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Abstract: Data analysis is widely used to generate new insights into human disease mechanisms and
provide better treatment methods. In this work, we used the mechanistic models of viral infection
to generate synthetic data of influenza and COVID-19 patients. We then developed and validated a
supervised machine learning model that can distinguish between the two infections. Influenza and
COVID-19 are contagious respiratory illnesses that are caused by different pathogenic viruses but ap-
peared with similar initial presentations. While having the same primary signs COVID-19 can produce
more severe symptoms, illnesses, and higher mortality. The predictive model performance was exter-
nally evaluated by the ROC AUC metric (area under the receiver operating characteristic curve) on
100 virtual patients from each cohort and was able to achieve at least AUC=91% using our multiclass
classifier. The current investigation highlighted the ability of machine learning models to accurately
identify two different diseases based on major components of viral infection and immune response.
The model predicted a dominant role for viral load and productively infected cells through the feature
selection process.

Keywords: biological systems; mechanistic model; infectious disease; Influenza (flu); COVID-19;
machine learning; classification; Logistic regression; regularization; Lasso; Ridge; PLS-DA

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses cause
COVID-19 and influenza diseases, respectively, and mainly infect the upper and lower respiratory
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tract [1,2]. Both infections present similar primary symptoms such as cough, fever, sore throat, runny
or stuffy nose, tiredness, and body aches [3,4]. Early on in infection this can lead to a clinical dilemma
in diagnosis [5-7]. Recently, COVID-19 has, through its worse overall decompensation due to its in-
tensive transmission and vascular effects, caused an unrivaled global crisis [8—11]. As the globe moves
to endemicity, as the striking COVID-19 outbreak continues, the concurrence of COVID-19 and in-
fluenza epidemics is impending. This motivates the current study, to design a data analysis tool that
can accurately differentiate between these two infections.

One way to rapidly classify patients with influenza or COVID-19 could be through machine learn-
ing approaches. Preliminary investigation illustrated the potentials of machine-learning models for
accurately distinguishing between these two viral infections, using demographics, body mass index,
and vital signs in infected patients [8]. Herein, we used a simple ML-based classification to identify
patients with influenza or SARS-CoV-2 based on the main features of the within-host viral dynamics
and the immune response. During the past decade, in-host mathematical modelling has become an
increasingly powerful tool to study inter and intracellular viral infection and the ensuing immune re-
sponse [12]. Such mathematical models can deepen our understanding of virus spread within organs
leading to antiviral drug inventions and optimized treatment regimens. Furthermore, using the mecha-
nistic model to generate synthetic patient data for various infections can help us to mitigate difficulties
related to clinical data analyses, such as time-inconsistent data sets that can cause biased results [13].

Recent studies have suggested that that artificial intelligence (AI) and machine learning (ML) meth-
ods can perform as well as or even better than humans at significant healthcare tasks, such as diagnosing
disease [14—17]. We apply a basic mathematical model on the cellular scale (the so-called target cell-
limited model [18, 19]) fit to two different sets of in vivo data for COVID-19 and influenza infections,
to create virtual patient cohorts. Using our multi-class classifier, the patients are differentiated between
the two infections. This is conducted over the entire infection and for early time-points only. Herein,
we show that, with just some important in-host measurements, our method is able to discern which
virus has infected a patient with a high degree of certainty. Such results can lead to the development of
rapid diagnostic tests in future to aid in early patient diagnosis They can also be used in clinical trials
of new therapeutics and vaccines to determine the need for new participant enrolments, the number
of measurements needed from each participant, and what would be best to measure to show if a new
vaccine or therapeutic is effective [20-22].

