship for different benchmark functions-continued. 

We can conclude from Figure 1–3 that 𝑝1 = 0.7, and 𝑝2 = 0.5 might be a better value for most 

of benchmark functions, while some of the benchmark functions cannot tell a clear way, such as 

Csendes, Chung Renolds, Holzman’s 2, Schumer Steiglitz 2 and Alpine 1 function. Specially, Venter 

Sobiezcczanski Sobieski function refused to be optimized with a minimum constraint of 1000 

maximum iteration number, for saving time of running and computer complexity. 

Considering the relationship between 𝑝1 𝑎𝑛𝑑 𝑝3, no guaranteed relationship could be confirmed 

at the first glance of Figures 4–6. But the mean least iteration number for Hyper ellipsoid, Ackley 1, 

Sargan, Cosine Mixture and Stretched V Sine wave functions require non-smaller 𝑝3  values. For 

simplicity, the values for 𝑝3 might be also setup to 0.5 at the same value with 𝑝2.  
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3.4. Qualitative experiments 

Qualitative analysis is quite an import type of experiments, which would always give people a 

glance at the capability in optimization. Simulations would be carried out once for each of the 

benchmark functions involved in this paper, and results were shown in Figures 7–11.  

For convenience, all of the dimensionality would be fixed to 10. 

 

Figure 7. Qualitative results for the representatives. 
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Figure 8. Qualitative results for the representatives -continued. 
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Figure 9. Qualitative results for the representatives -continued. 
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Figure 10. Qualitative results for the representatives -continued. 
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.  

Figure 11. Qualitative results for the representatives -continued. 

We can see from Figures 7–11 that almost all of the benchmark functions, either unimodal or 

multimodal, would be quickly optimized with the improved HAO algorithm, except Venter and 

Sobiezcczanski-Sobieski’s, which should be so complicated as to fail to optimize by many algorithms. 

Individuals in swarms would quickly find the global optima, with fast convergence, lower residual 

errors. The search history for the former two dimensionality showed their better capability. Most of 

the trajectories of the first dimensionality confirmed the fast convergence. 

3.5. Intensification capability experiments 

Specifically speaking about the unimodal benchmark functions, they are easy to optimize at most 

times. Due to the only one global optima existed in their whole domain, individuals in swarms would 

approach the global optima without interference and disturbance. However, there is indeed a parameter 

balancing their capabilities. We called intensification experiments.  

To reduce the influence of random numbers involved in the algorithms, Monte Carlo method 

would be also used and the best, worst, median, mean, standard derivation of the best results after 200 

iterations would be calculated for 30 separated independent. Results were shown in Table7. 

We can see from Table7 that the proposed HAO is definitely better, it performs 8 best of 10, 

among which 7 best, one equally best with the original AO algorithm, and failed to gain the best 

position compared to the GWO algorithm. Note that only the HAO, AO, GWO, HHO algorithms have 

gained the best positions in these experiments. Their better performance would be mainly relevant to 

their inherit mechanisms and the GWO algorithm performed better for F3 function, which proved that 

in some cases, multiple top candidates could result in better performance, although the EO algorithm, 

also being involved multiple top candidates, performed worse all the time. 
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Table 7. Intensification experiments results (D = 10). 

Fcn Items HAO AO ALO EO GWO HHO PSO SCA WOA 

F1 

best −8.881E−16 −8.881E−16 0 0 0 −8.881E−16 0 0 0 

worst 0 0 4.9594886 1.09246E−13 0.5672173 0 0.6567802 0.6151628 2.1770439 

median 0 0 0 0 0 0 0 0 0 

mean −1.33227E-16 –1.33227E-16 0.349809815 3.77476E−15 0.002836087 −1.33227E-16 0.05238038 0.004490143 0.016635884 

std 3.17939E−16 3.17939E−16 0.930088506 1.14419E−14 0.04010832 3.17939E−16 0.145110562 0.045383772 0.173740625 

F2 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 2.41267E−08 1.11022E−16 2.22045E−16 0 1.07827E−08 2.57222E−06 1.11022E−16 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 6.71821E−10 5.55112E−19 1.72085E−17 0 2.07952E−10 8.93685E−08 2.77556E−18 

std 0 0 2.55674E−09 7.85046E−18 4.32465E−17 0 1.00964E−09 3.84951E−07 1.73768E−17 

