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Abstract: In order to maximize the acquisition of photovoltaic energy when applying photovoltaic 

systems, the efficiency of photovoltaic system depends on the accuracy of unknown parameters in 

photovoltaic models. Therefore, it becomes a challenge to extract the unknown parameters in the 

photovoltaic model. It is well known that the equations of photovoltaic models are nonlinear, and it 

is very difficult for traditional methods to accurately extract its unknown parameters such as 

analytical extraction method and key points method. Therefore, with the aim of extracting the 

parameters of the photovoltaic model more efficiently and accurately, an enhanced hybrid JAYA and 

Rao-1 algorithm, called EHRJAYA, is proposed in this paper. The evolution strategies of the two 

algorithms are initially mixed to improve the population diversity and an improved comprehensive 

learning strategy is proposed. Individuals with different fitness are given different selection 

probabilities, which are used to select different update formulas to avoid insufficient using of 

information from the best individual and overusing of information from the worst individual. 

Therefore, the information of different types of individuals is utilized to the greatest extent. In the 

improved update strategy, there are two different adaptive coefficient strategies to change the priority 

of information. Finally, the combination of the linear population reduction strategy and the dynamic 
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lens opposition-based learning strategy, the convergence speed of the algorithm and ability to escape 

from local optimum can be improved. The results of various experiments prove that the proposed 

EHRJAYA has superior performance and rank in the leading position among the famous algorithms. 

Keywords: parameter extraction; photovoltaic models; JAYA algorithm; Rao-1 algorithm; 

EHRJAYA algorithm 

 

1. Introduction  

With the development of the world and the consumption of resources, it is increasingly necessary to 

find better, clean and renewable new energy. Among the new types of energy, photovoltaic energy [1] is 

known as the most potential renewable energy for long-term development. However, the collection of 

photovoltaic energy depends on the photovoltaic model, and the performance of the photovoltaic model 

is determined by the unknown parameters [2] in the model. So far, a variety of photovoltaic models have 

been created, including single-diode model [3] (SDM), double-diode model [4] (DDM), three-diode 

model [5] (TDM), etc., but the most widely [6] used are the single-diode model and double-diode model. 

Parameters will change when faced with uncertain factors in use, which will affect the efficiency of 

photovoltaic models. Therefore, it is very necessary to extract the unknown parameters of the 

photovoltaic model for evaluating the performance of the model before it is used. 

Many methods have been proposed to extract unknown parameters in photovoltaic models. They 

can be roughly divided into three categories: analytical methods [7,8], deterministic methods [9,10] 

and meta-heuristics. The first two methods are dependent on the initial value set by the model and the 

necessary assumptions, so the achieved solution is not accurate. Moreover, these two methods are 

prone to fall into local optimum, which will result in the inability to find the optimal solution. 

Compared with the other two methods, the meta-heuristic has natural advantages. It has a simple 

structure, high efficiency, strong ability to jump out of the local optimum, and does not depend on 

the specific setting of parameters. Therefore, meta-heuristics are used by many scholars for 

parameter extraction of photovoltaic models. For example, Simulated Annealing Algorithm [11] (SA), 

Whale Optimization Algorithm [12] (WOA), Differential Evolution Algorithm [13] (DE), Harmony 

Search Algorithm [14] (HS), Cuckoo Search Algorithm [15] (CS), Genetic Algorithm [16] (GA), 

Artificial Bee Colony Algorithm [17] (ABC), Teaching-Learning-Based Optimization Algorithm [18] 

(TLBO), Ant Lion Optimizer [19] (ALO), Arithmetic Optimization Algorithm [20] (AOA), Sine 

Cosine Algorithm [21] (SCA), Rao-1 Algorithm [22], Empire Competition Algorithm [23] (ICA), 

Marine predators algorithm [24] (MPA), Harris Hawk optimization algorithm [25] (HHO), Runge 

Kutta Optimizer [26] (RUN), Artificial Hummingbird Algorithm [27] (AHA), etc. Recently, many 

excellent algorithms have been proposed for photovoltaic model of parameter extraction. 

Abdullrahman A. et al. [28] used Bonobo Optimizer for parameter extraction of photovoltaic models. 

Chen et al. [29] proposed a bi-subgroup optimization algorithm (BSOA) for parameter extraction of 

proton exchange membrane fuel cell (PEMFC). Rezk et al. [30] proposed a robust methodology 

based on the Gradient-based Optimizer (GBO) for extracting optimal parameters for PEM fuel cells 

(PEMFC). Babu et al. [31] introduced a robust method based on stochastic fractal search (SFS) 

optimization algorithm for extracting parameters of photovoltaic models. Therefore, no matter what 

type of photovoltaic model it is, the meta-heuristic algorithm can be used to optimize it. On the one hand, 
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this also proves that the meta-heuristic algorithm is very useful. On the other hand, in order to minimize 

the complexity and computational resources, there is still a need to find better algorithms. 

The JAYA algorithm [32] and Rao-1 algorithm [33] are swarm-based optimization algorithms. The 

structure of both algorithms is very simple, and there is no need to set redundant parameters. That is, 

there is only one common parameter, namely the population size. This means that the algorithm runs 

very fast. In addition, there is only one evolution strategy for these two algorithms. Therefore, they 

have been deeply improved by many scholars to solve various complex problems [34–41]. 

In this paper, an enhanced hybrid JAYA and Rao-1 algorithm, called EHRJAYA, is proposed. In 

the EHRJAYA, various improvement strategies are introduced. First, the evolution strategies of the 

two algorithms are mixed, which improves the population diversity of the algorithm and avoids a 

single strategy from reducing the performance of the algorithm. Then, an improved comprehensive 

learning strategy is introduced. Different selection probabilities populations with different fitness are 

given to, so that different update formulas are selected, which avoid insufficient using of information 

from the best individual and overusing of information from the worst individual. Then, two different 

adaptive coefficient strategies are introduced into the evolution strategies of the two algorithms. The 

common point of these two adaptive coefficients is to guide the population towards the optimal 

individual and away from the worst individual. Then, linear population reduction strategy is 

introduced, to improve the convergence speed. Finally, dynamic lens opposition-based learning 

strategy is introduced, improving the situation where the algorithm gets stuck in local optimum. 

To verify the performance of the proposed EHRJAYA, five photovoltaic models are selected, 

including the single-diode model, the double-diode model, the Photowatt-PWP201 model, the 

STM6-40/36 model, and the STP6-120/36 model. The comparison results of the comparison 

algorithms in the experiment or the final comparison results with the well-known reported algorithms, 

the EHRJAYA has excellent performance and locates in a leading position. 

The main contributions of this paper are as follows: 

·An enhanced hybrid JAYA and Rao-1 algorithm is proposed for extracting the parameters of 

photovoltaic models efficiently. 

·An enhanced adaptive comprehensive learning strategy is proposed. 

·Two adaptive coefficients are introduced to avoid underutilizing the information from the best 

individual and overusing the information from the worst individual. 

·Linear population reduction strategy and dynamic lens opposition-based learning strategy are 

combined to improve the convergence speed of the algorithm and the situation of falling into local optimum. 

·The superior performance of the EHRJATA is verified by five photovoltaic models. Compared 

with many well-known algorithms, the superiority of the algorithm is further confirmed. 

The rest of this paper is arranged as follows: In Section 2, the definition of Photovoltaic (PV) 

model and objective function is introduced. In Section 3, the JAYA and Rao-1 algorithm is introduced. 

In Section 4, the EHRJAYA is introduced. In Section 5, experiments and result analysis are carried out 

by the EHRJAYA and the comparison algorithms. In Section 6, the EHRJAYA is summarized. 

2. Definition of Photovoltaic (PV) Model 

2.1. Single-diode model (SDM) 

The characteristics of solar cells can be accurately described by SDM. SDM can be expressed 
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by the formula (1)–(3). 

𝐼𝐿 = 𝐼𝑝𝑣 − 𝐼𝑑 − 𝐼𝑝 
(1) 

𝐼𝑑 = 𝐼𝑠𝑑 [exp(
(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛𝑘𝑇
) − 1] 

(2) 

𝐼𝑝 =
𝑉𝐿 + 𝐼𝐿𝑅𝑠

𝑅𝑃
 

(3) 

where, 𝐼𝐿 is the terminal current, 𝐼𝑝 is the shunt resistor current, 𝐼𝑑 is the diode current, 𝐼𝑝𝑣 is the 

current generated by solar irradiation, 𝐼𝑠𝑑 is the diode saturation current, 𝑉𝐿 is the output voltage, 

𝑅𝑠 and 𝑅𝑃 are the series and shunt resistances respectively, 𝑛 is the diode characteristic factor, 

𝑘 = 1.3806503 × 10−23𝐽/𝐾  and 𝑞 = 1.60217646 × 10−19𝐶  are both constants, 𝑇  is the 

temperature of junction in Kelvin. 

Therefore, the output current of the SDM can be expressed by the formula (4). 