This paper is organized as follows: In section 2, through subsection 2.1, we discuss the in-host
mathematical modelling of influenza and COVID-19 and parameter estimation. In subsection 2.2, we
use the mechanistic model to generate synthetic patient data. In subsections 2.3 we study developing
and evaluating a supervised machine learning method to discriminate the patients with different infec-
tions. The Interpretability of the developed model is discussed in subsection 2.4. The results of the
prediction are presented in section 3 through subsection 3.1. Subsection 3.2 discusses the importance
of the data features and determines the dominant features. The paper concludes with a discussion in
Section 4.
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Figure 1. Schematic of viral infection. Each Target cell, T, is infected by a virus, V, with a
constant rate 8. During the eclipse period the productively infected cell, /,, is being produced
by the first infected cell, I;, with a constant rate k. The Infected cell, I;, produces virus at
rate p, IFNI at rate q and dies at rate ¢ per cell. IFNI hinders viral infection by converting
target cells to a virus-resistant state with a constant rate ¢ and decays with rate d. Free virus
particles that can be influenza or coronaviruses are cleared at per-capita rate c.

2. Method

2.1. Mechanistic models

We employed a target-cell limited model of viral dynamics using five differential equations that
track susceptible target cells (7'), infected cells in the eclipse phase (I;), productively infected cells
(1), virus (V), and interferon (F) in-host. Figure 1 presents a flow diagram of the model. The system
of ordinary differential equations is as follows:

dT

— = -BTV — ¢TF (2.1a)
dI,

— =BTV -kl 2.1b
o7 B 1 (2.1b)
dl,

—= = kI, - 61 2.1
dr 1 2 (2.1¢c)
av

— =phL—-cV 2.1d
o~ Ph-c (2.1d)
dF

— =gl, —dF 2.1
o7~ ab (2.1e)

Briefly, virus particles V can infect susceptible target cells 7' to produce infected cells. This is repre-
sented by the term STV. Newly infected cells first enter the eclipse phase /; and become productively
infected cells I, when within-cell processes that program the cell to make new virus particles are com-
pleted. The eclipse phase takes, on average, 1/k time units. Productively infected cells produce new
virus particles with a rate of p, and the virus particles are cleared from the system with a rate of c.
We assumed that productively infected target cells have a death rate §. Susceptible target cells can
be protected from infection by Type I interferon (IFNI), F. Type I interferons protect neighboring
cells from infection and elicit an immune response [23,24]. They are central to combating differ-
ent virus infections and are regularly measured in clinical trials or infection studies in humans and
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animals [25]. We assumed that interferon production is proportional to the number of productively
infected cells [18, 19, 26, 27], that interferon has a natural decay rate d, and that interferon protects
susceptible cells by removing them from the susceptible target cells population, with a rate ¢F. This
term was ignored in [18] for influenza infection. The model described by Eq. 2.1 was used in [18]
and [19] to examine the kinetics of influenza A and SARS-CoV-2 viral dynamics, respectively. For the
sake of simplicity, we have ignored a half-day lag in IFNI response that was considered in [18].

2.1.1. Parameter estimation

Model parameters for influenza A infection were fit to data from an experimental HIN1 influenza
A/Hong Kong/123/77 infection for six patients [18] and for SARS-CoV-2 from thirteen untreated pa-
tients infected with severe acute respiratory syndrome-coronavirus [19]. The geometric average pa-
rameter values along with their 95% confidence intervals and units are summarized in Table 1. We
assumed that the initial number of target cells, Ty, is equal to the total number of target cells in the
upper respiratory tract and set Ty = 4 x 108 cells. In [19] the authors considered that the target cells
distributed in a volume of 30 mL. Assuming that 1% of these cells expresses the angiotensin-converting
enzyme 2 (ACE2) as a receptor for SARS-CoV-2, the target cell concentration, 7T\, was expressed as
1.33 x 10° cell/ml. Model variables with initial values were estimated as in Table 2.

Table 1. Average values and confidence intervals, CI, for influenza A and SARS-CoV-2
within-host viral infection model parameters. Confidence levels of 95% display the degree
of certainty around the mean for each parameter value.