F3 

best 0 0 0 0 0 0 0 0 0 

worst 1.71345E−07 1.3404E−06 0.002712803 5.09874E−41 4.89302E−38 5.38875E−29 1.99386E−09 1.27563E−07 2.83673E−32 

median 0 0 0 0 0 0 0 0 0 

mean 8.59349E−10 1.32862E−08 0.000188208 6.06182E−43 7.02152E−40 2.76018E−31 5.25788E−11 8.6424E−10 4.08456E−34 

std 1.21158E−08 1.1398E−07 0.000528951 4.92415E−42 4.29465E−39 3.81024E−30 2.43252E−10 9.32274E−09 2.80826E−33 

F4 

best 0 0 0 0 0 0 0 0 0 

worst 1.6596E−123 2.68981E−59 0.008148981 8.83296E−23 1.47557E−19 2.22569E−39 5.58975E−06 0.94986434 4.73958E−08 

median 0 0 0 0 0 0 0 0 0 

mean 8.5616E−126 1.51816E−61 0.000121248 6.57998E−25 3.60452E−21 2.39605E−41 1.39242E−07 0.014161434 2.64588E−10 

std 1.1736E−124 1.91108E−60 0.0006726 6.47525E−24 1.7605E−20 2.19965E−40 5.45541E−07 0.092392958 3.35656E−09 

F5 

best 0 0 0 0 0 0 0 0 0 

worst 1.5031E−130 7.21475E−47 1.93144E−05 1.46308E−27 7.13202E−23 1.88131E−43 4.29984E−08 0.006006323 3.6791E−31 

median 0 0 0 0 0 0 0 0 0 

mean 1.6376E−132 3.60737E−49 6.89004E−07 2.55882E−29 7.41054E−25 9.67108E−46 7.31406E−10 0.000112339 2.52022E−33 

std 1.4821E−131 5.1016E−48 2.31881E−06 1.52145E−28 5.24025E−24 1.33026E−44 3.82728E−09 0.000660868 2.62669E−32 

F6 

best 0 0 0 0 0 0 0 0 0 

worst 4.6398E−240 4.6215E−103 5.46088E−11 7.90852E−56 8.05404E−45 1.92346E−82 6.57684E−16 0.000149337 2.58423E−59 

median 0 0 0 0 0 0 0 0 0 

mean 2.3199E−242 2.3108E−105 5.83399E−13 1.15805E−57 5.01269E−47 9.61742E−85 5.3483E−18 1.64084E−06 1.29331E−61 

std 0 3.2679E−104 4.19661E−12 7.23204E−57 5.72004E−46 1.36009E−83 4.83976E−17 1.30259E−05 1.82732E−60 

F7 

best 0 0 0 0 0 0 0 0 0 

worst 0 2.4556E−128 6.67468E−14 8.57806E−67 1.61691E−49 6.2895E−127 7.41427E−15 0.178898289 1.39788E−45 

median 0 0 0 0 0 0 0 0 0 

mean 0 1.2278E−130 6.32863E−16 8.40608E−69 9.51101E−52 3.1748E−129 4.02523E−17 0.000992967 8.0714E−48 

std 0 1.7364E−129 5.20692E−15 7.45379E−68 1.14851E−50 4.4473E−128 5.24803E−16 0.012706253 9.97234E−47 

F8 

best 0 0 0 0 0 0 0 0 0 

worst 1.7671E−253 6.1768E−100 8.61175E−10 1.23148E−46 3.58526E−38 2.11815E−84 5.42758E−12 0.014168893 1.41375E−46 

median 0 0 0 0 0 0 0 0 0 

mean 9.0354E−256 3.0884E−102 1.17105E−11 8.13848E−49 4.38731E−40 1.07815E−86 4.08357E−14 0.000180906 1.02521E−48 

std 0 4.3677E−101 7.01814E−11 8.95168E−48 3.35327E−39 1.4978E−85 4.06497E−13 0.001412517 1.06371E−47 

       Continued on next page 
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Fcn Items HAO AO ALO EO GWO HHO PSO SCA WOA 