𝐼𝐿 = 𝐼𝑝𝑣 − 𝐼𝑠𝑑 [exp(
(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛𝑘𝑇
) − 1] −

𝑉𝐿 + 𝐼𝐿𝑅𝑠

𝑅𝑃
 

(4) 

It can be seen from the formula that this model needs to extract five unknown parameters including 

𝐼𝑝𝑣, 𝐼𝑠𝑑, 𝑅𝑠, 𝑅𝑃 and 𝑛. 

2.2. Double-diode model (DDM) 

DDM adds a diode on the basis of SDM, so the effect of loss of recombination current is 

considered. This model can be expressed by the formula (5)–(7). 

𝐼𝐿 = 𝐼𝑝𝑣 − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑝 
(5) 

𝐼𝑑1
= 𝐼𝑠𝑑1

[exp(
(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛1𝑘𝑇
) − 1] 

(6) 

𝐼𝑑2
= 𝐼𝑠𝑑2

[exp(
(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛2𝑘𝑇
) − 1] 

(7) 

where, 𝐼𝑠𝑑1
 and 𝐼𝑠𝑑2

 are the diffusion current and saturation current, and 𝑛1  and 𝑛2  are the 

ideality factors of the two diodes, respectively. 

Therefore, the output current of the DDM can be expressed by the formula (8). 

𝐼𝐿 = 𝐼𝑝𝑣 − 𝐼𝑠𝑑1
[exp(

(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛1𝑘𝑇
) − 1] − 𝐼𝑠𝑑2

[exp(
(𝑉𝐿 + 𝐼𝐿𝑅𝑠) × 𝑞

𝑛2𝑘𝑇
) − 1] −

𝑉𝐿 + 𝐼𝐿𝑅𝑠

𝑅𝑃
 

(8) 

It can be seen from the formula that this model needs to extract seven unknown parameters including 

𝐼𝑝𝑣, 𝐼𝑠𝑑1
, 𝐼𝑠𝑑2

, 𝑅𝑠, 𝑅𝑃, 𝑛1 and 𝑛2. 

2.3. Photovoltaic (PV) module model 

The PV module model is built on multiple PV cells connected in parallel and in series. 
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Therefore, it can be expressed by the formula (9). 

𝐼𝐿 = 𝐼𝑝𝑣𝑁𝑝 − 𝐼𝑠𝑑𝑁𝑝 [exp(
(𝑉𝐿𝑁𝑝 + 𝐼𝐿𝑅𝑠𝑁𝑠) × 𝑞

𝑛𝑁𝑠𝑁𝑝𝑘𝑇
) − 1] −

𝑉𝐿𝑁𝑝 + 𝐼𝐿𝑅𝑠𝑁𝑠

𝑅𝑃𝑁𝑠
 

(9) 

where, 𝑁𝑠 represents the number of photovoltaic cells in series, and 𝑁𝑝 represents the number of 

photovoltaic cells in parallel. 

It can be seen from the formula that this model needs to extract five unknown parameters, 

including 𝐼𝑝𝑣, 𝐼𝑠𝑑, 𝑅𝑠, 𝑅𝑃 and 𝑛. 

2.4. Objective function of PV model 

The parameters of the above models are estimated when using data provided by the supplier. 

Usually, an objective function is needed to estimate the error of the experiment. In this paper, the root 

mean square error (RMSE) is adopted as the objective function for optimization because it can 

reflect the degree of error between the measured data and the real data. 

𝑚𝑖𝑛    𝑅𝑀𝑆𝐸(𝑥) = √
∑ (𝐼𝑖 − 𝐼𝐿)2𝑁

𝑖=1

𝑁
 (10) 

where, 𝑁 is the number of datasets, 𝐼𝐿 is the calculated current, and 𝐼𝑖 is the data provided by the 

supplier. 

It can be seen from formula (10) that when the value of RMSE is smaller, the extracted 

parameters are more accurate. 

3. Rao-1 and JAYA algorithm 

3.1. JAYA algorithm 

In the JAYA algorithm, the property of no public parameters is very attractive, which means that 

the algorithm is unlimited and simple in structure. The idea of the algorithm is very simple, and it 

aims to move towards the optimal position and away from the worst position, which can be 

expressed by the formula (11). 

𝑌𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝑟𝑎𝑛𝑑2 × (𝑋𝑤𝑜𝑟𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) (11) 

where, 𝑋𝑏𝑒𝑠𝑡,𝑗 represents the best solution, 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗 represents the worst solution, and 𝑟𝑎𝑛𝑑1and 

𝑟𝑎𝑛𝑑2 are random numbers between 0 and 1. 

If the fitness value of the updated solution is better than the previous solution, then the updated 

solution can be accepted, otherwise, the previous solution is kept, which shows as formula (12). 

𝑋𝑖 = {
𝑌𝑖,   𝑖𝑓 𝑓(𝑌𝑖) < (𝑋𝑖)

𝑋𝑖,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 
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3.2. Rao-1 algorithm 

Different from the JAYA algorithm, the difference information between the best search agent and 

the worst search agent is used by the Rao-1 algorithm to mutate, which can be expressed by the 

formula (13). 

𝑍𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑3 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) (13) 

After mutation, the mutated solution or the original solution is selected by the same update 

formula as the JAYA algorithm. 

𝑋𝑖 = {
𝑍𝑖,   𝑖𝑓 𝑓(𝑍𝑖) < (𝑋𝑖)

𝑋𝑖,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

4. The proposed EHRJAYA algorithm 

For both the JAYA and Rao-1 algorithm, there is potential for further improvement, because 

these two algorithms have clear structures, simple evolution strategies, and clear concepts. However, 

the evolution strategies of the two algorithms are relatively simple, the search and development are 

not thorough enough, and they do not even have the conditions to jump out of the local optimum. 

Therefore, some improvement strategies are put forward. 

4.1. Hybrid evolutionary strategy 

Algorithms with a single evolution strategy may have insufficient population diversity, which 

will lead to low exploration performance. Therefore, the evolution strategy of Rao-1 algorithm is 

introduced. Random numbers are judged, and two evolutionary strategies are randomly selected, 

which can be expressed by the formula (15). 

𝑋𝑖,𝑗
′ = {

𝑌𝑖,𝑗,   𝑟𝑎𝑛𝑑 < 0.5

𝑍𝑖,𝑗 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (15) 

Through the above method, one of these two strategies will be randomly selected in one 

population evolution, which avoids the limitation caused by a single evolution strategy and improves 

the population diversity of the algorithm. 

4.2. Enhanced comprehensive learning strategy 

In the population, there are the best and worst search agents. If these agents all pass the same 

update formula, it may lead to underutilization of the best search agents and overuse of the worst 

search agents. Therefore, the best and worst search agents need to be separated when using different 

update formulas to improve the utilization efficiency of search agents as a whole. A reinforced 

comprehensive learning strategy is proposed. Different search agents are given different selection 

probabilities. Therefore, by judging this probability, they are used to select different update formulas. 

In order to establish the relationship between the search agent and the selection probability of the 

search agent, first the fitness values are sorted. 
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𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑓𝑖𝑡𝑛𝑒𝑠𝑠)                           (16) 

Then, the indexes of the sorted search agents are assigned to the corresponding search agents. 

𝑃(𝑖𝑛𝑑𝑒𝑥(𝑖)) =
𝑖

𝑁𝑃_𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                          (17) 

Therefore, search agents with smaller fitness are assigned smaller values. For search agents 

corresponding to different fitness, different update formulas (18) are introduced. 

𝑌𝑖,𝑗 = {

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝑟𝑎𝑛𝑑2 × (𝑋𝑤𝑜𝑟𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|),   𝑃 ≤ 1/3

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝑟𝑎𝑛𝑑2 × (𝑀𝑒𝑎𝑛(𝑋) − |𝑋𝑖,𝑗|),   1/3 < 𝑃 ≤ 2/3

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) + 𝑟𝑎𝑛𝑑2 × (𝑋𝑟1,𝑗 − 𝑋𝑟2,𝑗),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (18) 

where 𝑀𝑒𝑎𝑛(𝑋) represents the mean of all search agents, and 𝑟1 and 𝑟2 are randomly selected in 

the entire population except the current search agent. Among the three update formulations, the 

superior search agent can be utilized to the maximum, the medium search agent can be utilized 

evenly, and the other solutions are randomly selected by the worst search agent for improvement. 

Similarly, we also improve the Rao-1 algorithm using the above-mentioned comprehensive 

learning strategy. 

𝑍𝑖,𝑗 = {

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑3 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) − 𝑟𝑎𝑛𝑑4 × (𝑋𝑟1,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗),   𝑃 ≤ 1/3

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑3 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) − 𝑟𝑎𝑛𝑑4 × (𝑀𝑒𝑎𝑛(𝑋) − 𝑋𝑟2,𝑗),   1/3 < 𝑃 ≤ 2/3

𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑3 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) + 𝑟𝑎𝑛𝑑4 × (𝑋𝑟1,𝑗 − 𝑋𝑟2,𝑗),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (19) 

In the update formula in the improved Rao-1 algorithm, different types of search agents have 

corresponding leadership mechanisms. Therefore, the search agents in the population can be utilized 

to the maximum, improving the performance of the algorithm. 