Influenza Model Parameters [18]

Vo [95%C1] Ry B[95%CI] k[95%CI]  p [95%CI] ¢ [95%CI] 6 [95%CI] q d [
TCIDso/ml' (TCIDso/ml)~'d™! d! (TCIDsy/ml)d™! d! d! d! d! d'cell™
0.075[7.6E —4,7.5]  21.5[10.1-46.1] 3.2E - 5[6E - 6,1.7E — 4] 4[3,5.2] 0.046[0.012,0.17] 5.2[3.1-8.7] 5.2[3.2-8.6] 1 1.9 [23,28,29] 0
SD:3.5724 SD:17.15 SD:7.8124 SD:1.0486  SD:0.07527 SD:2.6677 SD:2.5724
COVID-19 Model Parameters [19]

Vo Ry 95%[CI B k p 95%[CI] c §95%[CI] q d ¢
Copies/ml (Copies/mly~'d™! d! (Copies/mlyd™! d! d! d! d! d'cell”!
0.1 8.6[1.9 - 17.6] 5.68E -9 3 22.71[0 — 59.64] 10 0.6[0.22-0.97] 1 0.4 1.97E-6 [30]

SD:12.9893 SD:49.3426 SD:0.62051

U1 [TCIDsy/ml] corresponds to 4000 [Copies/ml] [31].
2 Ry is the basic reproduction number.

Table 2. Model Variables with Initial values.

Variable Definition Initial Value Unit

T Target cell 4E+8 Cell

I Infected cell (eclipse phase) 0 Cell

I, Productively infected cell 0 Cell

Vv Viral load (flu) 7.5E-2 TCIDsy/ml
Viral load(COVID-19) 0.1 Copies/ml

F type I interferon (IFNI) 0 Interferon

2.2. Generation of virtual patients

To generate a cohort of virtual patients, we followed a technique similar to the one used in [24]. Each
patient is distinguished by five different in-host measurements, {7, I, I, V, F'}, that are the solutions
of Equation 2.1 for different sets of model parameters. Initial parameter sets representing individual
virtual patients were drawn from normal distributions with means fixed to the corresponding parameter
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value in Table 1 and standard deviations derived from confidence interval measurements. Standard
deviations were obtained from standard errors, confidence intervals, and ¢ statistics which measure
the size of the difference relative to the variation in the sample data. For each parameter value, the
standard deviation was obtained by dividing the length of the confidence interval by standard errors
width (2 X ¢t — value) and then multiplying by the square root of the sample size as follows

SD = VN x SE = VN X (upperlimit — lowerlimit)/(2 X t — value) (2.2)

Standard errors must be of means calculated from within each parameter confidence interval. The
t — value for a 95% confidence interval from a sample size of N was then obtained in Microsoft Excel
using the tinv function (i.e. tinv(l — 0.95,N — 1)). From [18], the sample size for the influenza
cohort is 6 patients infected by HIN1 influenza A/Hong Kong/123/77 infection. The COVID-19 cohort
consisted of 13 untreated patients infected with severe acute Respiratory syndrome-coronavirus2 [19].
Therefore, the t — value for influenza patients is 2.571 and for COVID-10 patients is about 2.179.
From normal distributions with standard deviations, o, and means, y, as the original parameter values,
we then generated normal distributions covering values lying around each parameter value such that
|u + 0 — u| < h. Herein, the parameter 4 is the user-defined value as a measure of data diversity. In the
other words, the bigger the parameter /, the more diverse the synthetic data. Accordingly, the external
noise can affect the data through the parameter 4. The dynamics of 100 virtual patients from each
cohort are shown in Figure 2. The diversity of patient data is mainly reflected in various viral load
levels to agree with prior studies that different viral load is associated with the severity of diseases or
different factors such as age or sex of the patients [32].

