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Abstract: Traditional laboratory microscopy for identifying bovine milk somatic cells is subjective, 
time-consuming, and labor-intensive. The accuracy of the recognition directly through a single 
classifier is low. In this paper, a novel algorithm that combined the feature extraction algorithm and 
fusion classification model was proposed to identify the somatic cells. First, 392 cell images from four 
types of bovine milk somatic cells dataset were trained and tested. Secondly, filtering and the K-means 
method were used to preprocess and segment the images. Thirdly, the color, morphological, and texture 
features of the four types of cells were extracted, totaling 100 features. Finally, the gradient boosting 
decision tree (GBDT)-AdaBoost fusion model was proposed. For the GBDT classifier, the light 
gradient boosting machine (LightGBM) was used as the weak classifier. The decision tree (DT) was 
used as the weak classifier of the AdaBoost classifier. The results showed that the average recognition 
accuracy of the GBDT-AdaBoost reached 98.0%. At the same time, that of random forest (RF), 
extremely randomized tree (ET), DT, and LightGBM was 79.9, 71.1, 67.3 and 77.2%, respectively. 
The recall rate of the GBDT-AdaBoost model was the best performance on all types of cells. The F1-
Score of the GBDT-AdaBoost model was also better than the results of any single classifiers. The 
proposed algorithm can effectively recognize the image of bovine milk somatic cells. Moreover, it may 
provide a reference for recognizing bovine milk somatic cells with similar shape size characteristics 
and is difficult to distinguish. 
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1. Introduction  

Milk somatic cell number is an important index that reflects milk quality and cow health. An 
excessive somatic cell count will destroy the nutritional components in milk and indicate the 
occurrence of mastitis in dairy cows [1]. The somatic cells in milk are mainly white blood cells (like 
lymphocytes, macrophages, and neutrophils), accounting for about 99% of all somatic cells, with a 
small number of epithelial cells shed from mammary tissues, accounting for about 1% [2]. Mastitis 
can lead to a decrease in milk yield and economic loss and lead to changes in milk composition and 
nutritional composition. The number of various cells in milk will change depending on the infection 
degree of mastitis [3]. 

The commonly used detection methods for milk somatic cells are mainly divided into direct and 
indirect. The direct methods mainly include microscopy and fluorescence photoelectric counting 
instruments [2]. The indirect methods such as the California cell assay and Wisconsin mastitis test are 
accurate. However, the degree of automation is not high, and the workload and the cost of the 
measuring equipment are high [4,5]. 

In order to overcome the defects of the above methods, machine vision technology was 
introduced into cell recognition, mainly using dyed cells after a digital microscope color image 
recognition analysis. In terms of cell feature extraction, shape features [6], texture features [7], 
and color features [8] are usually used as the recognition features of cell images. In order to fully 
express cell information and further improve the accuracy of cell recognition, feature fusion is 
widely used in cell image recognition [9,10]. The construction of appropriate classifiers is another 
key problem in recognizing different cell image categories based on the cell extracted features. It 
is of great significance to study automatic recognition algorithms of milk cell microscopic images 
to monitor dairy cows’ health status and ensure the quality of dairy products. Still, there is little 
research on milk somatic cell image classification and recognition. Gao et al. [11] used bi-
directional two-dimensional principal component analysis to propose a rapid and accurate method 
to detect bovine mastitis. Gao et al. [12,13] also suggested a Relief F algorithm that could extract 
the features of milk somatic cells for classification. Zhang et al. [14] developed an algorithm based 
on the random forest method to achieve a recognition of 96%. 

The machine learning methods commonly used in the field of cell recognition include support 
vector machine [15–17], K neighbor [18,19], random forest [20,21], naïve Bayes [5,22], logistic 
regression [23], extreme learning machine [24], and neural network [25,26]. Those methods can be 
applied to identify and classify various types of cells [27–29]. Still, those recognition methods each 
have perks and limitations. Because the image of milk cells contains a large amount of milk fat, milk 
protein, and cell debris, the image itself is complicated to interpret. The mentioned recognition methods 
have harsh requirements on the data set. When these classifiers are used for direct classification and 
recognition, the problem of weak generalization will appear. Therefore, in order to overcome the above 
problems, this study combined with the actual situation of milk somatic cell sample data and used for 
reference the ensemble learning method of recent popular research by scholars, that is, to complete 
high-precision classification tasks by integrating multiple weak classifiers into strong classifiers [30]. 
Common ensemble learning methods include parallel ensemble bagging [31], stacking [32], and 
serialization ensemble boosting [33]. AdaBoost is an adaptive boosting algorithm; compared with 
stacking and bagging integration, AdaBoost trains an optimal set of weak classifiers. This is done by 
adjusting the weight of samples and weak classifiers, improving generalization ability, obtaining higher 
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prediction accuracy, and reducing model overfitting. At present, this method has been widely applied 
in agricultural image processing, remote sensing image water information extraction, and fire smoke 
detection [34–36] but rarely in cell image classification and recognition [37]. 

Therefore, this paper proposes an algorithm based on multi-feature extraction and gradient 
boosted decision trees (GBDT)-Adaboost fusion model to recognize different types of milk cells. 
Firstly, according to the characteristics of milk cells, the color morphology and texture features were 
extracted and fused. Secondly, based on the extracted features, they were input into the fusion model 
designed in this paper for recognition. Finally, the effectiveness of the proposed method was verified 
by comparing algorithms. The results of this study could provide an efficient method for the 
identification and classification of milk somatic cells, which could help improve the automation of 
bovine mastitis detection. 