4.3. Two adaptive coefficient updating strategies 

4.3.1. The first method of coefficient adaptation 

In the evolution strategy of the JAYA algorithm, the priority of the information from the best 

and worst search agents is the same, which easily leads to the algorithm not being able to make better 

use of the information of the best individual or overusing the information of the worst individual. 

Therefore, an adaptive coefficient strategy [42] is introduced 

𝐴1 = {

𝑚𝑒𝑎𝑛(𝑓(𝑋))

𝑓(𝑋𝑏𝑒𝑠𝑡)
, 𝑓(𝑋𝑏𝑒𝑠𝑡) ≠ 0

1, 𝑓(𝑋𝑏𝑒𝑠𝑡) = 0

 
(20) 

𝐴2 = {

𝑚𝑒𝑎𝑛(𝑓(𝑋))

𝑓(𝑋𝑤𝑜𝑟𝑠𝑡)
, 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) ≠ 0

1, 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) = 0

 
(21) 

where, 𝑋𝑏𝑒𝑠𝑡 and 𝑋𝑤𝑜𝑟𝑠𝑡 are the global best solution and the worst solution, respectively. In the 
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process of optimization, the value of 𝐴1 is greater than 1, and the value of 𝐴2 is less than 1. As the 

iteration continues to increase, they eventually approach 1. Therefore, the improved evolution 

strategy can be expressed as follows. 

𝑌𝑖,𝑗 = {

𝑋𝑖,𝑗 + 𝐴1 × 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝐴2 × 𝑟𝑎𝑛𝑑2 × (𝑋𝑤𝑜𝑟𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|),   𝑃 ≤ 1/3

𝑋𝑖,𝑗 + 𝐴1 × 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝐴2 × 𝑟𝑎𝑛𝑑2 × (𝑀𝑒𝑎𝑛(𝑋) − |𝑋𝑖,𝑗|),   1/3 < 𝑃 ≤ 2/3

𝑋𝑖,𝑗 + 𝐴1 × 𝑟𝑎𝑛𝑑1 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) + 𝐴2 × 𝑟𝑎𝑛𝑑2 × (𝑋𝑟1,𝑗 − 𝑋𝑟2,𝑗),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (22) 

4.3.2. The second method of coefficient adaptation 

This adaptive coefficient [43] strategy adaptively adjusts towards the optimal solution and away 

from the optimal solution by accumulating successful trend factors. The improved evolution strategy 

is represented as formula (23). 

𝑍𝑖,𝑗 = {

𝑋𝑖,𝑗 + 𝑇1𝑖 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) − 𝑇2𝑖 × (𝑋𝑟1,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗),   𝑃 ≤ 1/3

𝑋𝑖,𝑗 + 𝑇1𝑖 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) − 𝑇2𝑖 × (𝑀𝑒𝑎𝑛(𝑋) − 𝑋𝑟2,𝑗),   1/3 < 𝑃 ≤ 2/3

𝑋𝑖,𝑗 + 𝑇1𝑖 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑤𝑜𝑟𝑠𝑡,𝑗) + 𝑇2𝑖 × (𝑋𝑟1,𝑗 − 𝑋𝑟2,𝑗),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (23) 

where, 𝑇1𝑖 and 𝑇2𝑖  are calculated by Cauchy distribution according to 𝜇𝑇(∗) and 0.1. When 

𝑇(∗)𝑖 is greater than 1, it is assigned a value of 1, and when 𝑇(∗)𝑖 is less than 0, it is recalculated. 

The calculation formula is as formula (24), (25). 

𝑇(∗)𝑖 = 𝑟𝑎𝑛𝑑𝑐(𝜇𝑇(∗),0.1)                        (24) 

𝜇𝑇(∗) = (1 − 𝑏) × 𝜇𝑇(∗) + 𝑏 × 𝑚𝑒𝑎𝑛(𝑆𝑇(∗))                 (25) 

where, the initial value of 𝜇𝑇(∗)  is 0.5, 𝑏  is 0.1, 𝑚𝑒𝑎𝑛(𝑆𝑇(∗))  is the mean of the set of 

successfully generated trend factors. 

4.4. Linear population reduction strategy 

The JAYA and the Rao-1 algorithm are easily affected by the size of the population. Therefore, 

the linear reduction of the population [44] can be introduced to improve the operating efficiency of 

the algorithm, that is, the search agent corresponding to the worst fitness is eliminated after each 

evaluation. 

𝑁𝑃𝐺+1 = 𝑟𝑜𝑢𝑛𝑑 [(
𝑁𝑃𝑚𝑖𝑛 − 𝑁𝑃𝑖𝑛𝑖𝑡

𝑀𝑎𝑥𝑁𝐹𝐸𝑆
) × 𝑁𝐹𝐸𝑆 + 𝑁𝑃𝑖𝑛𝑖𝑡] 

(26) 

where, 𝑁𝑃𝑚𝑖𝑛 is the population size at the end of the algorithm iteration, which is set to 3, 𝑁𝑃𝑖𝑛𝑖𝑡 

is the initial population size, 𝑁𝐹𝐸𝑆  is the current number of evaluations, 𝑀𝑎𝑥𝑁𝐹𝐸𝑆  is the 

maximum number of evaluations, 𝑁𝑃𝐺  is the population size of the current generation, and 𝑁𝑃𝐺+1 

is the population size of the next generation. The poor search agents are gradually reduced, on the 

one hand, the overall level of search agents and the convergence speed of the algorithm are improved. 
On the other hand, the continuous reduction of the population will lead to the overall transition from 

the exploration phase to the local development phase. 



5618 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5610–5637. 

4.5. Lens Opposition-based Learning strategy 

The most commonly used opposition-based learning strategy [45] only consider the opposite of 

the candidate solutions, however, this fixed value may not satisfy the dynamic changes of the 

solutions, so lens opposition-based learning strategy is introduced. The opposites of the candidate 

solutions in different situations can be effectively selected by the dynamic lens opposition-based 

learning strategy, which improves the population diversity of the algorithm. 

𝑋𝑖,𝑗
∗ =

𝑚𝑖𝑛(𝑋𝑗)+𝑚𝑎𝑥(𝑋𝑗)

2
+

𝑚𝑖𝑛(𝑋𝑗)+𝑚𝑎𝑥(𝑋𝑗)

2×𝑘
−

𝑋𝑖,𝑗

𝑘
                  (27) 

𝑘 = 𝑢𝑚𝑎𝑥 − (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) ×
𝑁𝐹𝐸𝑆

𝑀𝑎𝑥𝑁𝐹𝐸𝑆
                      (28) 

Where, 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛 are 2 and 0 respectively, 𝑁𝐹𝐸𝑆 is the current number of evaluations, 

𝑀𝑎𝑥𝑁𝐹𝐸𝑆 is the maximum number of evaluations. When K=1, it can be found that the lens 

opposition-based learning strategy is commonly used opposition-based learning strategy. Therefore, 

the commonly used opposition-based learning strategy is only one of the cases of the lens 

opposition-based learning strategy. 

4.6. Overview of the EHRJAYA 

Algorithm 1: The pseudo-code of the proposed EHRJAYA 

Set population size 𝑁𝑃, the maximum number of evaluations 𝑀𝑎𝑥𝑁𝐹𝐸𝑆, dimension 𝐷𝑖𝑚 
Initialize the positions of Individuals 𝑋𝑖(𝑖 = 1,2, … , 𝑁𝑃) 
Set 𝑁𝐹𝐸𝑆 = 0, 𝑁𝑃 = 𝑁𝑃𝑚𝑎𝑥 = 50, 𝑁𝑃𝑚𝑖𝑛 = 3, 𝑁𝐹𝐸𝑆 = 𝑁𝑃. 
While (𝑁𝐹𝐸𝑆 ≤ 𝑀𝑎𝑥𝑁𝐹𝐸𝑆) 

Calculate coefficients 𝐴1, 𝐴2 and 𝑇1, 𝑇2 using Eqs (20), (21), (24) and (25) 
For 𝑖 = 1 ∶  𝑁P 
Calculate the selection probability P using Eqs (16) and (17) 
End For 
For 𝑖 = 1 ∶  𝑁P 

If rand<0.5 then 

Update the new position 𝑋′ using Eq (22) 
Else 
Update the new position 𝑋′ using Eq (23) 
If 𝑓(𝑋′) < 𝑓(𝑋) then 

𝑋=𝑋′ 
End if 

End For 
Calculate the new population 𝑁𝑃𝐺+1 using Eq (26) 
If 𝑟𝑎𝑛𝑑 < 0.3 then  

Calculate the new position 𝑋𝑖,𝑗
∗  using Eq (27) 

End If 
Memory saving 

End While 

Return 𝑋𝑏𝑒𝑠𝑡 

Through the introduction of the above five improved strategies, the EHRJAYA is proposed. It is 

worth noting that these strategies are dynamically adaptive, which means that the proposed 

EHRJAYA has strong adaptability when faced with different problems. The complexity of the 
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proposed EHRJAYA is O(𝐺𝑚𝑎𝑥 × 𝑁𝑃 × (𝑙𝑜𝑔(𝑁𝑃) + 𝐷𝑖𝑚),where 𝐺𝑚𝑎𝑥 is the maximum number of 

iterations, 𝐷𝑖𝑚 is the population dimension, and 𝑁𝑃 is the population size. The pseudocode of the 

EHRJAYA is provided by Algorithm 1. It can be seen from Algorithm 1 that at the beginning of the 

iteration, two kinds of adaptation coefficients are calculated and the selection probability of each 

individual is performed. Then, an evolution strategy is randomly selected, and each search agent 

chooses different update formula according to different selection probabilities. Finally, lens 

opposition-based learning is performed. 

