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Abstract: Goal: With the continuing shortage and unequal distribution of medical resources, our 
objective is to develop a general diagnosis framework that utilizes a smaller amount of electronic 
medical records (EMRs) to alleviate the problem that the data volume requirement of prevailing 
models is too vast for medical institutions to afford. Methods: The framework proposed contains 
network construction, network expansion, and disease diagnosis methods. In the first two stages above, 
the knowledge extracted from EMRs is utilized to build and expense an EMR-based medical 
knowledge network (EMKN) to model and represent the medical knowledge. Then, percolation theory 
is modified to diagnose EMKN. Result: Facing the lack of data, our framework outperforms naïve 
Bayes networks, neural networks and logistic regression, especially in the top-10 recall. Out of 207 
test cases, 51.7% achieved 100% in the top-10 recall, 21% better than what was achieved in one of our 
previous studies. Conclusion: The experimental results show that the proposed framework may be 
useful for medical knowledge representation and diagnosis. The framework effectively alleviates the 
lack of data volume by inferring the knowledge modeled in EMKN. Significance: The proposed 
framework not only has applications for diagnosis but also may be extended to other domains to 
represent and model the knowledge and inference on the representation. 
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1. Introduction  

Intelligent medical decision support systems (IMDSSs) have become increasingly popular in 
recent years. These systems can provide clinicians and patients with computer-generated clinical 
knowledge and give patient-related treatment recommendations by collecting the medical 
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experiences of previous patients [1,2], thus, effectively alleviating the problems of shortage and 
unequal distribution of medical resources. 

To build effective IMDSSs, it is necessary to acquire a vast amount of reliable and high-quality 
medical knowledge. Most clinical medical knowledge comes from medical text records [3]. An electronic 
medical record (EMR) is the storage of health data and medical history of patients in an electronic 
format and, thus, is a rich resource for clinical research [4,5]. With the rapidly growing EMR data, 
several useful methods based on machine learning techniques have been developed to assist clinicians 
and patients. 

Machine learning techniques provide important technical support in IMDSSs and can process an 
amount of medical knowledge that exceeds the capacity of the human brain. Under the paradigm of 
supervised learning from the collective experience of many patients, the system provides diagnosis, 
management decisions and therapy for other patients [6]. However, even in the smallest department, 
the diversity of symptoms and diseases makes the amount of data needed for machine learning models 
too large to be borne by medical institutions. 

The “big P, small N” problem is a vivid description for this situation, which means an insufficient 
number of samples for training considering the high-dimensional features possessed by each sample [7]. 
From the descriptive statistics, there were a total of 5840 symptoms and 1066 diagnoses in only 992 
EMRs. Symptoms form the feature set, which includes 5840 dimensions, and diagnoses form the label 
set, which includes 1066 labels but only 992 samples. On average, the number of samples for each 
label is less than 1, and the number of feature dimensions is very high (5840). In addition, a key 
characteristic that can be obtained in our data is that the labels have a very strong causality only with 
respect to certain feature dimensions, and the certain features for different labels are in different dimensions. 

Machine learning techniques are usually unable to obtain good knowledge from high-dimensional 
features with statistical methods. Few-shot learning can turn limited supervised experience into useful 
prior knowledge. This style of learning mimics the human ability to acquire knowledge from a few 
examples through generalization and analogy [8]. According to this idea, extracting the knowledge 
from the “little” data into a suitable model to represent the knowledge, and then diagnosis with the 
knowledge learned before, may be a better and efficient method. 

Networks have been widely researched to model medical knowledge [9–13]. In a previous study, 
Zhao et al. [14] built a medical knowledge network based on EMRs (EMKN) to represent medical 
knowledge. Their construction rules were modified, and a modified EMKN was built as the knowledge 
representation in our study. Afterward, percolation theory was incorporated into our diagnosis method 
making it work efficiently on an evolving graph. 