2. Materials and methods 

2.1. Sample image acquisition 

The samples used in this paper were from the basic veterinary Laboratory of Veterinary College, 
Inner Mongolia Agricultural University. The milk somatic cell TIF images were 158 color images at 
400× magnification under the microscope and with a rate of 2048*1536 pixels. From the 158 large 
color images, features from single-cell images were extracted from the large color images. Through 
veterinary pathology expert appraisal, the individual cells were classified into the four kinds of milk 
somatic cells, for a total of 392: epithelial cells (EPI), n = 65; lymphoid cells (LYP), n = 112; 
macrophage (MΦ), n = 81; neutrophils (NG), n = 134. Representative images are shown in Figure 1, 
where “1” represents MΦ, “2” represents EPI, “3” represents NG, and “4” represents LYP. EPI cells 
have a large size and a round or oval nucleus. MΦ cells are spherical with a diameter of 10-20 μm, and 
their nuclei are oval, kidney- and horseshoe-shaped, with abundant cytoplasm. LYP cells are spherical 
and can be divided into three types (large, medium, and small) according to their volume. Large LYPs 
are uncommon. Medium LYPs have a diameter of 9–12 μm, with rich cytoplasm and an oval- or 
kidney-shaped nucleus. Small LYPs represent the largest LYP number, accounting for about 90% of 
the total number of LYPs, with a diameter of 5–8 μm and a round nucleus, often with small depressions 
on one side little cytoplasm. NG cells are spherical and with a diameter of 9–12 μm. The nuclei are of 
various shapes. The nuclei are mostly trilobal. Some are sausage-shaped (called rod-shaped nuclei). At 
the same time, some are lobulated, with filaments connecting between the leaves (called leaf nucleus). 
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Figure 1. Image of cow milk somatic cells with a 400× magnification. 

2.2. Image preprocessing and segmentation 

In order to avoid the interference factors such as shadow brightness color saturation, cell 
fragments, and impurities, the original images were preprocessed, as shown in Figure 2. First, a 
calculation was used to contrast the milk somatic cell images in different color spaces. Then, the RGB 
color space was selected to deal with the cell image gray level of the space, and 3 × 3 median filter 
template and Gaussian filter were used for noise reduction processing. The most between-cluster 
variance method (OTSU) [38] was used for image binarization processing, using mathematical 
morphology closed operation noise to remove unnecessary holes in the cells and the open operation to 
remove slight noise in the image to optimize the boundary of the cell image. Finally, the k-means 
algorithm segmented the cell region from the image. 

 

Figure 2. Flowchart of image preprocessing and segmentation. 



5854 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

2.3. Image preprocessing and segmentation 

2.3.1. Color characteristics 

After the cells are stained, the nucleus and cytoplasm will turn into different colors. In this 
paper, four features of cell images in gray space, including mean value, variance, energy, and 
contrast, were extracted as the characteristic color parameters. 

2.3.2. Morphological characteristics 

The morphology of the milk cells was observed under a microscope. Each type of cell image 
contains characteristic geometric information such as area, shape, number of lobes, and concave rate 
and proportion. The four types of cells have certain morphological differences degrees. In this paper, 
six geometric features and seven invariable moment features were extracted as 13 morphological 
features of somatic cells. 

The parameters of geometric features contain much important information. In this paper, the 
area, circumference, and roundness of cells and nuclei were calculated as the main features [39]. 
The cell area was obtained by calculating the sum of the lengths of all horizontal line segments in 
the cell area [3]. The specific formula is shown in Eq (1). 

                              𝐴 ൌ ∑ ሺ𝑦௜ଶ െ 𝑦௜ଵሻ௡
௜ୀଵ  (1) 

The cell perimeter was obtained by calculating the perimeter of the cell region boundary 
outline [3], and the formula was: 

                            𝑃 ൌ 𝑀ଵ ൅ ඥ2𝑀ଶ (2) 

Studies have found that roundness represents the complexity of the nucleus [3]. It is usually 
obtained by calculating the ratio of the roundness of the nucleus to the roundness of the whole cell, as 
shown in Eqs (3) and (4). 

                               𝐶 ൌ
௉మ

ସగ஺
                                       (3) 

           𝑌 ൌ
஼೙

஼೎
                                       (4) 

The invariant moments were calculated through statistical moments [40]. For cell images, the 
experimental effect of using the nucleus is better than using the whole cell [41]. Therefore, this paper 
calculated the invariant moment characteristics of the nucleus region in the image of milk somatic cells 
to analyze it. The (p + q) order statistic of the invariant moment was defined as: 

                               𝑚௣௤ ൌ ∑ ∑ 𝑥௣𝑦௤𝐼𝑚ሺ𝑥, 𝑦ሻ௬௫  (5) 

                      µ௣௤ ൌ ∑ ∑ ሺ𝑥 െ 𝑥௖ሻ௣ሺ𝑦 െ 𝑦௖ሻ௤𝐼𝑚ሺ𝑥, 𝑦ሻ௬௫  (6) 