F9 

best 0 0 0 0 0 0 0 0 0 

worst 6.5633E−126 1.55672E−42 1902.684424 3.14469E−26 9.69724E−22 7.89724E−42 3.18004E−07 0.460748677 2.51842E−29 

median 0 0 0 0 0 0 0 0 0 

mean 3.2924E−128 7.78367E−45 85.65268113 3.44888E−28 1.70161E−23 6.59982E−44 9.55701E−09 0.005258053 2.9233E−31 

std 4.6409E−127 1.10077E−43 285.1771895 2.38927E−27 9.31255E−23 6.54555E−43 3.77459E−08 0.03811698 2.5359E−30 

F10 

best 0 0 0 0 0 0 0 0 0 

worst 5.3821E−243 2.1822E−116 5.07135E−10 1.35718E−47 2.7511E−38 1.39152E−81 1.69102E−13 0.029115168 2.47058E−46 

median 0 0 0 0 0 0 0 0 0 

mean 2.6911E−245 1.0939E−118 3.41545E−12 7.03595E−50 1.61158E−40 6.95764E−84 2.66075E−15 0.00027155 1.28746E−48 

std 0 1.543E−117 3.63283E−11 9.59781E−49 1.95278E−39 9.83952E−83 1.6196E−14 0.002562231 1.74734E−47 

3.6. Diversification capability experiments 

As for multimodal benchmark functions, they have more than one global optima, and 

consequently, individuals in swarms would be trapped in local optima. There is a need for individuals 

to be capable to run out of the local optima and approach the global one. This capability is called the 

diversification capability. To find out whether the proposed HAO algorithm has better diversification 

capability or not, similar experiments would be carried out with the intensification experiments, 

whereas this time the simulation would be carried out on multimodal benchmark functions. The results 

would be in a same situation with intensification experiments and shown in Table 8. 

Table 8. Diversification experiments results (D = 10). 

Fcn Items HAO AO ALO EO GWO HHO PSO SCA WOA 

F11 

best 0 0 0 0 0 0 0 0 0 

worst 0.000102444 0.000212601 0.686498568 4.1191E−08 0.000466289 0 0.000971432 0.06394849 0.940399825 

median 0 0 0 0 0 0 0 0 0 

mean 5.12222E−07 1.40426E−06 0.035056268 2.34813E−10 2.64455E−05 0 1.42278E−05 0.000620885 0.03160676 

std 7.24392E−06 1.5517E−05 0.117127269 2.92632E−09 9.19686E−05 0 7.93889E−05 0.004755222 0.149338695 

F12 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 0.591137009 0 3.33067E−16 0 0.147784252 8.23936E−06 3.33067E−16 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 0.039901749 0 1.05471E−17 0 0.000738941 8.4255E−08 4.996E−18 

std 0 0 0.117323503 0 4.92719E−17 0 0.010449923 6.21508E−07 3.57161E−17 

F13 

best –9 –9 –8.271743663 –9 –9 –9 –8.763739656 –8.999963768 –9 

worst 0 0 0 0 0 0 0 0 0 

median 0 0 0 0 0 0 0 0 0 

mean –1.35 –1.35 –1.018132954 –1.332689027 –1.293365437 –1.35 –1.213239065 –1.24248688 –1.274377431 

std 3.22 3.22 2.465359483 3.180884043 3.091366535 3.22 2.898767185 2.991706983 3.072957522 

F14 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 6.553034763 3.031861151 3.258463936 0 3.095329066 3.857462194 5.252117521 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 0.619407638 0.234314999 0.234699015 0 0.315975027 0.135451624 0.098063259 

std 0 0 1.549603278 0.669642237 0.672165615 0 0.777237848 0.606556869 0.628334407 

       Continued on next page 
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Table 8 showed that both the proposed HAO, AO and the HHO algorithm could perform well in 

optimizing multimodal benchmark functions. Comparatively speaking, the proposed HAO succeeded 

for 9 among 11 experiments, while the HHO succeed 9, AO succeeded 8 times. We can see that the 

proposed heterogeneous improvements not only increase the diversification capability of the original AO 

algorithm, it further succeeded more than the HHO, it means that the HAO is definitely better than before. 