In our study, a diagnosis framework that can provide the scores of diseases in all different 
departments according to patient symptoms was developed. In this paper, a percolation-based 
diagnosis framework (PercolationDF) containing three parts, network construction, network expansion 
and diagnosis methods, is proposed. Initially, a base EMKN was built utilizing the network 
construction method which models the process of knowledge learning. Afterward, the EMKN was 
supplemented with the network expansion method, which models the process of acquiring new 
knowledge that has not been learnt before. Finally, our diagnosis method works on EMKN for diagnosis. 

The forllowing are three contributions of this paper: 
1) A diagnosis method incorporating percolation theory, which can accumulate clinical evidence 
with the rich support of a graph structure and is suitable for operating on evolving graphs is proposed. 
2) The EMKN utilized in one of our previous studies is modified in to further clarify the causality, and 
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the EMKN models the knowledge based on medical data. 
3) PercolationDF is suitable for studying few-shot learning, in which the labels have a very strong 
causality only with respect to certain feature dimensions, and the certain features for different labels 
are in different dimensions. 

The remainder of this paper is structured as follows: in Section 2, some methods and 
characteristics related to our study are discussed. Then, in Section 3, the details of the PercolationDF, 
including acquisition of medical knowledge from EMRs to construct a graph-based EMKN and 
gathering new knowledge from new EMRs to expand the graph structure, are presented. The 
introduction of percolation theory and description of how this theory helps to accumulate clinical 
evidence with the rich support of a graph structure are also given. In Sections 4 and 5, our framework 
is evaluated by using actual EMRs, and the results are discussed. The conclusion and the focus of 
future studies are presented in Section 错误!未找到引用源。. 

2. Related work 

2.1. Machine learning methods for intelligent disease diagnosis 

In clinical decisions, the application of machine learning techniques to diagnose diseases has 
attracted public interest. Alizadehsani et al. [15] applied sequential minimal optimization-based 
algorithms to diagnose coronary artery disease and achieved the best accuracy of 94.08%. Rau et al. [16] 
built an artificial neural network and logistic regression prediction framework to predict the 
development of liver cancer in type 2 diabetes mellitus patients; the best results of sensitivity and 
specificity were 0.757 and 0.755, respectively. In these studies, the corresponding features of patients 
were manually selected, and; then, the diagnostic problems were converted into a classification study. 
Therefore, the performance of the framework depends on the quality of the selected features. 

The rapid growth of EMR data has prompted the use of deep learning frameworks, which have 
demonstrated state-of-the-art performance in diagnostics [17–20]. This takes advantage of avoiding 
manual feature extraction; however, the process of training optimal deep learning frameworks requires 
a large data volume that most medical institutions cannot afford, which limits these frameworks to 
perform sufficiently [21]. 

2.2. Medical knowledge representation with network 

Medical networks, which combine systems biology and network science, aim to study the causes 
of all human diseases, and it is very important to understand the relationship between abnormal 
examinations (vital sign parameters go beyond the normal scope) and diseases. The main idea is that 
the human body is a highly complex physiological system, and there are a series of interactions, 
restrictions, promotions and stimulations between different physiological states. Barabási et al. [10] 
used a network to model a human physiological system and explore series of interactions, restrictions, 
promotions, and stimulations between different physiological states. Many medical networks have also 
been established to study the interrelationships of diseases [11]. César A. Hidalgo et al. [12] built a 
disease phenotypes network using comorbidity patterns and aimed to capture disease progression 
patterns and found that patients tend to develop diseases in the subnetwork. In recent years, the network 
has also been widely adopted in modeling medical knowledge. Jiang et al. [22] proposed a medical 
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knowledge network (MKN) for medical diagnosis, and it can facilitate studies of intelligent diagnosis 
comparing a Markov logic network and the logistic regression algorithm on an EMR database. Zhao 
et al. [14] built an EMKN and made good use of it for diagnosis. However, they ignored that in different 
sections of one record, medical entities with the same word have different meanings. This causes 
confusion regarding the causality between symptoms and diseases, making some edges redundant and 
increasing the network complexity. 

Established in their work, the network is also utilized to model and represent our medical 
knowledge from EMRs in our study. The EMKN construction rules presented by Zhao et al. [14] were 
modified to further clarify the causality and an expansion method was proposed to supplement it. 