In the above formula, the center of mass is the coordinates of the gray center of the region, as shown 
in Eq (7). The gray image represents the sum of gray values and represents two first-order moments: 



5855 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

                                 𝑥௖ ൌ
௠భబ

௠బబ
, 𝑦௖ ൌ

௠బభ

௠బబ
 (7) 

In order to ensure scale invariance, the normalized central moment was calculated. Seven invariant 
moment features were constructed by a linear combination of second and third-order central moments:  

                       𝜂௣௤ ൌ
µ೛೜

µబబ
ೝ  , 𝛾 ൌ

௣ା௤

ଶ
൅ 1, 𝑝 ൅ 𝑞 ൌ 2,3,4, …  (8) 

2.3.3. Texture features 

In this paper, a gray-level co-occurrence matrix (GLCM) [42] and local binary pattern (LBP) [43] 
were used to extract texture features of somatic cell images. GLCM is a second-order statistic of image 
brightness change, which reflects texture feature information by calculating the joint probability 
density of two types of positions. In this paper, the gray level of the image was set as 16. In order to 
ensure the rotation invariance of feature parameters, the matrices at (0, 45, 90, 135) four different 
angles were calculated respectively, using contrast CON, otherness DISL, HOMO, ENT, ASM, COR. 
There were six statistics and 24 characteristic values to extract the texture information of milk somatic 
cell images. The following is the calculation formula of the six statistics. Row I and column J represent 
the normalized gray co-occurrence matrix, and L is the gray level progression. 

                𝐶𝑂𝑁 ൌ ∑ ∑ ሺ𝑖 െ 𝑗ሻଶ𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ
௝ୀ଴

௅ିଵ
௜ୀ଴  (9) 

                               𝐷𝐼𝑆𝐿 ൌ ∑ ∑ 𝑝̂ఋሺ𝑖, 𝑗ሻ|𝑖 െ 𝑗|௝ୀ଴௜ୀ଴  (10) 

                              𝐻𝑂𝑀𝑂 ൌ ∑ ௣ොഃሺ௜,௝ሻ

ଵା|௜ି௝|௜,௝   (11) 

  𝐸𝑁𝑇 ൌ െ ∑ ∑ 𝑃෠ఋሺ𝑖, 𝑗ሻ log 𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ
௝ୀ଴

௅ିଵ
௜ୀ଴                        (12) 

𝐴𝑆𝑀 ൌ ∑ ∑ 𝑃෠ఋ
ଶሺ𝑖, 𝑗ሻ௅ିଵ

௝ୀ଴
௅ିଵ
௜ୀ଴                          (13) 

𝐶𝑂𝑅 ൌ
∑ ∑ ௜௝௉෠ഃሺ௜,௝ሻିµೣµ೤

ಽషభ
ೕసబ

ಽషభ
೔స೚

ఙೣ
మఙ೤

మ                        (14) 

𝜇௫ ൌ ∑ 𝑖௅ିଵ
௜ୀ଴ ∑ 𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ

௝ୀ଴                          (15) 

𝜇௬ ൌ ∑ 𝑖௅ିଵ
௜ୀ଴ ∑ 𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ

௝ୀ଴                          (16) 

𝜎௫
ଶ ൌ ∑ ሺ𝑖 െ 𝜇௫ሻଶ ∑ 𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ

௝ୀ଴
௅ିଵ
௜ୀ଴                      (17) 

                           𝜎௬
ଶ ൌ ∑ ሺ𝑖 െ 𝜇௬ሻଶ ∑ 𝑃෠ఋሺ𝑖, 𝑗ሻ௅ିଵ

௝ୀ଴
௅ିଵ
௜ୀ଴   (18) 

LBP is a feature algorithm used to describe the local texture feature information of images [43]. 
The extraction method of the original LBP operator is simple. First, the center pixel of the 3 × 3 window 
is taken as the threshold value and compared with the adjacent pixels. The gray value with a large 
value was set to 1; otherwise, it was set to 0. It gives eight binary numbers made up of ones or zeros. 
The formula of the LBP feature extraction operator is shown in Eq (19) 
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𝐿𝐵𝑃ሺ𝑥௖, 𝑦௖ሻ ൌ ∑ 𝑠ሺ𝑝௜ െ 𝑝௖ሻ ൈ 2௣௜ୀ଼
௜ୀ଴                   (19) 

where LBP (xc, yc) is the central pixel, pi is the gray value of adjacent pixels, pc is the gray value of the 

central pixel, and p is the number of neighboring points. The function expression is shown in Eq (20): 

𝑠ሺ𝑥ሻ ൌ ቄ1    𝑥 ൒ 0
0    𝑥 ൏ 0

                            (20) 

An LBP operator can produce several different binary modes with the increase of sampling points, 
the number of binary modes, and a relatively sparse histogram. Therefore, the traditional LBP operator 
for dimension reduction makes as much as possible in fewer data to describe the image information. 
This paper adopted the equivalent of the LBP operator for dimension reduction [44]. Hence, 256 
histogram statistics were obtained by LBP calculation, and 59 dimensional LBP features were finally 
obtained after dimensionality reduction. 