Fcn Items HAO AO ALO EO GWO HHO PSO SCA WOA 

F15 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 3.999948399 2.552321449 2.647696583 0 3.501379209 3.745287122 3.999426852 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 0.504369 0.282061586 0.30369492 0 0.401829418 0.376056186 0.217401183 

std 0 0 1.214378287 0.699697313 0.740864965 0 0.973607626 0.916560706 0.705258618 

F16 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 55.71738174 4.974825684 8.97399354 0 19.36820549 35.47861084 36.42076237 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 3.517170973 0.034827673 0.413835634 0 1.334837167 0.758800881 1.081133301 

std 0 0 9.2891052 0.36483464 1.481162818 0 3.446218849 3.868735337 5.511231645 

F17 

best 0 0 0 0 0 0 0 0 0 

worst 9.33509E−56 5.88658E−25 1.399873346 0.09987335 0.199873353 1.92798E−21 0.199874464 0.300008748 0.299873346 

median 0 0 0 0 0 0 0 0 0 

mean 4.67551E−58 3.3774E−27 0.059481002 0.014981002 0.016981002 1.79513E−23 0.021590163 0.020570275 0.018484168 

std 6.60086E−57 4.17777E−26 0.16893679 0.035751408 0.042619526 1.75014E−22 0.054933573 0.055290725 0.053082389 

F18 

best 0 0 0 0 0 0 0 0 0 

worst 0 0 0.881248897 0.451552733 1.110889767 0 0.475219164 1.343309798 1.14382478 

median 0 0 0 0 0 0 0 0 0 

mean 0 0 0.044907776 0.029224494 0.038940139 0 0.034195028 0.133216919 0.093117857 

std 0 0 0.128685138 0.079145301 0.134079509 0 0.092296381 0.333790945 0.236320831 

F19 

best 0 0 0 0 0 0 0 0 0 

worst 3.56539E−24 0.00097255 2.147029601 1.08178633 2.709605815 1.08775E−07 2.820199371 4.749850325 1.300346311 

median 0 0 0 0 0 0 0 0 0 

mean 2.84441E−26 1.71583E−05 0.072212978 0.02114418 0.120502209 7.05637E−10 0.267364684 0.552169666 0.034804147 

std 2.81437E−25 0.000115889 0.266270392 0.087866749 0.389600108 7.94822E−09 0.66608576 1.323435619 0.153033519 

F20 

best –1600 –1600 –1555.530553 –1600 –1600 –1600 –1599.983929 –1600 –1600 

worst 0 0 0 0 0 0 0 0 0 

median 0 0 0 0 0 0 0 0 0 

mean –240 –240 –216.6310383 –240 –240 –240 –235.0797331 –239.6309232 –240 

std 572.7 572.7 518.2645127 572.7 572.7 572.7 561.0596732 571.884629 572.7 

F21 

best 0 0 0 0 0 0 0 0 0 

worst 0 0.00258651 1 1 1.00001814 0 1 1.000471085 1.000228419 

median 0 0 0 0 0 0 0 0 0 

mean 0 1.29326E−05 0.15 0.15 0.150000142 0 0.15 0.150043402 0.135006671 

std 0 0.000182894 0.36 0.36 0.3579678 0 0.36 0.35807104 0.342598028 
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3.7. Acceleration convergence analysis 

Both the qualitative, intensification, and diversification experiments verified the better 

performance of the proposed HAO algorithm. In this section, acceleration convergence analysis would 

be carried out, the best fitness values versus iterations would show more apparent results, as shown in 

figures from Figures 12–16. 

 

 

 

Figure 12. Acceleration convergence experiments on unimodal scalabe benchmark functions. 



5890 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5867–5904. 

 

 

Figure 13. Acceleration convergence experiments on unimodal scalabe benchmark 

functions-continued. 

 

Figure 14. Acceleration convergence experiments on multimodal scalabe benchmark functions. 
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Figure 15. Acceleration convergence experiments on multimodal scalabe benchmark 

functions-continued. 
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Figure 16. Acceleration convergence experiments on multimodal scalabe benchmark 

functions-continued. 

Based on the averaged results in figures from Figures 12–16, we can see that the proposed 

improvement increases the convergence rate a lot, however, HHO algorithm became 3 bests of ten 

optimizing unimodal benchmark functions, while 7 bests of 10 for HAO algorithm, which remains 

most top lists. With Figure , we can find that the proposed HAO algorithm would perform the best for 8 

from 11, while 3 multimodal benchmark functions, Griewank, Venter and Sobiezcczanski-Sobieski’s, 

and Xin-She Yang 6 functions remain difficult to optimize. All of the involved nine algorithms could 

not optimize them at all. 