2.2.1. Consistency of the data

Generating data with time consistency for different cohorts of infections is of great importance.
Data inconsistency can lead to loss of information or biased results. Since the influenza mechanistic
model predicts faster clearance of influenza-infected cells than SARS-CoV-2 [19], the infection period
for influenza and COVID-19 patient dynamics are not the same, see Figure 2. Therefore we limited the
consistency of flu/COVID-19 cohorts to have the same number of data points during the infection time.
Hereupon, as an example, we divided the main infection period (i.e., [1 — 6] days for influenza patients
and [10 — 20] days for COVID-19 patients) into ten different sub-intervals with half-day length time
steps for influenza patients and one and half-day length time steps for COVID-19 patients (see Figure
3). Hence, despite having different infection periods and time steps with different lengths to report the
new virtual data point, the total number of data for the two different cohorts was the same.

In addition to the total infection period, we were also interested in studying the viral load dynamics
in the early period of infection. The median incubation period for influenza A(B) virus is estimated
to be 1.4(0.6) days, and for SARS-CoV-2 is around 5 — 6 days [33]. Therefore, we assumed the
time interval [0.9, 1.3] days for influenza, and [5 — 6.5] days for COVID-19 cohorts, corresponding
to [10? — 10*]Copies/ml viral load. Dividing each interval into three different sub-intervals to get the
time steps with length one-sixth of a day for Influenza and half a day for COVID-19 patients, we had
four consistent data points for each patient.
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Model features for 100 influenza virtual patients
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Model features for 100 COVID-19 virtual patients
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Figure 2. Cohort Dynamics. One hundred virtual patients are generated with different fea-
tures of Target cells, infected/productively infected cells, viral load, and the only immune
factor type I interferon for Influenza (upper two rows) and COVID-19 (lower two rows).
Each solid curve with a different color represents a patient. The insets are in log scale.
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Figure 3. Consistency of the number of virtual data points during the time of infection.
Dashed cross blue lines show eleven-time points of an influenza or COVID-19 patient.

2.3. Predictive model development

To distinguish between patients who encounter COVID-19 from those who are exposed to influenza,
we developed a predictive model based on some biological feature selections. Accordingly, we adopted
Logistic regression with ¢;-regularization, referred to Lasso (stands for least absolute shrinkage and
selection operator) Regression, as an appropriate technical classification. Lasso regression is widely
used for many supervised classification problems based on the concept of probability [34]. It can
simplify the model complexity by removing irrelevant features of the data set. Recently, this algorithm
was used by Han and et al. to find some additional novel immune features that accurately identified
patients before the clinical diagnosis of preeclampsia [35].

Logistic regression, which is a special case of linear regression and used for binary classification, is
defined by the following sigmoid function

1
hX) = 1 (2.3)

+ e~ (Bo+BX)

in which X is the (n X p) model feature matrix of n = 100 patients and p = 5 biological hallmarks.
Defining the cost/objective (C) function of logistic regression in mean squared error format leads to a
non-convexity that makes it difficult to optimally converge. Therefore, it is represented by the following
equations

—log(h(X)), ify=1

. (2.4)
—log(1 — (X)), ify=0

C(h(X),Y) = {

where Y is a binary response vector of outcome (CVOID-19 vs flu). Compressing the above two
equations inside a single function, we have

n

1
JX) = - Z [yilog(h(x;) + (1 = yi) log(1 — h(x;))] (2.5)

i=1

Replacing the sigmoid function from equation (2.3) and applying a penalty term equal to the absolute
value of the magnitude of coefficients, we can reach the following objective function (after doing some
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mathematical simplifications) [35]
AN T +BT x;
JX) == |= > yiBo + B x) —log (1 + %) | + allfll, >0 (2.6)
n
i=1

The penalty term which is called the £,-regularization term is added to prevent data over-fitting. The
model objective is to find a specific solution with a best-optimized cost function.