2.4. Identification of milk somatic cells based on GBDT-Adaboost fusion model 

GBDT is an integrated learning algorithm based on a series of ideas [45]. The core idea was to 
train the new weak classifier through the residual of the current model. Each training got a negative 
gradient value of the loss function. This value was taken as the approximate value of the residual. 
Finally, the result of each weak classifier was weighted and summed to get the final classifier. In this 
paper, the Light Gradient Boosting Machine (LightGBM) was selected as the weak classifier of the 
GBDT model by comparing many experiments. The grid search method was used to optimize the 
parameters of the LightGBM model. At the same time, the optimal LightGBM model was obtained by 
using the method of 10 folds cross-verification to calculate its hyperparameters. The specific algorithm 
flow of GBDT is as follows [46]: 

Step 1: Initialize the weak classifier, assuming that the training set is: 

ሼሺ𝑋ଵ, 𝑦ଵሻ, ሺ𝑋ଶ, 𝑦ଶሻ, ⋯ , ሺ𝑋௡, 𝑦௡ଵሻ ሽ , number of iterations and loss function, 𝐿ሺ𝑦௜, 𝛾ሻ , 𝑦௜ ൌ ሼെ1, 1ሽ , 

Initializing weak classifiers: 

𝑓଴ሺ𝑥ሻ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௥ ∑ 𝐿ሺ𝑦௜, 𝛾ሻே
௜ୀଵ                        (21) 

 Step 2: m = 1, 2, …, M, Perform the following steps: 
1) To: i = 1, 2, …, n, Calculate approximate residuals: 

𝛾௜௠ ൌ  െ ቂ
డ௅൫௬೔,௙ሺ௑೔ሻ൯

డ௙ሺ௑೔ሻ
ቃ 𝑓ሺ𝑥ሻ ൌ 𝑓௠ିଵሺ𝑥ሻ                         (22) 

2) The approximate residual value is used as training data to fit into a regression tree, which gives 
the leaf node domain 𝑅௝௠,  𝑗 ൌ  1, 2 , … , 𝐽௠ 

3) For each node 𝑗 ൌ  1, 2 , … , 𝐽௠, calculate the best residual fitting value: 

𝛾௝௠ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௥ ∑ 𝐿ሺ𝑦௜, 𝑓௠ିଵሺ𝑋௜ሻ ൅ 𝛾ሻ௫೔∈ோೕ೘
               (23) 

4) Update classifiers: 

𝑓௠ሺ𝑥ሻ ൌ 𝑓௠ିଵሺ𝑥ሻ ൅ ∑ 𝛾௝௠𝐼ሺ𝑥 ∈ 𝑅௝௠ሻ௃೘
௝ୀଵ                    (24) 
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5) The final classifier is obtained: 

𝑓መሺ𝑥ሻ ൌ 𝑓ெሺ𝑥ሻ                               (25) 

6) Calculation of prediction classification probability:  

𝑝௜ ൌ ଵ

ଵା௘ష೑෡൫ೣ೔൯
                               (26) 

2.5. AdaBoost algorithm 

The AdaBoost algorithm obtains different test sample sets by changing the distribution weight of 
the samples [47]. The principle is to find the weights of the samples incorrectly classified by the weak 
classifier in training after each training. To increase their values and reduce the weights of the samples 
correctly classified, find a way to combine the weak classifier to minimize its weight coefficient and 
form the final strong classifier. In this paper, Decision Tree (DT) was selected as the weak classifier, 
and the specific algorithm flow is as follows [48]: 

Step 1: Build sample data 

𝑇 ൌ ሼሺ𝑋ଵ, 𝑌ଵሻ, ሺ𝑋ଶ, 𝑌ଶሻ, … , ሺ𝑋௡, 𝑌௡ሻሽ 

Step 2: Initialize weights, 

𝐷ଵ ൌ ሺ𝑊ଵଵ, … , 𝑊ଵ௜, … , 𝑊ଵேሻ, 𝑊ଵ௜ ൌ
1
𝑁

, 𝑖 ൌ 1,2, … , 𝑁 

𝐺௠ሺ𝑋ሻ: 𝑋 → ሼെ1, ൅1ሽ 

𝜀௠ ൌ 𝑃ሾ𝐺௠ሺ𝑋௜ሻ ് 𝑌௜ሿ ൌ ෍ 𝑊௠௜𝐼ሾ𝐺௠ሺ𝑋௜ሻ ് 𝑌௜ሿ
ே

௜ୀଵ

 

𝛼௠ ൌ
1
2

log
1 െ 𝜀௠

𝜀௠
 

𝐷௠ାଵ ൌ ሺ𝑊௠ାଵ,ଵ, … , 𝑊௠ାଵ,௜, … , 𝑊௠ାଵ,ேሻ 

𝑊௠ାଵ,௜ ൌ
𝑊௠௜

𝑍௠
𝑒𝑥𝑝ሾെ𝛼௠𝑌௜𝐺௠ሺ𝑋௜ሻሿ, 𝑖 ൌ 1,2, … , 𝑁 

Step 3: Build a strong classifier: 

𝐺ሺ𝑋ሻ ൌ 𝑠𝑖𝑔𝑛 ൥෍ 𝛼௠𝐺௠ሺ𝑋ሻ

ெ

௜ୀ௜

൩ 

2.6. GBDT-AdaBoost fusion algorithm 

He et al. [49] applied the method of generating new features through the GBDT model to evaluate 
advertisement click-through rate. In this study, the GBDT model was used to generate the features of 
a new tree for each iteration. The feature selection and combination were automatically carried out. 
The new discrete feature vectors with a distinguishing degree were mined and input into the AdaBoost 
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model for training to achieve the final classification recognition. The training process of the GBDT-
Adaboost fusion model is shown in Figure 3. The specific steps are as follows. 