5. Experiments and results 

5.1. Parameter settings and PV model selection 

In order to verify the performance of the proposed EHRJAYA algorithm, adaptive guided 

differential evolution algorithm (AGDE) [46], multiple learning backtracking search algorithm 

(MLBSA) [47], triple archives particle swarm optimization (TAPSO) [48], generalized oppositional 

teaching learning-based optimization (GOTLBO) [49], improved JAYA optimization algorithm 

(IJAYA) [50], Rao-1, improved teaching-learning-based optimization (ITLBO) [51], JAYA, 

performance-guided JAYA algorithm (PGJAYA) [52], and teaching-learning-based artificial bee 

colony algorithms (TLABC) [53] are selected as comparison algorithms. The setting of specific 

parameters is shown in Table 1. The maximum number of evaluations is set to 30000 for the 

single-diode, the double-diode, Photowatt-PWP201, STM6-40/36 and STP6-120/36. All experiments 

are run 30 times. All of the simulation experiments would be carried out with HP DL380 Gen 10 

server with 32GB RAM and Intel Xeon Bronze 3106×2 cores, and MATLAB 2017b software. 

Three different PV models are chosen to test the performance of the EHRJAYA on four PV 

datasets. For single-diode and double-diode model, R.T.C France solar cell of the 57 mm diameter 

commercial is selected. For the PV module model, monocrystalline STM6-40/36 and polycrystalline 

STP6-120/36 is selected. The setting of specific relevant parameters is presented in Tables 2 and 3.  

Table 1. Parameter settings of algorithms. 

Algorithm Parameter 

EHRJAYA 𝑁𝑃 = 50 

PGJAYA 𝑁𝑃 = 50 

JAYA 𝑁𝑃 = 50 

AGDE 𝑁𝑃 = 50, ε = 0.01 

TLABC 𝑁𝑃 = 50, 𝑙𝑖𝑚𝑖𝑡 = 200, 𝐹 = 𝑟𝑎𝑛𝑑(0,1) 

MLBSA 𝑁𝑃 = 50, 𝜀 = 0.01 

TAPSO 𝑁𝑃 = 50, 𝜔 = 0.7298, 𝑃𝐶 = 0.5, 𝑃𝑚 = 0.02 

GOTLBO 𝑁𝑃 = 50, 𝐽𝑟 = 0.3 

IJAYA 𝑁𝑃 = 50 

Rao-1 𝑁𝑃 = 50 

ITLBO 𝑁𝑃 = 50 
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Table 2. Correlation data of three PV models. 

Parameter The single/double-diode model Photowatt-PWP201 STM6-40/36 STP6-120/36 

NP 1 1 1 1 

NS 1 36 36 36 

Data Volume 26 25 20 24 

temperature 25℃ 45℃ 51℃ 55℃ 

Radiance 1000 W/m² 1000 W/m² 1000 W/m² 1000 W/m² 

Table 3. Parameter settings of three PV models. 

Parameter R.T.C. France solar cell Photowatt-PWP201 STM6-40/36 STP6-120/36 

 LB UB LB UB LB UB LB UB 

𝑰𝒑𝒗(A) 0 1 0 2 0 2 0 8 

𝑰𝒔𝒅𝟏
, 𝑰𝒔𝒅𝟐

, 𝑰𝒔𝒅(𝝁A) 0 1 0 50 0 50 0 50 

𝑹𝑷(Ω) 0 100 0 2 0 1000 0 1500 

𝑹𝑺(Ω) 0 0.5 0 2000 0 0.36 0 0.36 

𝒏𝟏, 𝒏𝟐, 𝒏 1 2 1 50 1 60 1 50 

5.2. Experimental results of the single-diode model 

For the single diode model, the extracted parameters and the corresponding RMSE are shown in 

Table 4. All algorithms except IJAYA and TAPSO obtained the best RMSE. It is preliminarily verified 

that the performance of the EHRJAYA does not lose to other algorithms on the single-diode model. 

The superiority of the algorithm in the process of extracting parameters of this model can be 

proved by the convergence analysis. The convergence curve is shown in Figure 1. From the details in 

the Figure 1, it can be seen that the proposed EHRJAYA converges faster and performs better than 

other comparison algorithms on the single-diode model. 

These extracted parameters cannot be intuitively seen to be correct. Therefore, these parameters 

are re-substituted into the objective function, and the simulated current and power values are 

re-calculated. The results are shown in Figure 2. The fit of the simulated and measured values is very 

high, which indirectly proves the accuracy of the algorithm. 

Table 4. Extracted parametric results on the single-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

EHRJAYA 7.60775530E-01 3.23020841E-01 3.63770923E-02 5.37185275E+01 1.48118359E+00 9.86021878E-04 

PGJAYA 7.60775530E-01 3.23020839E-01 3.63770922E-02 5.37185235E+01 1.48118360E+00 9.86021878E-04 

JAYA 7.60775530E-01 3.23020833E-01 3.63770924E-02 5.37185272E+01 1.48118360E+00 9.86021878E-04 

AGDE 7.60775530E-01 3.23020816E-01 3.63770925E-02 5.37185260E+01 1.48118359E+00 9.86021878E-04 

TLABC 7.60775530E-01 3.23020824E-01 3.63770925E-02 5.37185285E+01 1.48118359E+00 9.86021878E-04 

MLBSA 7.60677240E-01 3.79295956E-01 3.57846147E-02 5.98687132E+01 1.49747817E+00 9.86021878E-04 

TAPSO 7.60799109E-01 3.29069246E-01 3.63049519E-02 5.40075682E+01 1.48305900E+00 9.86023131E-04 

GOTLBO 7.60677240E-01 3.79295956E-01 3.57846147E-02 5.98687132E+01 1.49747817E+00 9.86021878E-04 

IJAYA 7.60753937E-01 3.33910823E-01 3.62442162E-02 5.47278261E+01 1.48452218E+00 9.89877058E-04 

Rao-1 7.60684299E-01 4.59902816E-01 3.49183645E-02 6.51608749E+01 1.51766650E+00 9.86021878E-04 

ITLBO 7.60799109E-01 3.29069246E-01 3.63049519E-02 5.40075682E+01 1.48305900E+00 9.86021878E-04 
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Figure 1. Comparison of algorithms on the convergence curve on the single-diode model. 

 

(a)                                      (b)  

Figure 2. The Fitting curve between the measured data and the simulated data is 

obtained by the EHRJAYA on the single-diode model: (a) Fitting curve of output current on 

the single-diode model, (b) Fitting curve of output power on the single-diode model. 

5.3. Experimental results of the double-diode model 

For the double-diode model, the parameters that need to be extracted become seven, both the 

complexity of the problem and the requirements for the algorithm are very high. The extracted seven 

parameters and their corresponding the RMSE are shown in Table 5. Similarly, the best RMSE is 

obtained by the EHRJAYA. This proves that the EHRJAYA still has superior performance on 

complex models. 

From the convergence curve in Figure 3, it can be seen that the EHRJAYA has a faster 
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convergence speed and higher level of performance on complex models. 

Moreover, the correctness of the extracted 7 parameters is also verified. The fitted curve of the 

simulated and measured values is shown in Figure 4. As can be seen from the figure, the degree of 

fitting is very high and the extraction parameters are very accurate. This further proves that the 

algorithm also has superior performance in handling complex models. 

 

Figure 3. Comparison of algorithms on the convergence curve on the double-diode model. 