2.3. Graph-based inference methods 

Probabilistic graphic models (PGMs) are a good machine learning method to Modela joint 
probability distribution via a graph and have been used to diagnose or predict diseases. D.E. 
Heckerman et al. [23] developed Pathfinder, the first expert system for hematopathology diagnosis 
based on a Bayesian network. Klann et al. [24] implemented an adaptive recommendation system to 
provide a treatment menu based on the previous order. Additionally, Flores et al. [25] applied the 
Bayesian network to the study of heart failure. Their models perform well and confirm that the 
Bayesian network is a good model for portraying the complex interactions between medical entities. 
Unfortunately, parameter estimation of the Bayesian network becomes almost impossible with the 
increase in network scale simply because of the computational complexity of the structure [26]. Thus, 
the PGM can only be used in a single, specific field, and the parameters of the PGM need to be retrained 
after supplementing the graph with new medical data. 

Graph convolutional neural networks (GCNs) [27] are a great deep learning method inference on 
a graph structure and are widely used for node embedding, node representation, and node 
semisupervised prediction. Wee et al. [28] employed a spectral GCN to identify Alzheimer’s disease. 
The authors trained on a sizable Caucasian dataset from the ADNI cohort [29] and evaluated it on an 
Asian population to demonstrate the generalization of the classifiers learned. GCNs have received 
much interest because they use implicit information in biological systems, with interactive nodes 
connected by edges whose weights might be either temporal correlations or anatomical junctions, 
according to David Ahmedt-Aristizabal et al. [30]. However, its parameters also need to be retrained 
when the graph changes, and it has not been widely researched in medical diagnosis. 

3. Methods 

3.1. Network construction and network expansion 

Apart from the insufficient number of samples for training considering the high-dimensional 
features possessed by each sample, another key characteristic that can be obtained in our data is that 
the labels have a very strong causality only with respect to certain feature dimensions, and the certain 
features for different labels are in different dimensions. 

In a previous EMKN, Zhao et al. [14] established edges between diseases (which may not be 
diagnosed) and symptoms when they occurred together in the same record. The authors ignored that 
in different sections of one record, medical entities with the same word have different meanings and 



5836 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5832-5849. 

that a disease not located in the diagnosis section may be a symptom for another disease. This causes 
confusion regarding causality between symptoms and diseases, making some edges redundant and 
increasing the complexity of the network. To keep the causalities from symptoms to diagnosis which 
shows a high probability of a diagnosis caused by certain symptoms, the construction rules of previous 
EMKN were modified in our EMKN. 

In the modified EMKN, the diagnosis nodes are formed from entities in the diagnosis section of 
each record, the symptom nodes are formed from entities in all other sections of each record, and every 
direct edge starts from a symptom node to a diagnosis node when the two corresponding entities co-
occur in one record. As a result, every edge starts from symptom to diagnosis and contains the causality 
that denotes a disease probably caused by a symptom. For each diagnosis, all the relevant symptoms 
can be easily found through the edges. For each symptom, all the diseases that probably developed 
from them can be found in the same way. 

To build and supplement an EMKN obeying the rules above, Algorithms 1 and 2 are adopted 
separately and some slices of the network evolving process are shown in Figure 1. 

𝐸𝑀𝑅_𝑠𝑒𝑡 is defined as a set of EMRs: 

𝐸𝑀𝑅_𝑠𝑒𝑡 𝐸𝑀𝑅 𝔻 , 𝕊  

where 𝐸𝑀𝑅 𝔻 , 𝕊   is the 𝑖 -th EMR in 𝐸𝑀𝑅_𝑠𝑒𝑡 . 𝔻   is a diagnosis set of 𝐸𝑀𝑅  , and 𝕊   is a 
symptom set of 𝐸𝑀𝑅 . 