Step 1: Use the method to build the GBDT model and generate many decision trees. 
Step 2: Input the original data into the decision tree generated in the previous step for prediction. 

At this time, the predicted value of each tree in the model was regarded as the new feature data and the 
new sample data. 

Step 3: The new sample data was marked in the way of independent thermal coding, and its middle 
node was denoted as the node position of the sample output as 1, otherwise as 0, to obtain the position 
marker vector of each sample. The output of all samples formed a sparse matrix marking the leaf node 
position of the output of each decision tree. 

Step 4: Take the new sample data as the input feature of weak classifier DT in AdaBoost model, 
build and train the GBDT-Adaboost model. The grid search method was used to obtain the optimal 
hyperparameter values of the GBDT-Adaboost model. Based on the sample set, the prediction model 
based on GBDT-Adaboost was trained, and the final prediction results of the model were output. The 
flow chart of the somatic cell recognition algorithm of cow milk-based on the GBDT-AdaBoost fusion 
model is shown in Figure 4. 

 

Figure 3. GBDT-AdaBoost fusion model training design. 

 

Figure 4. Algorithm flowchart. 
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3. Results and discussion 

3.1. GBDT-AdaBoost analysis of fusion model recognition results 

In this study, a total of 100 features, including four-color features, 13 morphological features (six 
geometric features and seven invariant moment features), and 83 texture features (24 GLCM features 
and 59 LBP features), were extracted from four types of preprocessed milk somatic cell images. Each 
feature was separately taken as the input feature of the GBDT-Adaboost fusion model, and the results 
are shown in Table 1. As can be seen from Table 1, the total accuracy of the separate classification of 
the three different features fluctuated greatly. Due to the inhomogeneity of nucleus and cytoplasm 
among somatic cells, the range of color difference between them was small, resulting in the lowest 
total accuracy of color features being 76.1%. Still, the sensitivity of texture features to chromatic 
aberration and illumination was weak, so the total accuracy based on texture features was the highest, 
reaching 97.3%. Because there were different differences among different types of somatic cells, and 
since some morphological characteristics have small differences, the total accuracy rate based on the 
morphological characteristics was 88.0%. Therefore, the accuracy and stability of single feature 
recognition were poor. In addition, according to the characteristics of various cells and the differences 
between each feature, the three types of extracted features were first fused in this experiment. Then 
they were used as input features of the GBDT-Adaboost model to achieve the final classification. 

Table 1. The recognition results of a single feature. 

Feature type 
Accuracy/% 

LYP NG MΦ EPI Overall Accuracy 

Color features 77.6 70.2 76.6 79.7 76.1 

Morphological 
87.5 87.5 86.5 90.6 88 

features 

Texture features 97.9 96.9 97.9 96.9 97.3 

3.2. The GBDT-AdaBoost confusion matrix of the fusion model  

Table 2. The method of the confusion matrix. TP: true positive; FN: false negative; FP: 
false positive; TN: true negative. 

Actual category Positive predict Negative predict 

Positive actual TP FN 

Negative actual FP TN 
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Figure 5. Confusion matrix of GBDT-AdaBoost fusion model. 

A confusion matrix was used to display the classification results in this paper. The representation 
method of the confusion matrix is shown in Table 2, and the confusion matrix obtained in this 
experiment is shown in Figure 5. All three types of LYP and NG were correctly identified. At the same 
time, two of the MΦ were incorrectly classified as EPI, indicating that MΦ were similar to EPI in terms 
of color morphology and texture characteristics. 

In this study, accuracy (A), precision (P), recall(R), and comprehensive evaluation index F (F1-
Score) were used to evaluate the classification model [50], and the specific formulas are as follows: 

𝐴 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே
                                (27) 

𝑃 ൌ ்௉

்௉ାிே
                                   (28) 

𝑅 ൌ ்௉

்௉ାிே
                                   (29) 

𝐹 ൌ ଶ௉ோ

௉ାோ
                                    (30) 

As shown in Figure 5, for EPI and MΦ, the values of true positive (TP), true negative (TN), 
false positive (FP), and false-negative (FN) were 13, 83, 2, and 0 and 18, 78, 0, and 2, respectively. 
According to Eq (27), the accuracy of milk cell identification based on the GBDT-Adaboost fusion 
model was 98.0%. In contrast, the accuracy of RF, ET, DT and LightGBM was 79.9, 71.1, 67.3 and 77.2%, 
respectively. Therefore, the fusion model proposed in this paper improves recognition accuracy to 
a certain extent. 

3.3. Comparison of classification results of different models 

In order to more fully verify the effectiveness of the GBDT-Adaboost fusion model proposed 
in this paper, according to the above calculation Eqs (28)–(30), the fusion model and single 
classification model in this paper were compared and evaluated from three aspects of P, R, and 
comprehensive evaluation index F for each type of milk somatic cells. Tables 3–6 show the 
comparison results. Furthremore, receiver operating characteristic (ROC) was used to evaluate the 
classification performance, the ROC curves of the various classifications for all five models are 
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presented in Figure 6, And ROC curves achieved more excellent AUCs in GBDT-Aaboost model 
than in RF model, ET model, DT model and LightGBM model.  