  

(a)                                       (b)  

Figure 4. The Fitting curve between the measured data and the simulated data is 

obtained by the EHRJAYA on the double-diode model: (a) Fitting curve of output current 

on the double-diode model, (b) Fitting curve of output current on the double-diode model. 
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Table 5. Extracted parametric results on the double-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅𝟏
(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏𝟏 𝑰𝒔𝒅𝟐

(𝝁A) 𝒏𝟐 RMSE 

EHRJAYA 7.60781258E-01 7.47538298E-01 3.67396247E-02 5.54786495E+01 1.99996900E+00 2.26166373E-07 1.45108745E+00 9.82484851E-04 

PGJAYA 7.60782691E-01 9.92185064E-01 3.68703169E-02 5.61498543E+01 1.99983984E+00 1.98907570E-07 1.44043723E+00 9.82943724E-04 

JAYA 7.60779768E-01 2.19514534E-01 3.67330644E-02 5.54364923E+01 1.44916774E+00 6.46927132E-07 1.94399658E+00 9.83141687E-04 

AGDE 7.60464543E-01 3.09640419E-04 3.52271922E-02 6.42351712E+01 1.61543153E+00 4.32189133E-07 1.51111988E+00 9.83079356E-04 

TLABC 7.60755291E-01 4.29452667E-01 3.67026694E-02 5.52382559E+01 1.83765086E+00 2.15082897E-07 1.44889303E+00 9.84565015E-04 

MLBSA 7.60318211E-01 5.97174284E-01 3.36845757E-02 9.16732420E+01 1.54737246E+00 1.59162846E-07 1.93634296E+00 9.82682288E-04 

TAPSO 7.60289000E-01 4.99352011E-01 3.46531370E-02 7.78089094E+01 1.52627417E+00 1.21692088E-10 1.75688634E+00 9.85014194E-04 

GOTLBO 7.60464543E-01 3.09640419E-04 3.52271922E-02 6.42351712E+01 1.61543153E+00 4.32189133E-07 1.51111988E+00 9.84454849E-04 

IJAYA 7.60416869E-01 2.32769739E-01 3.57427014E-02 6.87619507E+01 1.60252267E+00 2.22831049E-07 1.47085017E+00 9.95452170E-04 

Rao-1 7.60865496E-01 3.24116226E-01 3.64840355E-02 5.21341610E+01 1.48396790E+00 6.23455807E-10 1.26524009E+00 9.84037665E-04 

ITLBO 7.60289000E-01 4.99352011E-01 3.46531370E-02 7.78089094E+01 1.52627417E+00 1.21692088E-10 1.75688634E+00 9.83052011E-04 

 

5.4. Experimental results of the Photowatt-PWP201 

For the Photowatt-PWP201, this is a PV module model. The extracted parameters and 

corresponding RMSE are shown in Table 6. The best RMSE is obtained by algorithms other than 

TAPSO and IJAYA. The best RMSE is obtained by the EHRJAYA using 20,000 evaluations. This 

means that the EHRJAYA is still competitive when faced with PV module models. 

The convergence curve is shown in Figure 5. The proposed EHRJAYA still converges very fast, 

and it is worth noting that the TLABC also converges very fast. 

In order to verify the accuracy of the extracted parameters, Figure 6 shows the fitted curve of 

the simulated and measured values. It can be seen from Figure 6 that the fitting degree of the curve is 

very high, which means that the EHRJAYA also has very high accuracy in the parameter extraction 

of the PV module model. 

 

Figure 5. Comparison of algorithms on the convergence curve on the Photowatt-PWP201. 
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Table 6. Extracted parametric results on the Photowatt-PWP201 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

EHRJAYA 1.03051430E+00 3.48226293E-00 1.20127100E+00 9.81982222E+02 4.86428349E+01 2.42507487E-03 

PGJAYA 1.03051430E+00 3.48226304E-00 1.20127100E+00 9.81982241E+02 4.86428350E+01 2.42507487E-03 

JAYA 1.03051430E+00 3.48226296E-00 1.20127101E+00 9.81982252E+02 4.86428349E+01 2.42507487E-03 

AGDE 1.03051430E+00 3.48226270E-00 1.20127102E+00 9.81982290E+02 4.86428346E+01 2.42507487E-03 

TLABC 1.03051430E+00 3.48226291E-00 1.20127101E+00 9.81982283E+02 4.86428349E+01 2.42507487E-03 

MLBSA 1.03072874E+00 3.23284848E-00 1.20878887E+00 9.23249849E+02 4.83597087E+01 2.42507487E-03 

TAPSO 1.03051430E+00 3.48226322E-00 1.20127100E+00 9.81982348E+02 4.86428352E+01 2.43611127E-03 

GOTLBO 1.03054073E+00 3.46271957E-00 1.20175352E+00 9.76177979E+02 4.86213220E+01 2.42507487E-03 

IJAYA 1.03050146E+00 3.49374291E-00 1.20088384E+00 9.84565626E+02 4.86554782E+01 2.42621415E-03 

Rao-1 1.03051430E+00 3.48226270E-00 1.20127102E+00 9.81982290E+02 4.86428346E+01 2.42507487E-03 

ITLBO 1.03051430E+00 3.48226270E-00 1.20127102E+00 9.81982290E+02 4.86428346E+01 2.42507487E-03 

 

  

(a)                                      (b)  

Figure 6. The Fitting curve between the measured data and the simulated data is 

obtained by the EHRJAYA on the Photowatt-PWP201: (a) Fitting curve of output current 

on the Photowatt-PWP201, (b) Fitting curve of output power on the Photowatt-PWP201. 

5.5. Experimental results of the STM6-40/36 

Table 7. Extracted parametric results on the STM6-40/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

EHRJAYA 1.66390478E+00 1.73865695E-00 4.27377121E-03 1.59282944E+01 1.52030293E+00 1.72981371E-03 

PGJAYA 1.66390478E+00 1.73865682E-00 4.27377142E-03 1.59282938E+01 1.52030292E+00 1.72981371E-03 

JAYA 1.66390478E+00 1.73865689E-00 4.27377127E-03 1.59282940E+01 1.52030292E+00 1.72981371E-03 

AGDE 1.66193319E+00 3.33258320E-00 2.23208753E-03 2.07914452E+01 1.59536111E+00 1.72981371E-03 

TLABC 1.66391959E+00 1.73165475E-00 4.28565149E-03 1.58999591E+01 1.51986178E+00 1.72985308E-03 

MLBSA 1.66161097E+00 3.97763969E-00 1.66711256E-03 2.27245278E+01 1.61707253E+00 1.73031964E-03 

TAPSO 1.66205955E+00 3.16226227E-00 2.35677203E-03 2.03848642E+01 1.58894553E+00 5.92497629E-03 

GOTLBO 1.66193319E+00 3.33258320E-00 2.23208753E-03 2.07914452E+01 1.59536111E+00 1.72981397E-03 

IJAYA 1.66225636E+00 4.63423560E-00 6.70300559E-04 2.10617576E+01 1.63649780E+00 2.59459752E-03 

Rao-1 1.66199771E+00 3.40742177E-00 2.06225519E-03 2.06586741E+01 1.59812395E+00 1.72981697E-03 

ITLBO 1.66398813E+00 1.70380605E-00 4.34302882E-03 1.58195363E+01 1.51808366E+00 1.72981371E-03 
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For the STM6-40/36, this is a type of PV module model, which also has a certain complexity. 

The extracted parameters and the corresponding best RMSE are shown in Table 7. In this model, the 

best RMSE is only obtained by the EHRJAYA, PGJAYA, JAYA, AGDE, and ITLBO. 

The convergence curve of this model is shown in Figure 7. It can be seen intuitively in the 

figure that the EHRJAYA performs better than other comparison algorithms. 

The extracted parameters need to be further verified for correctness. The fitting curve of the 

simulated value and the measured value is shown in Figure 8. Similarly, the fit performed very well, 

so the extracted parameters are fairly accurate. 

 

Figure 7. Comparison of algorithms on the convergence curve on the STM6-40/36. 

  

(a)                                      (b)  

Figure 8. The Fitting curve between the measured data and the simulated data is 

obtained by the EHRJAYA on the STM6-40/36: (a) Fitting curve of output current on the 

STM6-40/36, (b) Fitting curve of output power on the STM6-40/36. 
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5.6. Experimental results of the STP6-120/36 

For the STP6-120/36, the extracted parameters and corresponding RMSE are shown in Table 8. In this 

model, the best RMSE is obtained only by EHRJAYA, PGJAYA, JAYA, AGDE, Rao-1 and ITLBO. 

The convergence curve of this model is shown in Figure 9. The EHRJAYA shows absolute 

advantages compared with other contrasting algorithms. 

The fitting curves of output current and power are shown in Figure 10. Similarly, the simulated 

values are in good agreement with the measured values, which means the fit is very good. 

 

Figure 9. Comparison of algorithms on the convergence curve on the STP6-120/36. 