For model training and testing, we developed a K-fold cross-validation strategy, which is a re-
sampling method to evaluate machine learning models on a limited data sample. The procedure has a
single parameter called K which displays the number of groups that a given data sample is to be split
into. As such, the procedure is often called K-fold cross-validation. Therefore, our regression model
is not tailored to a particular data set and is exposed to all available samples of a given subject in the
training set. This approach implies that the training procedure was entirely blinded to the synthetic
patient data sets, and ensures the presumed independence from any intra-subject correlations that are
required for Lasso classification. We fixed the number of folds of the data as K = 5. Running the
analysis on each fold, the predicted outcome will be the one with the least estimated prediction error.
The regularization parameter « is estimated by a cross-validation procedure.

2.3.1. Evaluating model performance

The discriminating ability of the developed model in predicting patients with influenza from
COVID-19 was evaluated using AUC (Area Under The Curve) ROC (Receiver Operating Characteris-
tics) curve analysis. AUC - ROC curve is one of the most important evaluation metrics to visualize the
performance of multi-class classification problems. ROC represents a probability curve of sensitivity
(true positive rate=—C—) against 1-specificity (false positive rate==-—) and AUC is a performance
measure of discrimination. In the other words, the AUC score is a criterion that explains how well
the model is capable of discerning different cohorts. Generally, an AUC closer to 1 indicates a better

overall diagnostic performance of influenza classes as influenza or COVID-19 to COVID-19.

2.4. Model interpretability

From [36,37], “Interpretability” is the degree to which a human can understand the cause of a deci-
sion and consistently predict the model’s result. The higher the interpretability of a machine learning
model, the better understanding of why certain predictions have been made. Interpretable machine
learning models are beneficial to extract the relevant knowledge from relationships either contained in
data or learned by the model [38,39].

Here, we looked at the regularization path which is a plot of all coefficients values against the values
of @ in-{; penalization term, to see the behavior of the Lasso regression and interpret the prediction
outcomes. The main purpose of Lasso regression is to classify groups of data by providing feature
coefficients that can select the important features and maintain model regularization to avoid over-
fitting the data. Therefore, the Lasso path can give us an idea of the feature’s importance.

Mathematical Biosciences and Engineering Volume 19, Issue 6, 5813-5831.
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3. Results

3.1. Prediction of Influenza versus COVID-19 infection

In this study we developed a classifier in the Lasso framework to identify patients with either in-
fluenza or COVID-19, based on four major entities of viral dynamics, {T'(¢), I,(t), I(¢), V(¢)}, and one
main factor of host immune response, type I interferon (F(¢)), as the entry data features. The model
was trained on data from 100 virtual patient-level data sets in each infection cohort without noise, and
it was externally validated on testing sets with demographic noise (reflected in diverse viral load lev-
els). Results in Figures 4, 5 and 6 reflect the Lasso predictions using the entire infection period (see
Section 2.2.1). In Figures 4 and 5, two-dimensional scatter plots are used to compare ground truth to
regression predicted values based on all model features. The hue spectrum from light to dark illus-
trates the probability of being in the influenza (blue) or COVID-19 (red) group. In the other words,
the darker the colors, the better the prediction. Considering three attributes in the data, the predicted
outcomes are improved. This is shown in three-dimensional scatter plots in Figure 6 of the ground truth
and regression predicted values. ROC AUC=95% indicates a satisfactory performance of the model to
distinguish between COVID-19 and influenza patients. We note that our analysis was also completed
on data from 1000 virtual patients, and a similar result was obtained, ROC AUC = 93%. See Figure 7
for more details.

3.1.1. Early days of infection

We examined the model prediction for the data generated at the early days of infection after the
incubation period. The results are shown in Figure 8 based on the model features. From the figure,
we can see that there are some mispredictions, for small values of 1,(?), I,(t), V(¢), and F(t), especially
when I,(¢) is plotted as a function of /;(¢) or V(¢) is plotted in terms of I,(¢). In the other words, for this
range of values, the influenza patients were misdiagnosed with COVID-19. In an attempt to find the
reason, we compared correlations between the different variables in our model. See Figure 9. Here, we
see small regions of overlap between influenza and COVID-19 models. Accordingly, the compatibility
of the results between the two infections may lead to some overlaps in the model predictions. However,
the ability of the model in the prediction of infections when the patients were monitored by V(¢)/F () as
a function of 7, (¢), panels (b) and (c), or F(¢) in terms of I,(¢)/V(¢), panels (e) and (f), can be satisfactory,
and thus can serve as benchmarks for clinical diagnosis. The model had a ROC AUC of 91% on the
external validation data set for early infection — see Figure 7.