Table 3. Precision comparisons of different classification models. 

Classification Precision rate of each class/% 

model LYP NG MΦ EPI 

RF 71.4 88.2 66.7 66.7 

ET 75 76.9 56 71.4 

DT 65.4 60 65.4 32.1 

LightGBM 72.2 82.1 72.2 81.2 

GBDT-AdaBoost 100 100 100 86.67 

Table 4. Recall comparisons of different classification models. 

Classification model LYP NG MΦ EPI 

RF 90.9 88.2 66.7 66.7 

ET 68.2 85.7 58.3 58.8 

DT 54.8 65.4 34.6 60 

LightGBM 96.3 71.9 61.9 72.2 

GBDT-AdaBoost 100 100 100 90 

Table 5. F1-Score comparisons of different classification models. 

Classification model LYP NG MΦ EPI 

RF 80 87 62.2 62.5 

ET 71.4 81.1 57.1 64.5 

DT 59.6 61.8 43.9 41.9 

LightGBM 82.5 76.7 66.7 76.5 

GBDT-AdaBoost 100 100 95 93 
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Figure 6. The ROC curves of the various classifications for all five models. 

4. Conclusions 

This paper proposes a milk somatic cell recognition algorithm based on the GBDT-Adaboost 
fusion model. Firstly, the original milk somatic cell images were processed by grayscale filtering, 
denoising, OTSU threshold segmentation, and other preprocessing to obtain the binary images of the 
cells. Then, the cell region was extracted by the k-means algorithm, and its mean value was extracted. 
The morphological features of the cells were extracted by calculating the area circumference and 
roundness. The LBP compared with GLCM was used to extract the texture features of the cell images 
and fused these features as the recognition features of the milk cells. Then, the color features such as 
mean-variance were extracted. The morphological features were extracted by calculating the area 
circumference and roundness. In order to thoroughly learn the data features, the extracted cell features 
were input into the GBDT model for optimization. Finally, these optimized features were input into 
the AdaBoost classifier for recognition. The model achieved 98.0, 96.8, 97.5 and 97.0% in 
classification accuracy, accuracy, recall rate, and F value of comprehensive evaluation index, 
respectively, which is better than the RF, ET, DT and LightGBM models. In future studies, we will 
further consider improving learning efficiency while reducing the calculation time. We plan to expand 
the image data set and extract the depth features of the cell image in combination with the deep learning 
method, to improve the cell recognition effect and improve the shortcomings of the proposed algorithm. 

Acknowledgments  

This study was funded by the National Natural Science Foundation of China (#61461041 and 
31960494), the Inner Mongolia Autonomous Region Science and Technology Project 
(#2020GG0169), the Inner Mongolia Autonomous Region Higher Education Scientific Research 



5863 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

Project (#NJZY21486), and the Inner Mongolia Agricultural University Basic Subject Scientific 
Research Funding Project (#JC2018001). 

Conflict of interest 

All authors declare that they have no competing interests. 

References 

1. J. Y. Yang, C. Y. Niu, Y. Y. Liu, B. Q. Fu, J. Wang, Study on the necessity of somatic cell 
detection and measurement calibration of fresh milk, Biotechnol. Bull., 334 (2020), 21–26. 
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2019-1121  

2. Y. C. Su, N. Zheng, S. L. Li, X. Y. Qu, X. W. Zhou, Research progress on the effect of somatic 
cell count in raw milk on milk quality and safety, Food Sci., 39 (2018), 299–305. 
https://doi.org/10.7506/spkx1002-6630-201823043  

3. J. X. Gao, Classification and recognition of polymorphic milk somatic cells based on feature 
fusion, J. Inn. Mong. Agric. Univ., 2018. 

4. J. J. Yan, Y. Gao, F. Gao, Research progress of milk somatic cell count detection, Comput. Meas. 
Control., 2 (2016), 5–10. https://doi.org/0.16526/j.cnki.11-4762/tp.2016.02.002  

5. J. C. Zhao, X. C. He, H. W. Gao, Research progress of milk somatic cell count detection 
methods, China Cattle, 13 (2014), 39–43. https://doi.org/10.3969/j.issn.1004-
4264.2014.13.012   

6. R. Nayar, D. Wilbur, D. Solomon, The bethesda system for reporting cervical cytology, in Acta 
Cytologica, (2008), 77–90. https://doi.org/10.1016/B978-141604208-2.10006-5 

7. M. Wei, Y. Du, X. Wu, Q. Su, J. Zhu, L. Zheng, et al., A benign and malignant breast tumor 
classification method via efficiently combining texture and morphological features on 
ultrasound images, Comput. Math. Methods Med., 2020 (2020), 5894010. 
https://doi.org/10.1155/2020/5894010 

8. M. Habibzadeh, A. Krzyzak, T. Fevens, Comparative study of feature selection for white blood 
cell differential counts in low resolution images, Artif. Neural Networks Pattern Recognit., 2014. 