Regarding the executive time of runs, the less time exhausted, the faster convergence rate. Under 

the same conditions that all results would be averaged over 30 independent runs, the executive time of 

the algorithms involved would be evaluated and compared, as shown in Figure 17. 

We can see that for the unimodal Exponential function, the heterogeneous improvement took 

almost the same time as the original version. While for the multimodal Cosine Mixture function, it 

would take more time to finish the job than the original one. Meanwhile, a controversial conclusion 

might be drawn with simulation experiments on unimodal or multimodal benchmark functions. The 

executive time the algorithms take would be possibly based on the functions, other than the 

algorithms themselves. 
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Figure 17. Executive time of parallel computing with workers = 14 for representative 

benchmark functions. 

3.8. Scalability experiments 

Although almost all of the above experiments verified the best performance of the proposed HAO 

algorithm in this paper, they were carried out with a fixed dimensionality, therefore, scalability 

experiments should also be carried out to confirm whether it would also perform the best when the 

dimensionality changed. 

In this section, the dimensionality would be changed from 2, 10 and up to 100, with an interval of 10. 

The population size remains the same, and the overall results would remain an average over 30 separated 

independent runs with Monte Carlo method. Results were shown in figures from Figures 18–23. 

 

Figure 18. Scalability experiments on unimodal benchmark functions. 
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Figure 19. Scalability experiments on unimodal benchmark functions-continued. 
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Figure 20. Scalability experiments on unimodal benchmark functions-continued. 

 

Figure 21. Scalability experiments on multimodal benchmark functions. 
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Figure 22. Scalability experiments on multimodal benchmark functions-continued. 
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Figure 23. Scalability experiments on multimodal benchmark functions-continued. 

We can see figures from Figures 18–20 that the proposed HAO disappeared in the results 

of Ackley 1 and Exponential benchmark function. Detailed study confirmed the zero values for 

AO and HAO. And results on unimodal benchmark functions verified the better performance, 

specifically, 8/10 bests. 

Results on multimodal, as shown in figures from Figures 21–23, however, did not result in a same 

conclusion. The results of Alpine 1 and Cosine Mixture benchmark functions would follow a same 

style. However, all of the rest benchmark functions did not support the former conclusion. Although 

at most times, the proposed HHO algorithm perform better with HHO, AO algorithms than others. 

That is to say, for the multimodal benchmark functions, a fixed population size might be unable to be 

suitable the increasing dimensionality. 

3.9. Wilcoxon rank sum test 

Most of the conclusions demonstrated that the proposed HAO algorithm could perform better in 

optimization. Verification should be made furthermore. In this section, the Wilcoxon rank sum test 

would be carried out to confirm whether the better results are fallen in a same distribution with 

results obtained from other compared algorithms. The normal value 𝑝 = 0.05  is adopted and 

verified, if 𝑝 ≤ 0.05 , acceptance of the basic hypothesis would be made and consequently, the 

proposed HHO algorithm would perform better, on the contrary, if 𝑝 > 0.05, rejection might be taken, 

and the datum would be derived from a same situation, and consequently, the proposed HHO algorithm 

could not be confirmed to perform better even though its mean, median, mean, worst, or standard 

derivation values are smaller. Results were shown in Table 9. 

We can see from Table 9 that the proposed HHO could be verified at most times, only a few 

functions and algorithms against the hypothesis with bigger values. 
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Table 9. Intensification experiments results (D = 10). 

Fcn HAO AO ALO EO GWO HHO PSO SCA WOA 

F1  NA NA 6.38644E−05 6.24874E−05 6.38644E−05 NA 6.38644E−05 6.38644E−05 5.93632E−05 

F2  NA NA 6.38644E−05 0.368120251 1.59379E−05 NA 6.38644E−05 6.38644E−05 0.368120251 

F3  NA 0.001706249 0.000182672 0.212293836 0.472675594 0.427355314 0.000182672 0.00058284 0.427355314 

F4  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F5  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F6  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F7  NA 6.38644E−05 6.38644E−05 6.38644E−05 6.38644E−05 6.38644E−05 6.38644E−05 6.38644E−05 6.38644E−05 