Algorithm 1: Network construction algorithm 
Input: 𝐸𝑀𝑅_𝑠𝑒𝑡 
Output: EMKN 𝒢 𝒱, ℰ   
*** Network construction process *** 
1 initialize the node set 𝒱 and edge set ℰ  
2 for 𝐸𝑀𝑅 𝔻, 𝕊  in 𝐸𝑀𝑅_𝑠𝑒𝑡 do: 
3  for 𝑣 in 𝔻 do: 
4    𝒱 ← 𝒱 𝑛𝑜𝑑𝑒 𝑣  
5    for 𝜔 in 𝕊 do: 
6      𝒱 ← 𝒱 𝑛𝑜𝑑𝑒 𝜔  
7      ℰ ← ℰ 𝑒𝑑𝑔𝑒 𝑣, 𝜔  
8    end for 
9  end for 
10end for 
*** Obtain EMKN *** 
10 return 𝒢 𝒱, ℰ  
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Algorithm 2: Network expansion algorithm 
Input: EMKN 𝒢 𝒱, ℰ ; 
      𝐸𝑀𝑅 𝔻, 𝕊 , 𝔻 𝑖𝑠 𝑎  𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑠𝑒𝑡, 𝕊 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑠𝑒𝑡 
Output: EMKN 𝒢 𝒱, ℰ   
*** Update diagnosis nodes *** 
1 for 𝜔 in 𝕊 do: 
2  if 𝜔 not in 𝒱: 
3    𝒱 ← 𝒱 𝑛𝑜𝑑𝑒 𝜔  
4 end for 
*** Update symptom nodes and update edges *** 
5 for 𝑣 in 𝔻 do: 
6   if 𝑣 not in 𝒱: 
7     𝒱 ← 𝒱 𝑛𝑜𝑑𝑒 𝑣  
8   for 𝜔 in 𝕊 do: 
9     ℰ ← ℰ 𝑒𝑑𝑔𝑒 𝑣, 𝜔  
10   end for 
11 end for 
*** Obtain graph structure *** 
12 return 𝒢 𝒱, ℰ  

 

Figure 1. Three slices of the network evolving process visualized by Gephi [31]. 

Green nodes denote symptoms and pink nodes denote diagnoses. With the graph evolving, it 
can be easily realized that the number of nodes and edges is increasing. The left figure depicts a slice 
containing 132 (1.99%) nodes and 3380 (6.13%) edges. The middle figure depicts a slice containing 
1174 (17.67%) nodes and 3380 edges. The right figure depicts the end slice which contains all 6645 
nodes and 77,179 edges. 

3.2. Disease diagnosis 

A diagnosis method incorporating percolation theory is proposed and is suitable for operating 
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on evolving graphs to obtain scores of diagnoses in all different departments according to the 
patient’s symptoms. 

In the complex network [9] domain, percolation theory, which is widely researched to model the 
influence spreading of real-world systems, has also been used to model the spread of disease [32,33]. 
However, the application of this theory to diagnostics has not been comprehensively studied. In our study, 
the percolation process was modified into clinical evidence percolation in an EMKN and utilized 
for diagnosis. 

Percolation theory is a starting point for resolving the question “Suppose a large porous stone is 
immersed in water. What is the probability that one point of the stone is wet?”, according to Grimmett [34]. 
When a porous stone is thrown into water, the inner passageways of the stone are open with a 
probability p or closed otherwise because of the fluid pressure in the pores. Whether water will fill one 
point of the stone is considered, and the assumptions are as follows: 
1) The greater the value of p, which is the probability of the inner passageway being open, the more 
easily the point of the stone becomes wet. 
2) The greater the number of passageways, which connect with the point, the more easily the point of 
the stone becomes wet. 

To make use of it in the network, percolation processes are mostly simple “nodes and edges” 
percolation that describes the process of the influence spreading in a large graph among different 
subgraphs, and nodes or edges on this graph are designated as either “occupied” or “unoccupied” [9]. 
The state “occupied” or “unoccupied” of one node means the node has received or not received the 
influence spread from its edge. The state “occupied” or “unoccupied” of one edge means that the 
influence from one of its nodes has crossed through this edge or has not crossed through, as the latter 
suggests. 