9. A. Behura, The cluster analysis and feature selection: perspective of machine learning and 
image processing, Wiley, 2021. https://doi.org/10.1002/9781119785620.ch10 

10. A. Bodzas, P. Kodytek, J. Zidek, Automated detection of acute lymphoblastic leukemia from 
microscopic images based on human visual perception, Front. Bioeng. Biotechnol., 8 (2020), 
1005. https://doi.org/10.3389/fbioe.2020.01005 

11. X. Gao, H. Xue, X. Pan, X. Jiang, Y. Zhou, X. Luo, Somatic cells recognition by application of 
gabor feature-based (2D)2PCA, Int. J. Pattern Recog. Artif. Intel., 31 (2017), 1757009. 
https://doi.org/10.1142/S0218001417570099 

12. X. Gao, H. Xue, X. Pan, X. Luo, Polymorphous bovine somatic cell recognition based on feature 
fusion, Int. J. Pattern Recog. Artif. Intel., 34 (2020), 2050032. 
https://doi.org/10.1142/S0218001420500329 

13. X. Gao, H. Xue, X. Jiang, Y. Zhou, Recognition of somatic cells in bovine milk using fusion 
feature, Int. J. Pattern Recog. Artif. Intel., 32 (2018), 1850021. 
https://doi.org/10.1142/S0218001418500210 



5864 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

14. X. Zhang, H. Xue, X. Gao, Y. Zhou, Milk somatic cells recognition based on multi-feature 
fusion and random forest, J. Inn. Mong. Agric. Univ., Nat. Sci. Ed., 2018. 

15. S. U. Khan, N. Islam, Z. Jan, K. Haseeb, S. Shah, M. Hanif, A machine learning-based approach 
for the segmentation and classification of malignant cells in breast cytology images using gray 
level co-occurrence matrix (GLCM) and support vector machine (SVM), Neural Comput. Appl., 
2021 (2021), 1–8. https://doi.org/10.1007/s00521-021-05697-1 

16. H. Gai, Y. Wang, L. Chan, B. Chiu, Identification of retinal ganglion cells from β-III stained 
fluorescent microscopic images, J. Digit. Imaging, 2 (2020), 1–12. 
https://doi.org/10.1007/s10278-020-00365-7 

17. J. Rawat, A. Singh, H. S. Bhadauria, J. Virmani, J. S. Devgun, Computer assisted classification 
framework for prediction of acute lymphoblastic and acute myeloblastic leukemia, Biocybern. 
Biomed. Eng., 37 (2017), 637–654.   

18. V. Acharya, P. Kumar, Detection of acute lymphoblastic leukemia using image segmentation 
and data mining algorithms, Med. Biol. Eng. Comput., 57 (2019). 
https://doi.org/10.1007/s11517-019-01984-1 

19. H. B. Kmen, A. Guvenis, H. Uysal, Predicting the polybromo-1 (PBRM1) mutation of a clear 
cell renal cell carcinoma using computed tomography images and KNN classification with 
random subspace, JVE J., 26 (2019), 30–34. https://doi.org/10.21595/vp.2019.20931 

20. P. Mirmohammadi, M. Ameri, A. Shalbaf, Recognition of acute lymphoblastic leukemia and 
lymphocytes cell subtypes in microscopic images using random forest classifier, Phys. Eng. Sci. 
Med., 44 (2021), 433–441. https://doi.org/10.1007/s13246-021-00993-5 

21. S. Mishra, B. Majhi, P. K. Sa, L. Sharma, Gray level co-occurrence matrix and random forest-
based acute lymphoblastic leukemia detection, Biomed. Signal Process Control, 33 (2017), 
272–280. https://doi.org/10.1016/j.bspc.2016.11.021 

22. N. Theera-Umpon, White blood cell segmentation and classification in microscopic bone 
marrow images, in Fuzzy Systems and Knowledge Discovery (eds. L. Wang, Y. Jin), Springer, 
(2005), 787–796. https://doi.org/10.1007/11540007_98 

23. W. D. Lopes, D. Monte, C. Leon, J. Moura, C. Oliveira, Logistic regression model reveals major 
factors associated with total bacteria and somatic cell counts in goat bulk milk, Small Rumin. 
Res., 198 (2021), 106360. https://doi.org/ 10.1016/j.smallrumres.2021.106360  

24. L. W. Chen, X. P. Wu, C. Pan, Q. C. Hou, Application of extreme learning machine integration 
in bone marrow cell classification, Comput. Eng. Appl., 51 (2015), 136–139. 
https://doi.org/10.3778/j.issn.1002-8331.1303-0219  

25. A. X. He, B. Y. Wei, B. H. Zhang, B. T. Zhang, B. F. Yuan, B. Z. Huang, Grading of clear cell 
renal cell carcinomas by using machine learning based on artificial neural networks and 
radiomic signatures extracted from multidetector computed tomography images, Acad. Radiol., 
27 (2020), 157–168.   