3.2. Significance of the features

To investigate the importance of various data features we created our ¢;-regularization path, which
was the best way to see the behavior of the Lasso regression. The regularization path is a plot of all
coeflicient values in terms of the regularization parameter. Figure 10 illustrates the selection path of
each feature with its corresponding coefficient in terms of the logarithm of the regularization parameter
a. For each value of @, the path method on the Lasso object returns the coefficients that solve the
logistic regression problem with that parameter value. The optimal value of —log(a) was estimated
at around 3.25 for the test set distributed over the entire infection course, and 3.04 when the early
days of infection were studied. The results suggested a higher coefficient value for viral load V(¢) and
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Figure 4. Two-dimensional scatter plots of ground truth and regression predicted values
based on model features. Classification of the data was done for: I, versus /; in panels (a), T
vs. I in panels (b), V vs. I, in panels (c), F vs. I; in panels (d), T vs. I, in panels (e), V versus
I, in panels (f), and F versus I, in panel (g). Color denotes the patient probability of being
in the influenza (blue color scheme) or COVID-19 (red color scheme) cohorts. Data points,
corresponding to each model feature, are rescaled by dividing by their standard deviations.
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Figure 5. Two-dimensional scatter plots of the ground truth and regression predicted values
for three model features 7', V, F. Classification of the data was done based on: T versus V in
panels (a), T versus F in panels (b), and F versus V in panels (c). Color denotes the patient
probability of being in the influenza (blue color scheme) or COVID-19 (Red color scheme)
cohorts.

productively infected cells /;(¢) compared to the other features. In the same analysis on 1000 virtual
patient data sets, the viral load had the predominant identifying role.

4. Discussion

This study presents a machine learning model to effectively classify influenza and COVID-19 vir-
tual patients using in-host patient data. Our model employed a Lasso regression classifier trained to
identify between two hundred patients, highlighted by a ROC AUC of 95%. Using within-host model
structures from the literature, we generated synthetic data with five in-host measurements including
target cells, eclipse phase, and productively infected cells, viral load, and type I IFN. Analyzing the
feature importance revealed that the viral load and the productively infected cells are the most impor-
tant components to determine if a patient is infected by influenza or SARS-CoV-2.

While our machine learning model was built on synthetic data distributed during the main infection
period, it ascertained a good performance (ROC AUC = 91%) even for the early days of infection
after the incubation period. However, in early infection, there were some exceptions for the small
values of in-host features where the influenza patients were misdiagnosed as COVID-19. The reason
was explained by the fact that during the early days of infection, influenza and COVID-19 patients
have comparable in-host measurements that lead to some errors in discriminating the patients. This
is interpreted as a limitation of our model even though the ROC AUC was still very high. A future
extension of our work here will be in developing dynamic models which take more immune entities
into account and end in a better classifier.

Mathematical Biosciences and Engineering Volume 19, Issue 6, 5813-5831.