F8  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F9  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F10  NA 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F11  NA 0.584248553 8.74499E−05 0.001699468 0.00016688 0.368120251 0.000565815 8.74499E−05 0.000533651 

F12  NA NA 6.38644E−05 NA NA NA 6.38644E−05 6.38644E−05 0.168078319 

F13  NA NA 6.38644E−05 0.002212542 6.38644E−05 NA 6.38644E−05 6.38644E−05 0.000751179 

F14  NA NA 6.38644E−05 0.000231246 6.38644E−05 NA 6.38644E−05 6.38644E−05 0.03484304 

F15  NA NA 6.38644E−05 6.38644E−05 6.38644E−05 NA 6.38644E−05 6.38644E−05 0.002212542 

F16  NA NA 6.38644E−05 0.168078319 6.34029E−05 NA 6.38644E−05 6.38644E−05 0.005858055 

F17  NA 0.000439639 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F18  NA NA 6.38644E−05 6.38644E−05 6.38644E−05 NA 6.38644E−05 6.38644E−05 6.38644E−05 

F19  NA 0.000182672 0.025692445 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 

F20  NA NA 6.38644E−05 NA 0.368120251 NA 6.38644E−05 6.38644E−05 NA 

F21  NA 0.368120251 6.38644E−05 6.38644E−05 6.38644E−05 NA 6.38644E−05 6.38644E−05 6.38644E−05 

4. Simulation experiments on real-world engineering problems 

Based on the simulation experiments results on benchmark functions, we have found that the 

proposed HAO algorithm is quite promising in optimization. What about its capability in handling the 

real-world engineering problems? In this section, we would introduce the proposed HAO algorithm to 

find the best solution for some benchmark engineering problems. 

Literally speaking, the difference between the real-world engineering problems and the 

benchmark functions might be the constraints. That is to say, there is no constraints for individuals in 

swarms when optimizing the benchmark functions, however, some definitional domain could not be 

searched or exploited when optimizing the real-world engineering problems. 

For a given constraint problem: 

min 𝑓(𝑥), 𝑥 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛} 

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2,⋯ ,𝑚 

ℎ𝑖(𝑥) = 0, i = 1,2,⋯ , 𝑛 

where, 𝑥𝑖 ∈ [𝐿𝐵𝑖, 𝑈𝐵𝑖] is the definitional domain for the i-th parameter. For simplicity, we introduce 

the penalty parameters to construct a new fitness function as follows: 
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𝐹(𝑥) = 𝑓(𝑥) + 𝑃𝑖𝑒∑max {𝑔𝑖(𝑥), 0}

𝑛

𝑖=1

+𝑃𝑒∑max{|ℎ𝑖(𝑥)|, 𝜀}

𝑚

𝑖=1

(16)

 

where m and n are the number of equal and unequal constraint equations. 𝑃𝑖𝑒, 𝑃𝑒 represent the penalty 

factors, which should be fixed numbers for simplicity. 

In order to find the best solution for the real-world engineering problems, 10,000 separated 

independent runs would be involved in this section, and the final results would be the best one of them. 

The population size would be fixed to 40, and the maximum allowed iteration number is set with 1000. 

4.1. Pressure vessel design  

The pressure vessel design problem is four-dimensional structural design problem. It contains 

four non-equal and four equal constraints. Applying the proposed HAO algorithm, we got the results 

and compared with other results in literature, as shown in Table 10. 

The proposed HAO algorithm found the best design option among the compared algorithms 

reported in literature. 

Table 10. Results applied in pressure vessel design problem. 

Algorithm Ts(x1) Th(x2) R(x3) L(x4) f(x) 

GSA [32] 1.125 0.625 55.9886598 84.4542025 8538.8359 

MVO [32] 0.8125 0.4375 42.090738 176.73869 6060.8066 

WOA [30] 0.812500 0.437500 42.0982699 176.638998 6059.7410 

BA [14] 0.812500 0.437500 42.098445 176.636595 6059.7143 

GWO [26] 0.8125 0.4345 42.089181 176.758731 6051.5639 

AOA [33] 0.8303737 0.4162057 42.75127 169.3454 6048.7844 

AO [19] 1.0540 0.182806 59.6219 38.8050 5949.2258 

HAO 0.810726461 0.400897167 42.16466765 175.8460143 5935.56831 

4.2. Three-bar truss design 

The three-bar truss design is a two-dimensional constraint problem, it has only two non-equal 

constraints, yet a little difficult to find the candidate. The proposed HAO algorithm finds a better yet 

not the best option, as shown in Table 11, it failed to do better than the original version. However, the 

proposed HAO does find a better option than the original AO algorithm in our simultaneous 

comparison experiments. 
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Table 11. Best solutions for the three-bar truss design problem. 