  

(a)                                       (b)  

Figure 10. The Fitting curve between the measured data and the simulated data is 

obtained by the EHRJAYA on the STP6-120/36: (a) Fitting curve of output current on the 

STP6-120/36, (b) Fitting curve of output power on the STP6-120/36. 
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Table 8. Extracted parametric results on the STP6-120/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

EHRJAYA 7.47252991E+00 2.33499502E-00 4.45946346E-03 2.22199074E+02 1.26010347E+00 1.66006031E-02 

PGJAYA 7.47252991E+00 2.33499531E-00 4.59463455E-03 2.22199147E+01 1.26010349E+00 1.66006031E-02 

JAYA 7.47252992E+00 2.33499502E-00 4.59463460E-03 2.22199062E+01 1.26010348E+00 1.66006031E-02 

AGDE 7.48228394E+00 6.16278443E-00 4.09192670E-03 1.23156031E+03 1.34692010E+00 1.66006031E-02 

TLABC 7.47290405E+00 2.36521524E-00 4.58821357E-03 2.21050016E+01 1.26118315E+00 1.66021524E-02 

MLBSA 7.47050390E+00 4.14318493E-00 4.31875565E-03 3.79926319E+02 1.31008048E+00 1.66318539E-02 

TAPSO 7.47290405E+00 2.36521524E-00 4.58821357E-03 2.21050016E+01 1.26118315E+00 7.94391655E-02 

GOTLBO 7.46321879E+00 3.29196793E-00 4.42563991E-03 9.34597784E+02 1.28948549E+00 1.66009776E-02 

IJAYA 7.47890441E+00 7.31117235E-00 3.99767796E-03 1.44316136E+03 1.36371602E+00 1.69032348E-02 

Rao-1 7.48759808E+00 5.44470060E-00 4.09637821E-03 2.34570146E+01 1.33515922E+00 1.66006031E-02 

ITLBO 7.46316616E+00 3.37366836E-00 4.40676487E-03 6.31085686E+02 1.29160745E+00 1.66006031E-02 

5.7. Statistical analysis 

The superiority of the algorithm cannot be proved from the above-mentioned aspect of obtaining 

the best RMSE alone. Therefore, it is necessary to analyze the RMSE obtained by all algorithms. As 

shown in Table 9, the RMSE includes the best value, the worst value, the mean value, and the 

standard deviation in 30 experiments, and the Wilcoxon Signed Ranks test is performed to judge the 

superiority of the algorithm. From the data in the table, the following conclusions can be drawn: 

⚫ For the single-diode model (SDM), the EHRJAYA, PGJAYA, JAYA, AGDE and ITBLO all 

perform very well in four aspects of RMSE, so from the p-value, the results of these five 

algorithms are very similar. However, as can be seen from the value of the standard 

deviation (1.10513598E-17), EHRJAYA is more stable than the other four algorithms. It is 

worth noting that the EHRJAYA is very different from the other algorithms except these four 

algorithms. From the ranking, it can be seen that the EHRJAYA shows very strong 

competitiveness, and among these comparison algorithms, it ranks first with the other four. 

In summary, the proposed EHRJAYA performs better than other algorithms in SDM. 

⚫ For the double-diode model (DDM), only the EHRJAYA and ITBLO perform relatively well. 

However, from the value of the standard deviation (1.60552555E-06), EHRJAYA is more 

stable than ITBLO. It can be seen from the p-value that the results of the EHRJAYA are 

different from those of the algorithms except the ITLBO. On the other hand, it can be seen 

from the ranking that the EHRJAYA ranks first among all algorithms. Therefore, in summary, 

the EHRJAYA performs best compared to other algorithms on the double-diode model. 

⚫ For the Photowatt-PWP201 (PWP), only the EHRJAYA, JAYA, AGDE and ITBLO perform 

well in four aspects of RMSE. However, similarly, from the value of the standard deviation 

(1.27666432E-17), EHRJAYA is more stable than JAYA, AGDE and ITBLO. From the 

p-value, it can be seen that the results of the EHRJAYA are different from other comparison 

algorithms except these three algorithms, because these three algorithms show better 

performance, and the difference in results is not obvious. From the ranking, the EHRJAYA 

is tied for the first place with these three algorithms among all the algorithms. Therefore, the 

proposed EHRJAYA performs best compared to other algorithms in PWP. 

⚫ For the STM6-40/36 (STM6), the EHRJAYA performs the best in terms of the four aspects 

(including Best, Worst, Mean, Std) of RMSE, and it ranks first among all algorithms in 

terms of ranking. It can be seen from the p-value that the results of the EHRJAYA are 
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different from that of most algorithms. Therefore, in this model, the EHRJAYA performs the 

best compared to other comparison algorithms. 

⚫ For the STP6-120/36 (STP6), the EHRJAYA performs the best in the four aspects (including 

Best, Worst, Mean, Std) of RMSE at the same time. From the ranking point of view, the 

EHRJAYA is better than other algorithms, ranking first among all algorithms. The results of 

the EHRJAYA are different from the results of all the compared algorithms as can be seen 

from the p-values. Therefore, in this model, the EHRJAYA is still the best performer. 

Table 9. Statistical results of RMSE of different algorithms in different models. 

Model Algorithm RMSE Wilcoxon Signed Ranks test 

Best Worst Mean Std R+ R- p-value Ranking Sig. 

SDM EHRJAYA 9.86021878E-04 9.86021878E-04 9.86021878E-04 1.10513598E-17    4.1167  

PGJAYA 9.86021878E-04 9.86021893E-04 9.86021878E-04 2.80277724E-12 232.5 232.5 ≥ 0.2 4.1167 ≈ 

JAYA 9.86021878E-04 9.86021878E-04 9.86021878E-04 1.91861852E-17 232.5 232.5 ≥ 0.2 4.1167 ≈ 

AGDE 9.86021878E-04 9.86021878E-04 9.86021878E-04 4.30733413E-17 232.5 232.5 ≥ 0.2 4.1167 ≈ 

TLABC 9.86021878E-04 1.40946520E-03 1.04578461E-03 1.03870962E-04 447.0 18.0 1.92E-06 8.1667 + 

MLBSA 9.86021878E-04 1.02012387E-03 9.87302147E-04 6.22172770E-06 412.5 52.5 1.73E-06 6.35 + 

TAPSO 9.86023131E-04 2.18902086E-03 1.15246672E-03 3.14762098E-04 465.0 0.0 1.73E-06 9.6667 + 

GOTLBO 9.86021878E-04 1.70888890E-03 1.03074464E-03 1.37930201E-04 367.0 68.0 1.92E-06 6.4167 + 

IJAYA 9.89877058E-04 2.13601446E-03 1.22589718E-03 2.51763833E-04 465.0 0.0 1.73E-06 10.3 + 

Rao-1 9.86021878E-04 1.02442569E-03 9.87303865E-04 7.01119985E-06 262.0 203.0 1.67E-04 4.5167 + 

ITLBO 9.86021878E-04 9.86021878E-04 9.86021878E-04 2.53140932E-17 232.5 232.5 ≥ 0.2 4.1167  

DDM EHRJAYA 9.82489448E-04 9.87630370E-04 9.84816894E-04 1.60552555E-06    2.3333  

PGJAYA 9.82943724E-04 2.31019435E-03 1.12878237E-03 3.25009725E-04 454.0 11.0 2.96E-03 6.4333 + 

JAYA 9.83141687E-04 1.11973139E-03 9.91288054E-04 2.47521608E-05 362.0 73.0 3.49E-03 4.1 + 

AGDE 9.83079356E-04 1.41337194E-03 1.03070996E-03 1.06602868E-04 399.0 66.0 4.11E-03 4.1 + 

TLABC 9.84565015E-04 1.66517270E-03 1.10590659E-03 1.53534053E-04 462.0 3.0 3.11E-05 6.9333 + 

MLBSA 9.82682288E-04 1.31622002E-03 1.00553814E-03 6.15956153E-05 418.0 47.0 7.71E-04 4.9333 + 

TAPSO 9.85014194E-04 2.02980721E-03 1.35571098E-03 3.02282845E-04 462.0 3.0 1.73E-06 9.0667 + 

GOTLBO 9.84454849E-04 2.51787981E-03 1.22496555E-03 3.98438216E-04 464.0 1.0 3.18E-06 7.1667 + 

IJAYA 9.95452170E-04 2.37365389E-03 1.48027649E-03 3.46315975E-04 465.0 0.0 1.73E-06 9.9 + 

Rao-1 9.84037665E-04 2.99488092E-03 1.24774598E-03 4.17692613E-04 456.0 9.0 2.35E-06 7.3333 + 

ITLBO 9.83052011E-04 9.87669922E-04 9.85556248E-04 9.16514133E-06 354.0 81.0 3.05E-03 3.7 + 

PWP EHRJAYA 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.27666432E-17    4.1667  

PGJAYA 2.42507487E-03 4.19348570E-03 2.54627251E-03 3.74503998E-04 330.0 105.0 1.05E-04 6.0667 + 

JAYA 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.51268278E-17 232.5 232.5 ≥ 0.2 4.1667 ≈ 

AGDE 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.89117715E-17 232.5 232.5 ≥ 0.2 4.1667 ≈ 