In traditional percolation frameworks [错误!未找到引用源。], the influence of subnetwork 𝑋 , 
which denotes one part of the whole system, can be quantified as a 𝑊  function: 

𝑊 𝛽 ∑ 𝑃 𝑘 ∑ 𝛽 1 𝛽 𝑟 𝑗, 𝑘
∞                 (1) 

where 𝛽 represents the ratio of activated edges between network 𝑋 and its opposite network, which 
denotes another part of the whole system. 𝑃 𝑘  is the degree distribution of edges in network X, and 
𝑟 𝑗, 𝑘  represents the probability of nodes with degree k becoming activated when the j neighbors 
were activated 𝑊  denotes the ratio of activated nodes in network 𝑋 and is a real number in the 
range [0, 1]. It fits the process of network 𝑋 receiving influence from its opposite network, which has 
already been influenced with probability. 

This function is based on a random graph, and 𝑊  represents the severity of influence obtained 
from the opposite network; however, this function is not suitable for a diagnosis process, which is 
illustrated as follows: 
1) The influence severity for only the whole subnetwork 𝑋 is available, but the influence severity for 
every node in network 𝑋 is needed, but not available. 
2) It is incorrect to assume that nodes with the same degree k receive the same influence severity. In 
fact, different diagnoses are relevant to different symptoms, and some symptoms can be associated 
with different diagnoses. 

The ratio of activated nodes and edges in network 𝑋 are real numbers in the range [0, 1], and 
which nodes and edges are activated is uncertain. However, it is a certain event that a patient has a 
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symptom or not. 
Considering the above, Algorithm 3 is proposed to fit a diagnosis process on an EMKN. State is 

defined as a parameter for every symptom node with a real number 1, or 0, separately to denote 
occupied or unoccupied, meaning an associated symptom occurs within a patient or not. 

Initially, the state of all symptom nodes, whose associated symptoms are presented by the patient 
are set as 1, and others are set as 0. Then, the percolation process works and medical evidence spreads. 
All the diagnosis nodes are influenced by their neighboring symptom nodes. This process is calculated 
by 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸, which will be introduced in Section 3.3. Next, diagnosis list 𝒟 is reranked by 𝑑 , 
which is the score of disease 𝑣. Finally, diagnosis list 𝒟 returns, and the higher the score 𝑑  is, the 
more likely the patient is to have the disease 𝑣. 

Algorithm 3: Disease diagnosis algorithm 

Input: EMKN 𝒢 𝒱, ℰ ; 
      symptom set 𝒮 of one patient; 
      percolation function 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸 
Output: Diagnosis list 𝒟  
*** Initialization process *** 
1 State  ← 0 , ∀𝑣 ∈ 𝒱 
2 State  ← 1 , ∀𝑣 ∈ 𝒮 
*** percolation process *** 
3 for 𝑣 in all the diagnosis nodes do: 
4     𝑑  ← 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸 State  , ∀𝑠 ∈ 𝑁𝑒 𝑣 , 𝑁𝑒 𝑣  denotes the neighbors of 𝑣. 
5 end for 
*** Obtain diagnoses’ score *** 
6 𝒟 ← Sorted {𝑣 , ∀𝑣 is a diagnosis node} by the 𝑑  
7 return 𝒟 

3.3. C. PERCOLATE process 

The influence spreading among nodes through edges is a good idea that can be used to model the 
process of diagnosis. In a diagnosis process, a patient’s symptoms can be regarded as an occupied node, 
and the influence spreads to the disease. Applying this idea to our study, some modifications for 
PERCOLATE are used to calculate how the diagnosis nodes were influenced by their symptom 
neighbors. 

The score of a disease node depends only on the state of its symptom neighbors. When calculating 
the score of the diagnosis node, PERCOLATE is faded with its neighbors’ states. The formula for 
calculation is as follows: 

𝑑 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸 State  , ∀𝑠 ∈ 𝑁𝑒 𝑣 ∑ 𝑅 𝑆𝑡𝑎𝑡𝑒∈             (2) 

where 𝑑  denotes the score of disease v; 𝑁𝑒 𝑣  is the neighbor of node 𝑣, which is a symptom node 
set; 𝑆𝑡𝑎𝑡𝑒  represents the state of node 𝑠, which takes a value of 0 or 1; and 𝑅 𝑆𝑡𝑎𝑡𝑒  represents 
a percolation process according to the state of node 𝑠 and is determined by the task requirements. The 
score 𝑅 𝑆𝑡𝑎𝑡𝑒  measures the causal effect of feature 𝑠 on diagnosis 𝑣. While the score 𝑅 𝑆𝑡𝑎𝑡𝑒  
of feature 𝑠  is large enough, the evidence 𝑠  can produce causality support for the diagnosis 𝑣 
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according to (2). 
Here, an assumption that each symptom has the same influence on a disease is presented; 𝑅 ∙  can be 
calculated as: 