26. B. S. Divya, S. Kamalraj, H. R. Nanjundaswamy, Human epithelial type-2 cell image 
classification using an artificial neural network with hybrid descriptors, IETE J. Res., 2018 
(2018), 1–12. https://doi.org/10.1080/03772063.2018.1474810 

27. F. Lavitt, D. J. Rijlaarsdam, D. Linden, E. Weglarz-Tomczak, J. M. Tomczak, Deep learning 
and transfer learning for automatic cell counting in microscope images of human cancer cell 
lines, Appl. Sci., 11 (2021), 4912. https://doi.org/10.3390/app11114912 



5865 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

28. A. Kan, Machine learning applications in cell image analysis, Immunol. Cell Biol., 95 (2017), 
525–530. https://doi.org/10.1038/icb.2017.16 

29. D. Kusumoto, S. Yuasa, The application of convolutional neural network to stem cell biology, 
Inflammat. Regen., 39 (2019), 14. https://doi.org/10.1186/s41232-019-0103-3 

30. X. Dong, Z. Yu, W. Cao, A survey on ensemble learning, Front. Comput. Sci., 14 (2020), 241–
258. https://doi.org/10.1007/s11704-019-8208-z 

31. A. Andiojaya, H. Demirhan, A bagging algorithm for the imputation of missing values in time 
series, Expert Syst. Appl., 129 (2019), 10–26.   

32. Y. Hui, X. Mei, G. Jiang, T. Tao, Z. Ma, Milling tool wear state recognition by vibration signal 
using a stacked generalization ensemble model, Shock, 2019 (2019), 1–16. 
https://doi.org/10.1155/2019/7386523   

33. B. Wang, J. Pineau, Online bagging and boosting for imbalanced data streams, IEEE Trans. 
Knowl. Data Eng., 28 (2016), 3353–3366.   

34. W. Zhan, D. He, S. Shi, Recognition of kiwifruit in field based on Adaboost algorithm, Trans. 
Chin. Soc. Agric. Eng., 29 (2013), 140–146. https://doi.org/10.3969/j.issn.1002-
6819.2013.23.019   

35. J. Cao, L. Chen, M. Wang, H. Shi, Y. Tian, A parallel adaboost-backpropagation neural network 
for massive image dataset classification, Sci. Rep., 6 (2016), 38201. 
https://doi.org/10.1038/srep38201 

36. X. Wu, X. Lu, H. Leung, A video-based fire smoke detection using robust adaBoost, Sensors, 
18 (2018), 3780. https://doi.org/10.3390/s18113780   

37. Y. Wang, B. Zheng, M. Xu, S. Cai, J. Younseo, C. Zhang, et al., Prediction and analysis of hub 
genes in renal cell carcinoma based on CFS gene selection method combined with adaboost 
algorithm, Med. Chem., 16 (2020), 654–663. 
https://doi.org/10.2174/1573406415666191004100744 

38. J. Wang, Q. Zhou, A. Yin, Self-adaptive segmentation method of cotton in natural scene by 
combining improved Otsu with ELM algorithm, Trans. Chin. Soc. Agric. Eng., 341 (2018), 
181–188. https://doi.org/10.11975/j.issn.1002-6819.2018.14.022   

39. S. H. Shirazi, A. I. Umar, S. Naz, M. I. Razzak, Efficient leukocyte segmentation and 
recognition in peripheral blood image, Technol. Health Care, 24 (2016), 335–347. 
https://doi.org/10.3233/THC-161133 

40. X. F. Wang, D. S. Huang, J. X. Du, H. Xu., L. Heutte, Classification of plant leaf images with 
complicated background, Appl. Math. Comput., 205 (2008), 916–926.   

41. Y. K. Zhuang, P. Zhou, Automatic classification of blood leukocytes based on multiple evidence, 
J. Zhejiang Sci. Tech. Univ., 30 (2013), 367–371.   

42. Q. Wu, Y. Gan, B. Lin, Q. Zhang, H. Chang, An active contour model based on fused texture 
features for image segmentation, Neurocomputing, 151 (2015), 133–1141.  

https://doi.org/10.1016/j.neucom.2014.04.085   
43. T. Ojala, M. Pietikainen, D. Harwood, A comparative study of texture measures with 

classification based on feature distributions, Pattern Recognit., 29 (1996), 51–59. 
https://doi.org/10.1016/0031-3203(95)00067-4 

44. H. Yang, J. Yin, M. Jiang, Perceptual image hashing using latent low-rank representation and 
uniform LBP, Appl. Sci., 8 (2018), 317. https://doi.org/10.3390/app8020317   



5866 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5850–5866. 

45. S. Lv, G. Liu, X. Bai, Multifeature pool importance fusion based GBDT (MPIF-GBDT) for 
short-term electricity load prediction, IOP Conf. Series EES, 702 (2021).   

46. Y. X. Wang, Research on big data risk control model based on GBDT algorithm, J. Zhengzhou 
Inst. Aeronaut. Ind. Manag., 167 (2020), 110–114.   

47. J. Techo, C. Nattee, T. Theeramunkong, Boosting-based ensemble learning with penalty profiles 
for automatic Thai unknown word recognition, Comput. Math. Appl., 63 (2012), 1117–1134.   

48. D. Q. Han, T. X. Zhang, W. Shen, Lithology identification based on gradient lifting decision 
tree (GBDT) algorithm, Bull. Mineral. Petrol. Geochem., 37 (2018), 1173–1180.   

49. X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, et al., Practical lessons from predicting clicks on ads 
at facebook, ACM, 2014 (2014). https://doi.org/10.1145/2648584.2648589 

50. W. Xie, Q. Chai, Y. Gan, S. Chen, X. Zhang, W. Wang, Strains classification of anoectochilus 
roxburghii using multi-feature extraction and stacking ensemble learning, Trans. Chin. Soc. 
Agric. Eng., 36 (2020), 203–210.  

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