TLABC 2.42507487E-03 2.75840377E-03 2.44463842E-03 6.26870189E-05 426.0 39.0 1.73E-06 6.75 + 

MLBSA 2.42507487E-03 2.50656518E-03 2.42962914E-03 1.66464730E-05 338.5 126.5 1.73E-06 5.3833 + 

TAPSO 2.43611127E-03 1.21730621E-02 3.68602259E-03 2.23096076E-03 465.0 0.0 1.73E-06 10.5 + 

GOTLBO 2.42507487E-03 2.55533866E-03 2.43878597E-03 2.91304642E-05 397.0 68.0 2.01E-06 6.4333 + 

IJAYA 2.42621415E-03 4.57482543E-03 2.56071055E-03 3.86826839E-04 465.0 0.0 1.73E-06 9.8 + 

Rao-1 2.42507487E-03 4.45239447E-03 2.49265219E-03 3.70136226E-04 232.0 203.0 6.32E-04 4.4 ≈ 

ITLBO 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.35311403E-17 232.5 232.5 ≥ 0.2 4.1667 ≈ 

STM6 EHRJAYA 1.72981371E-03 1.72981371E-03 1.72981371E-03 7.43618690E-18    1.9833  

PGJAYA 1.72981371E-03 2.87306133E-03 1.86924081E-03 2.84969156E-04 426.0 39.0 1.73E-06 3.9 + 

JAYA 1.72981371E-03 1.94536126E-01 1.32040335E-02 3.63281800E-02 447.0 18.0 4.73E-06 6.2167 + 

AGDE 1.72981371E-03 2.20591920E-03 1.74954872E-03 8.73082253E-05 407.5 27.5 1.73E-06 3.3833 + 

TLABC 1.72985308E-03 5.82080492E-03 2.51382277E-03 7.43167719E-04 465.0 0.0 1.73E-06 6.4333 + 

MLBSA 1.73031964E-03 2.61729089E-03 2.08481135E-03 2.26380918E-04 465.0 0.0 1.73E-06 5.7667 + 

TAPSO 5.92497629E-03 3.25889564E-01 5.10311809E-02 5.48221079E-02 465.0 0.0 1.73E-06 10.6667 + 

GOTLBO 1.72981397E-03 1.20576548E-01 1.03111883E-02 2.20818747E-02 465.0 0.0 1.73E-06 8.4833 + 

IJAYA 2.59459752E-03 5.33629220E-03 3.54989942E-03 5.77839624E-04 465.0 0.0 1.73E-06 8.3333 + 

Rao-1 1.72981697E-03 6.59098520E-02 1.77343532E-02 2.32076442E-02 465.0 0.0 1.73E-06 8.6333 + 

ITLBO 1.72981371E-03 1.76726899E-03 1.73111707E-03 6.83427314E-06 259.0 175.5 ≥ 0.2 2.2 ≈ 

STP6 EHRJAYA 1.66006031E-02 1.66006031E-02 1.66006031E-02 1.77966291E-16    2.0333  

PGJAYA 1.66006031E-02 3.38972496E-02 1.77225050E-02 3.60388252E-03 349.5 85.5 1.73E-06 3.7167 + 

JAYA 1.66006031E-02 9.48164230E-01 1.09094120E-01 2.75490691E-01 407.5 27.5 3.14E-05 5.25 + 

AGDE 1.66006031E-02 1.72180964E-02 1.66286480E-02 1.13010775E-04 460.0 5.0 1.73E-06 4 + 

TLABC 1.66021524E-02 3.04170354E-02 2.13527483E-02 3.92803569E-03 465.0 0.0 1.73E-06 7.6333 + 

MLBSA 1.66318539E-02 4.15852992E-02 1.83916953E-02 4.45656162E-03 465.0 0.0 1.73E-06 6.7333 + 

TAPSO 7.94391655E-02 1.47184780E+00 8.62747692E-01 3.96609968E-01 465.0 0.0 1.73E-06 10.9 + 

GOTLBO 1.66009776E-02 6.22455148E-01 6.38093633E-02 1.31746769E-01 465.0 0.0 1.73E-06 8.5333 + 

IJAYA 1.69032348E-02 4.04018974E-02 2.86892099E-02 7.06230859E-03 465.0 0.0 1.73E-06 8.7333 + 

Rao-1 1.66006031E-02 7.74018520E-01 6.85545719E-02 1.90221137E-01 463.5 1.5 1.73E-06 6.1667 + 

ITLBO 1.66006031E-02 1.66071028E-02 1.66008751E-02 1.20890475E-06 289.5 175.5 4.26E-03 2.3 + 
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In conclusion, after the statistical analysis of the five models, the EHRJAYA is better than the 

comparison algorithm in the comprehensive performance. 

5.8. Comparison of the EHRJAYA with other well-known improved algorithms 

To further prove the superiority of the EHRJAYA algorithm, in this section, the EHRJAYA 

algorithm will be compared with some well-known improved algorithms, including self-adaptive 

teaching-learning-based optimization (SATLBO), chaotic whale optimization algorithm (CWOA), 

hybrid differential evolution with whale optimization algorithm (DE/WOA), opposition-based whale 

optimization algorithm (OBWOA), hybridizing cuckoo search algorithm with biogeography-based 

optimization (BHCS), flexible particle swarm optimization algorithm (FPSO), improved Lozi map 

based chaotic optimization Algorithm (ILCOA), backtracking search algorithm with reusing 

differential vectors (BSARDVs), similarity-guided differential evolution (SGDE), classified 

perturbation mutation based particle swarm optimization algorithm (CPMPSO), niche-based particle 

swarm optimization in parallel computing architecture (NPSOPC), backtracking search algorithm 

with competitive learning (CBSA), comprehensive learning JAYA (CLJAYA), hybrid adaptive 

teaching–learning-based optimization and differential evolution (ATLDE), enhanced JAYA algorithm 

(EJAYA), enhanced adaptive butterfly optimization algorithm (EABOA), shuffled frog leaping with 

memory pool (SFLBS), reinforcement learning-based differential evolution (RLDE), improved 

equilibrium optimizer (IEO), modified teaching learning based optimization (MTLBO), modified Rao-1 

algorithm (MRao-1). From Table 10 to Table 14 the following conclusions can be drawn: 

⚫ For the single-diode model, all algorithms except the NPSOPC can obtain the best RMSE, in 

addition, only the proposed EHRJAYA consumes the least evaluation times, only 20,000 times. 

⚫ For the double-diode model, the best RMSE is obtained by the DE/WOA, CPMPSO, CBSA, 

ATLDE, EJAYA, RLDE and EHRJAYA, but still the EHRJAYA consumes the least 

computing resources, and the evaluation times are 20,000. 

⚫ For the Photowatt-PWP201, the best RMSE is obtained by the EHRJAYA and other 

well-known algorithms, however, the EHRJAYA uses fewer evaluations than other algorithms. 

⚫ For the STM6-40/36, there are certain challenges in this model. Only half of the algorithms 

achieved the best RMSE, including BHCS, ELBA, ATLDE, EJAYA, RLDE, IEO and 

EHRJAYA. It is worth noting that among these algorithms, the proposed EHRJAYA is second 

only to ELBA in the number of evaluations used. From the no free lunch theorems [54], this is 

acceptable, and there is currently no single algorithm that can solve all problems perfectly. 

⚫ For the STP6-120/36, the best RMSEs are obtained for all algorithms except the CWOA. 

Similarly, still only the EHRJAYA uses the least computing resources, and the number of 

evaluations is only 26,000. 

Table 10. Comparison of extracted parameters between the EHRJAYA and other mature 

algorithms on the single-diode model. 

Algorithm 𝐼𝑝𝑣(A) 𝐼𝑠𝑑(𝜇A) 𝑅𝑆(Ω) 𝑅𝑃(Ω) n RMSE NFES 

SATLBO (2017) [55] 0.7608 0.3232 0.0363 53.7295 1.4812 9.8602E-04 50,000 

CWOA (2017) [56] 0.76077 0.3239 0.03636 53.742465 1.4812 9.8602E-04 50,000 

DE/WOA (2018) [57] 0.760776 0.323021 0.036377 53.718524 1.481184 9.8602E-04 50,000 

OBWOA (2018) [12] 0.76077 0.3232 0.0363 53.6836 1.5208 9.8602E-04 1,500,000 

     Continued on next page 
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Algorithm 𝐼𝑝𝑣(A) 𝐼𝑠𝑑(𝜇A) 𝑅𝑆(Ω) 𝑅𝑃(Ω) n RMSE NFES 

BHCS (2019) [58] 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04 50,000 

FPSO (2019) [59] 0.76077552 0.323020 0.036370 53.718520 1.48110817 9.8602E-04 NA 

ILCOA (2019) [60] 0.760775 0.323021 0.036377 53.718679 1.481108 9.8602E-04 10,000*NP 

BSARDVs (2020) [61] 0.760776 0.323021 0.036377 53.718520 1.481184 9.8602E-04 25,000 

SGDE (2020) [13] 0.76078 0.32302 0.036377 53.71853 1.481184 9.8602E-04 50,000 

CPMPSO (2020) [62] 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04 50,000 

NPSOPC (2020) [63] 0.7608 0.3325 0.03639 53.7583 1.4814 9.8856E-04 NA 

CBSA (2020) [64] 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04 50,000 

ATLDE (2020) [18] 0.76077553 0.32302082 0.03637712 53.71852699 1.48118359 9.8602E-04 30,000 

EJAYA (2021) [43] 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04 30,000 

EABOA (2021) [65] 0.760771077 0.322929 0.036379593 53.76600144 1.481153457 9.8602E-04 50,000 

SFLBS (2021) [66] 0.76078 0.323021 0.03638 53.7185 1.481184 9.8602E-04 60,000 

RLDE (2021) [67] 0.7608 0.3231 0.0364 53.7185 1.4812 9.8602E-04 30,000 

EHRJAYA 0.7607529 0.3297826 0.036291482 53.928534 1.48328376 9.8602E-04 20,000 

Table 11. Comparison of extracted parameters between the EHRJAYA and other mature 

algorithms on the double-diode model. 