𝑅 𝑆𝑡𝑎𝑡𝑒
1,         𝑆𝑡𝑎𝑡𝑒 1
0,        𝑆𝑡𝑎𝑡𝑒 0                           (3) 

The medical evidence percolation can be rewritten in a compact form as: 

𝒟 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸  𝒮 , 𝒢 𝒱, ℰ                           (4) 

Here, 𝑃𝐸𝑅𝐶𝑂𝐿𝐴𝑇𝐸 is a global percolation function, which is faded by an EMKN 𝒢 𝒱, ℰ  and a 
symptom set 𝒮  of a patient. Equation (4) is a compact form of (3), which is an exact, detailed 
implementation. After the improvement of percolation theory, the three inapplicabilities above have 
been resolved: 
1) The influence severity of every symptom node is available after initialization, and for every 
diagnosis node, it is available after the percolation process.  
2) Each diagnosis node obtains different influence severities according to the severity of its neighbors. 
3) The activation of all nodes and edges is certain according to the symptoms a patient has. 

4. Experiments and discussion 

4.1. Preliminaries on data 

A total of 992 Chinese EMRs were used in our study and retrieved from the Second Affiliated 
Hospital of Harbin Medical University, which contained 887 individual patients. The private 
information of all the patients was removed and usage rights for these records wereobtained.a 

The next task required a great quantity of manually labeled data. First, the medical concept 
annotation guideline and assertion annotation guideline published by Informatics for Integrating 
Biology and the Bedside (i2b2) [36,37] were referenced to layout guidelines for manual annotation 
under the guidance of medical professionals [38]. In the manual annotation process, medical entities 
were classified into five classes: disease, complaint symptom, test, test result, and treatment. In this 
study, disease in the ‘Assessment and Diagnosis’ part of the record is interpreted as diagnosis, and 
medical entities (including disease, complaint symptom, test, test result, and treatment) in other parts 
of the record are interpreted as symptoms [39]. 

Figure A1 in the Appendix shows one discharge note from our records corpus. A standard 
discharge note contains the following six sections: assessment and diagnosis, admission situation, 
treatment, discharge situation, treatment effect, and discharge order. In addition, the corresponding 
annotations about this progress note are listed in Table A1. 

4.2. Experiment setup 

Out of the total gathered EMRs, 500 were randomly selected to build a basis EMKN based on the 
network construction algorithm, and randomly selected EMRs to expand the EMKN based on the 
network expansion algorithm. After selecting 785 EMRs in total, the graph structure no longer changes, 

 
a https://github.com/WILAB-HIT/Resources. 
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so the 785 EMRs are used to build the EMKN, and the remaining 207 EMRs of the sample data are 
used to test and evaluate the performance of our framework. 

The other three models as baselines implemented with default settings in the scikit-learn 
library use naïve Bayes, neural networksb, and logistic regression, which are widely used in many 
of the recent similar studies because of the simplicity, effectiveness, and robustness of these 
methods [35,40,41]. 

4.3. Evaluation metrics 

Many standard evaluation measures, such as the precision-recall curve, receiver operating 
characteristic (ROC) curve, and area under the curve (AUC), are adopted in diagnostic support 
systems for specific diseases, but these measures are unsuitable for our task because these curves are 
meaningful only when the number of positive instances is high enough (greater than 10, for example) [42]. 
In extreme cases, one EMR may be only one diagnosed disease; that is, that instance has only one 
positive instance, and the recall rate (or sensitivity on the ROC curve) would be either 0 or 1. Therefore, 
traditional evaluation measures are less useful for evaluation or comparison. Our task involves 
returning diseases from a fixed entity set; this task seems to be an information retrieval (IR) task. 
Therefore, four IR evaluation measures are adopted to evaluate and compare the performance of a 
single test instance: top-k recall (𝑅@𝑘), top-k precision (𝑃@𝑘), R-precision and average precision (AP). 