5824

(a):Ground Truth (b):Ground Truth (¢):Ground truth (d):Ground Truth

2
At s o N

2 2 2 1
Lyt e o Lyt e o Gyt e 0 N Ty 2 o

2 2 2 2

4 A A 4 fa\
Ay 6 0 Lyt 60 Ayt 6 0 Ly* 6 0
(e):Prediction (f):Prediction (g):Prediction (h):Prediction

2
/2 ( t) 4 6 0
(j):Prediction

2 4 2 2
iy 6 0 L% 60
(i):Ground Truth (i):Prediction

Figure 6. Three-dimensional scatter plots of the ground truth and regression predicted values
based on all model features. Classification is based on I, ,, T in panels (a), I,1,V in
panels (b), I, I, F in panels (c), T, V, F in panels (d), I;, T, V in panels (e), I, T, V in panels
(), I, T, F in panels (g), I, T, F in panels (h), I, F,V in panels (i), and I,, F, V in panels
(j). Shades of blue (red) indicate influenza (COVID-19) group patients. Data points are
dimensionless by dividing by the corresponding standard deviations.
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Figure 7. Receiver Operating Characteristic curve (ROC) of influenza vs COVID-19 pa-
tients. The area under the ROC curve indicates the predictive performance of the model
between COVID-19 and influenza encounters on the external validation test for 100 patients
from each cohort during the main (blue curve)/ early days (orange curve) of infection period,
and for 1000 patients during the main infection (purple curve). The black dashed line in the
diagonal has a ROC AUC of 0.5.

Our model was trained and successfully evaluated on synthetic data. The model, however, could
be applied to animal or human clinical data. This could be useful, for example, if a clinical trial
is complicated by the existence of an infectious disease with similar infection characteristics. The
model could be applied as a low-cost classification system that would not require expensive virus
typing procedures and could rely solely on viral load and interferon measurements. Additionally,
the AI/ML method could be applied to determine when a clinical trial using a continuous enrollment
design has accumulated sufficient data to determine whether a new pharmaceutical is effective. We
note that studies like [8] that focus analysis on demographic and observational data can be cheaper
to conduct than a study requiring viral load or immune system measurements, but these data can also
be subject to inconsistencies and bias, affecting classification outcomes. In a future study, we will
expand our analysis to a model of in-host measurements and observational data to determine if specific
combinations of in-host and observational data that best classify influenza and COVID-19 infections
differ.

Fourteen different AI/ML techniques in disease predictions were reviewed in [40]. Quiroz-Juérez
and et al. developed an effective machine-learning algorithm for the identification of high-risk COVID-
19 patients [41]. Some Al approaches that have significant contributions in the fields of health care
were presented in [42] and their applications in confronting COVID-19, such as diagnosis and drug
development were studied. Salehi and et al. studied machine and deep learning-based architectures
performance for classification of coronavirus images such as X-ray and computed tomography [20].
Our machine learning model was developed in the Lasso framework. Ridge regression or Partial least
squares discriminant analysis (PLS-DA) also can be employed, and require only small changes to our
method to include this. The model demonstrated a satisfactory performance by using either Ridge or
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Figure 8. Early days of infection. Two-dimensional scatter plots of the ground truth and
regression predicted values based on model features are shown. Classification is based on
I, I in panels (a), I}, V in panels (b), I, F in panels (c), I;, V in panels (d), I,, F in panels
(e), and V, F in panels (f). Shades of blue (red) indicate influenza (COVID-19) group patients.
Data points are dimensionless by dividing by the corresponding standard deviations.
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Figure 9. Comparison of in-host measurements, {7T,I,, [, V, F}, between influenza and
COVID-19 virtual patients where plotted as a function of each other. Blue(red) solid lines
represent the ratio of the features for one hundred influenza (COVID-19) patients. Data
points are divided by the corresponding standard deviations for each feature.
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Figure 10. Lasso coeflicients of five sample features, {7, I, I, V, F}, as a function of the
logarithm of regularization parameter, —log @. Each colored line represents the value taken
by a different coefficient in the optimization objective for Lasso. The black dashed line indi-
cates the selected regularization parameter with the value of —log(a) ~ 3.25. This number
was ~ 3.04 with the same Lasso Paths when the early days of the infection period were
considered.
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PLS regression — (ROC AUC= 95%) for the main infection period and —(ROC AUC= 89%) for the
early days of infection.
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