Algorithm 𝐼𝑝𝑣(A) 𝐼𝑠𝑑1
(𝜇A) 𝑅𝑆(Ω) 𝑅𝑃(Ω) n1 𝐼𝑠𝑑2

(𝜇A) n2 RMSE NFES 

SATLBO (2017) [55] 0.7608 0.2509 0.0366 55.1170 1.4598 0.5454 1.9994 9.8280E-04 50,000 

CWOA (2017) [56] 0.76077 0.24150 0.03666 55.20160 1.45651 0.60000 1.98990 9.8272E-04 50,000 

DE/WOA (2018) [57] 0.760781 0.225974 0.036740 55.485437 1.451017 0.749346 2.000000 9.8248E-04 50,000 

OBWOA (2018) [12] 0.76076 0.22990 0.03671 55.3990 1.49154 0.61956 2.000000 9.8251E-04 1,500,000 

BHCS (2019) [58] 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8249E-04 50,000 

FPSO (2019) [59] 0.76078 0.22731 0.036737 55.39230 1.45160 0.72786 1.99969 9.8253E-04 NA 

ILCOA (2019) [60] 0.76078 0.22601 0.036739 55.5320 1.45101 0.74921 2.00000 9.8257E-04 10,000*NP 

SGDE (2020) [13] 0.76079 0.28070 0.036480 55.3667 1.46966 0.24996 1.93228 9.8441E-04 50,000 

CLJAYA (2020) [68] 0.76078 0.226051 0.03674 55.48599 1.45105 0.74876 1.99999 9.8249E-04 20,000 

CPMPSO (2020) [62] 0.76078 0.74935 0.3674 55.48544 2 0.22597 1.45102 9.8248E-04 50,000 

NPSOPC (2020) [63] 0.76078 0.25093 0.3663 55.117 1.45982 0.545418 1.99941 9.8208E-04 NA 

CBSA (2020) [64] 0.76078 0.22597 0.3674 55.48544 1.451017 0.74935 2 9.8248E-04 50,000 

ATLDE (2020) [18] 0.76078 0.22597 0.036740 55.48544744 1.451016 0.74934885 2.00000000 9.8248E-04 30,000 

EJAYA (2021) [43] 0.76078 0.22597 0.03674 55.48509 1.45102 0.74934 2 9.8248E-04 30,000 

EABOA (2021) [65] 0.76082 0.25072 0.03662 55.3660129 1.459884 0.72069 1.99997318 9.8607E-04 50,000 

RLDE (2021) [67] 0.7608 0.226 0.0367 55.4847 2 0.7492 1.451 9.8248E-04 30,000 

EHRJAYA 0.7608 0.1639 0.03648 54.20251 1.841254 0.2801918 1.4698422 9.8248E-04 20,000 

Table 12. Comparison of extracted parameters between the EHRJAYA and other mature 

algorithms on the Photowatt-PWP201. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE NFES 

CLJAYA (2020) [68] 1.030514 3.48226280 1.201271 981.982279 48.64283 2.4251E-03 30,000 

CBSA (2020) [64] 1.0275389 4.747459 1.340999 1087.81738 49.927517 2.4251E-03 25000 

IEO (2020) [69] 1.030514254 3.48 1.201269 981.9956 48.64292 2.4251E-03 1,500,000 

EJAYA (2021) [43] 1.03051 3.48226 1.20127 981.98235 48.64283 2.4251E-03 30,000 

EABOA (2021) [65] 1.0304416 3.5084 1.200630203 991.9830745 48.67132719 2.4251E-03 50,000 

SFLBS (2021) [66] 1.030514 3.48226 1.201271 981.9804 48.6428 2.4251E-03 60,000 

MTLBO (2021) [70] 1.0305143 3.4823 1.201271 981.9823732 48.6428349 2.4251E-03 50,000 

MRao-1(2021) [71] 1.030514 3.4823 1.201271 981.9821 48.64131 2.4251E-03 50,000 

EHRJAYA 1.0305143 3.482263 1.201271 981.982523 48.6428353 2.4251E-03 20,000 

  



5631 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5610–5637. 

Table 13. Comparison of extracted parameters between the EHRJAYA and other mature 

algorithms on the STM6-40/36. 

Algorithm 𝐼𝑝𝑣(A) 𝐼𝑠𝑑(𝜇A) 𝑅𝑆(Ω) 𝑅𝑃(Ω) n RMSE NFES 

CWOA (2017) [56] 1.7 1.6338 0.0050 15.4 1.5 1.8000E-03 50,000 

HFAPS (2018) [72] 1.6663 1.0703 0.24849 490.03 53.016 1.9700E-03 50,000 

OBWOA(2018) [12] 1.6642 1.65025 0.0044 15.5299 1.51424 1.7530E-03 1,500,000 

BHCS (2019) [58] 1.66390 1.73866 0.00427 15.92829 1.52030 1.7298E-03 50,000 

FPSO (2019) [59] 1.2323 7.4732 0.0049 9.6889 1.2086 1.3000E-03 NA 

ILCOA (2019) [60] 1.2001 7.4812 0.0049 9.6991 1.2067 1.6932E-02 10,000*NP 

ELBA (2020) [73] 1.663905 1.738657 0.004274 15.928294 1.520305 1.7298E-03 15,000 

ATLDE (2020) [18] 1.66390478 1.73865697 0.00427377 15.92829439 1.52030293 1.7298E-03 30,000 

EJAYA (2021) [43] 1.6639 1.73866 0.00427 15.92829 1.5203 1.7298E-03 30,000 

RLDE (2021) [67] 1.6639 1.7387 0.00427 15.9283 1.5203 1.7298E-03 30,000 

IEO (2020) [69] 1.663904802 1.74 0.004274 15.92827 1.520303 1.7298E-03 1,500,000 

EHRJAYA 1.663904 1.738619 0.00427383 15.92811 1.5203 1.7298E-03 24,000 

Table 14. Comparison of extracted parameters between the EHRJAYA and other mature 

algorithms on the STP6-120/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE NFES 

CWOA (2017) [56] 7.4760 1.2 0.00000490 9.7942 1.2069 1.7601E-02 50,000 

ITLBO (2019) [51] 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02 50,000 

BHCS (2019) [58] 7.47253 2.33499 0.00459 22.21990 1.26010 1.6601E-02 50,000 

ATLDE (2020) [18] 7.47252992 2.33499485 0.00459463 22.21989607 1.26010347 1.6601E-02 30,000 

EJAYA (2021) [43] 7.47253 2.33499 0.00459 22.21989 1.2601 1.6601E-02 30,000 

RLDE (2021) [67] 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02 30,000 

IEO (2020) [69] 7.472531264 2.23 0.004595 22.21989 1.260101 1.6601E-02 1,500,000 

EHRJAYA 7.472742 2.3668696 0.004588927 22.49115 1.261246 1.6601E-02 26,000 

6. Conclusions and future work 

In order to find an algorithm with better performance for photovoltaic model extraction, an 

enhanced hybrid JAYA and Rao-1 algorithm, called EHRJAYA, is proposed in this paper. In the 

proposed EHRJAYA, the evolution strategies of the two algorithms are mixed, and the population 

diversity of the algorithm is improved. Then, an improved comprehensive learning strategy is 

introduced. Different selection probabilities are assigned to different individuals, which are used to 

select different update formulas to avoid insufficient using of information from the best individual 

and overusing of information from the worst individual. Then, two different adaptive coefficients are 

introduced into the two evolution strategies, so that the overall population tends to the optimal search 

agent and away from the worst search agent. Finally, the combination of linear population reduction 

strategy and dynamic lens opposition-based learning strategy improves the convergence speed of the 

algorithm and the ability to escape from local optimum. Ten well-known algorithms are selected as 

the comparison algorithms for the experiments, and the statistical analysis of the experimental results 

preliminarily proves that the EHRJAYA performs best compared with the comparison algorithms. 

Finally, compared with other well-known reported algorithms, the results further prove that the proposed 

EHRJAYA has strong competitiveness and is in a leading position among the famous algorithms. 

In future work, EHRJAYA will be ready to be used to solve complex problems in higher 

dimensions, or even to create multi-objective versions, and so on. 
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