Top-k recall (𝑅@𝑘). 𝑅@𝑘 is defined as follows: 

𝑅@𝑘
#        

#    
                     (5) 

This metric is consistent with the differential diagnosis framework, where the machine suggests 
k possible items and we measure the fraction of true items that are correctly returned. 𝑅@𝑘 mimics 
the behavior of doctors conducting clinical diagnoses, where doctors list the most likely diagnoses 
according to the patient’s symptoms. Therefore, a machine learning method with a high 𝑅@𝑘  is 
equivalent to a doctor with an effective diagnostic skill, thus making 𝑅@𝑘  a powerful tool for 
evaluating the performance of the frameworks in addressing our problem. This measure was also 
utilized by Choi et al. [35]. 

Top-k precision (𝑃@𝑘). 𝑃@𝑘 is defined as follows: 

𝑃@𝑘
#        

                     (6) 

This measure is not intended for any value of 𝑘, which is often set to a smaller number. If there 
is only one diagnosis in an EMR, then there is only one positive Y in the test sample and 𝑃@10 will 
not be higher than 0.1. For example, Miotto et al. [43] assigned 𝑘 with small values (1, 3, 5); for each 
value of 𝑘, the authors compared their framework with a theoretical upper bound, which reports the 
best results possible (i.e., all the diseases are correctly assigned to each patient).  

Alternatively, R-precision is defined as the precision after R positive diagnoses are returned; R is 
the exact number of positive diagnoses [44]. We assigned k as the exact number of positive diagnoses 

 
b A three-layer feed-forward neural network (with 100 hidden layers having a dimensionality that is half that of the input layer and 
with rectified linear units (ReLUs) as the activation function) and the scikit-learn (formerly scikits learn and known as sklearn) library 
are utilized. The structure and the activation function are fine-tuned to improve performance. 
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in the evaluated test EMR so that the theoretical upper bound would always be 1. 
Average precision (AP). AP [45,46] is the mean of the precision scores obtained after each true 

positive diagnosis is returned and is defined as: 

𝐴𝑃 ∑ 𝑃@𝑟 𝛿 𝑟                             (7) 

where 𝑁 denotes the number of true positive diagnoses in an EMR, R represents the number of all 
diagnoses, and 𝑃@𝑟  represents the precision of the top 𝑟  returned items. The value of indicator 
function 𝛿 𝑟  is 1 if the 𝑟-th retrieval item is a true positive diagnosis; otherwise, the value is 0. The 
calculation of 𝐴𝑃 can be simplified to: 

𝐴𝑃 ∑                               (8) 

where 𝑁 denotes the number of true positive diagnoses in an EMR and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖  represents the 
position of the 𝑖 -th true positive diagnosis in returned items. The ideal result is that true positive 
diagnoses are all returned and ranked at the top of the returned items; in this case, AP = 1. This measure 
has been demonstrated to be one of the most stable and discriminating measures for evaluating IR 
systems [44,45]. 

4.4. Results 

The symptom-disease network is shown in Figure 2. To further describe the problem of 
insufficient data faced in our study, the frequency of all diagnoses was counted, as shown in Figure 3. 
Algorithm 3 is operated on EMKN to diagnose diseases, and compare its performance with naïve 
Bayes, neural networks, and logistic regression. Figure 4 shows the distribution of 𝑅@10, 𝑃@1, R-
precision and AP in our testing set, where Figure 5 shows the cumulative distribution of 𝑅@10 and AP. 

 

Figure 2. The symptom-disease network visualized by Gephi [31]. 
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The main figure depicts a visualization of the symptom-disease network, which is generated from 
785 records. This network is a bipartite network consisting of only symptom and disease entities. The 
pink nodes represent disease entities, and the green nodes represent symptom entities. The size of the 
nodes indicates their degree, and the thickness of the edge indicates the frequency of this relationship. 
The bottom left corner shows a tiny subgraph of the symptom-disease network, and the label of each 
node is its unique name. The bottom right corner represents entities on the top right corner; for example, 
“Hydrocephalus” is a disease entity colored pink, and “Cyanosis” is a symptom entity colored green. 