Algorithm 𝑥1 𝑥2 𝑓(𝑥) 

AVOA [23] 0.788680394972034 0.408233412073586 263.895843396802 

GOA [25] 0.788897555578973 0.407619570115153 263.895881496069 

MBA [34] 0.7885650 0.4085597 263.8958522 

SSA [35] 0.788665414 0.408275784444547 263.895843 

PSO-DE [36] 0.7886751 0.4082482 263.8958433 

DEDS [36] 0.78867513 0.40824828 263.8958434 

MFO [28] 0.788244771 0.409466905784741 263.8959797 

MVO [32] 0.78860276 0.408453070000000 263.8958499 

CS [37] 0.78867 0.40902 263.9716 

Tsai [38] 0.788 0.408 263.68 

AOA [33] 0.79369 0.39426 263.9154 

AO [19] 0.7926 0.3966 263.8684 

HAO 0.788609979 0.408362638 263.8916603 

4.3. Welded beam design 

The welded beam design is a four-dimensional constraint problem. It has seven non-equal 

constraints. Results were shown in Table 12 and the proposed HAO also find a better result, yet not 

the best one. Same situation met in our experiment that the proposed HAO could find a better option 

than the original HAO, however, still worse than the reported result. 

Table 12. Best solutions obtained for the welded beam design problem. 

Algorithm h L t b f(x) 

GSA [32] 0.182129 3.856979 10.000 0.202376 1.87995 

WOA [30] 0.205396 3.484293 9.037426 0.206276 1.730499 

MVO [32] 0.205463 3.473193 9.044502 0.205695 1.72645 

SSA [35] 0.2057 3.4714 9.0366 0.2057 1.72491 

MPA [39] 0.205728 3.470509 9.036624 0.205730 1.724853 

AVOA [23] 0.205730 3.470474 9.036621 0.205730 1.724852 

AAO [40] 0.2057 3.4705 9.0366 0.2057 1.724 

AOA [33] 0.194475 2.57092 10.000 0.201827 1.7164 

SMA [41] 0.2054 3.2589 9.0384 0.2058 1.69604 

AO [19] 0.1631 3.3652 9.0202 0.2067 1.6566 

HAO 0.19952608 3.384869727 9.064048595 0.206681757 1.715727482 

5. Discussion and conclusions 

This paper reports a new improvement for the Aquila optimization (AO) algorithm, which was 

just proposed in literature with better performance. Considering the flat lines in latter convergence 

curves in the original paper, the original AO should have some defects in exploitation procedure. 

Inspired by the better performance of heterogeneous improvements, and the inspiration of multiple 
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updating principle, the heterogeneous AO algorithm called HAO is proposed in this paper. The 

proposed HAO algorithm would not introduce other equations, and re-construct the four strategies 

with promising better performance. 

Simulation experiments were carried out on either unimodal or multimodal benchmark functions. 

Results confirmed the better performance including most of the Wilcoxon rank sum test results. 

Three real-world engineering problems were also included to test the capability of the proposed 

HAO algorithm. Only one result, specifically the pressure vessel design problem, succeeded in 

comparison with other reported results in literature, including the original AO algorithm. However, the 

rest two failed to be the best one, even worse than the reported results from the original version. But in 

our experiment, the proposed HAO could obtain better options than the original AO algorithm. We can 

find that the randomness could affect the results a lot and better results might be found with occasions. 

We could find the proposed heterogeneous AO algorithm would outperform at most times, it has 

intensification capability with unimodal benchmark functions, diversification capability with multimodal 

benchmark functions, it would be faster in convergence rate and approach the global optima much closer. 

The scalability capability is also good and the rank sum test convinced such simulations. 

Individuals in swarms with heterogeneous improvements should be accompanied with larger 

population size accordingly. In the future, the proposed HAO algorithm could be applied to solve other 

problems such as reducing dimensionality, figure segmentation for real applications. 
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