 

Figure 3. Number of diseases with different frequencies. Of all the disease nodes, 665 
occurred only once, and 203 occurred only twice. 

 

Figure 4. Distribution of R@10, P@1, R-precision and AP. The y-axis displays the number 
of records. 
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Figure 5. Cumulative distribution of R@10 and AP. The test cases with evaluation 
measures that exceed the number in the x-axis are counted, and the y-axis displays the 
corresponding percentage of the count. 

5. Discussion 

In the EMKN, there are 5840 nodes in the symptom set, 1066 nodes in the diagnosis set and 55,415 
edges. This is a bipartite interdependent network structure concluding a symptoms subgraph (symptom 
network) and a diagnosis subgraph (diagnosis network). 

Of all the disease nodes, 665 occurred only once, and 203 occurred only twice. This means that 
in our framework, over 90% of the diagnoses were met less than 3 times. In this situation, the heavily 
unequal distribution of data samples will easily lead the machine learning model to a skew mapping 
that only considers high-frequency samples and ignores low-frequency samples. Our PercolationDF 
breaks through this bottleneck by extracting knowledge into EMKN and medical evidence percolation 
and has good performance. 

In general, our methods outperformed the other three machine learning methods, particularly in 
𝑅@10. Out of the 207 test cases, 51.7% returned all actual diseases in the first 10 results; only 30.0% 
were returned in a similar previous study [14]. In 𝑃@1, the other three methods perform similarly and 
outperform Bayes method. For 𝑅 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝐴𝑃 , our framework slightly outperforms the 
others. In general, our framework provides a great improvement in recall and works effectively and 
steadily. 

Moreover, there were 67 records returned with none of the actual diseases in the first 10 results. 
There may be some reasons for such ineffectiveness: the imperfection of our modified EMKN which 
consists of some weak causality edges not being filtered, etc. Nevertheless, the shortcoming of 
multidisease diagnosis is using only symptoms as features; probably, more colorful evidence needs to 
be applied. 

6. Conclusions 

The PercolationDF proposed in this paper utilizes an EMKN to effectively model and represent 
medical knowledge in EMRs and a diagnosis method incorporating percolation theory is increasingly 
effective in resolving the problem of insufficient data volume where labels have a very strong causality 
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only with respect to certain feature dimensions, and the certain features for different labels are in 
different dimensions. The clarification of causalities supported in the modified EMKN and the 
incorporation of percolation theory with our diagnosis method helping not only sufficiently accumulate 
clinical evidence from graph structure, but also being suitable in inferring on an evolving graph makes 
a surprising restful progress. 

However, the superb result to alleviate insufficient data is frankly based on the limitation of the 
availability of certain relations from features to labels. The certain relations that other prevailing 
methods cannot easily obtain are represented in a network effortlessly, but many other kinds of data 
do not display a certain relation the way an EMR does. Even so, the combination of network and 
percolation shows great potential for application in the evolution of one system and its different parts. 

Future works will focus on making PercolationDF adopt into other situations to model and 
represent the knowledge that causalities can be realized in the data and infer on the knowledge modeled 
before, such as some studies on disease complication and deteriorating development between organs 
and diseases on system of human body. 
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Appendix 

Table A1 and Figure A1 show a progress note from our records corpus and its corresponding 
annotation samples. 

Table A1. Annotations of the entity and assertion information in the record example. 

Medical entity Position in the text Entity type 
肺腺癌 lung adenocarcinoma 63:66 disease 
右侧胸腔积液 dropsy of the right chest 67:73 disease 
胸痛 chest pain 172:174 complaintsymptom
胸闷 chest tightness 175:177 complaintsymptom
右肺呼吸音弱 respiratory sounds in right lung is weak 226:232 testresult 
引流管 drainage tube 238:241 treatment 
干湿啰音 rhonchus and moist rales 245:249 testresult 
心率 heart rate  250:252 test 
化疗 chemotherapy 354:356 treatment 
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Figure A1. A discharge note from the records corpus. 
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