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Abstract: This study aims to design a generalized fault diagnosis observer (GFDO) and an active 
fault tolerant control system (AFTCS) for external disturbances based on an aircraft control system 
and actuator faults. Unlike the traditional approach that assumes external disturbances are norm 
bounded, the Gronwall Lemma based on the external disturbances constraint condition is modelled 
to satisfy the system stability. Then, the GFDO is designed by two performance indices defined to 
simultaneously estimate system states and faults. In addition, the AFTCS is designed to obtain the 
desired performances in the fault case. When the fault is diagnosed by GFDO, the regular controller 
switches to AFTCS. Finally, an analysis of the performance of the proposed algorithm is discussed 
based on simulations of the F-18 aircraft control system, which illustrates the effectiveness and 
applicability of this method. 
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1. Introduction 

Actuator failures may cause serious performance deterioration of plant control systems or lead to 
systems divergence and catastrophic accidents. Fault diagnosis and fault tolerant control (FTC) 
algorithms for actuator failures are adaptable in the sense that the presence of sensor faults can be 
easily handled by recasting them as actuator faults. Therefore, most existing research results have 
focused on actuator failures [1–4]. Reference [1] reviewed the current state of the art on spacecraft 
attitude FTC design. The existing approaches for FTC can be categorized as fault management 
approaches in engineering, model-based fault detection and diagnosis (FDD), and data-driven-based 
FDD. The paper reviewed the recent spacecraft attitude FTC design methods and concluded that each 
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approach had its own advantages and limitations. A primary goal for fault estimation and fault tolerant 
control algorithm design is to maintain the systems stability or desired performance in the presence of 
faults, especially in safety-critical systems, such as the aircraft control system. The fault of the aircraft 
control system can be characterized by hierarchy and correlativity; in other words, system breakdown 
or even personal injury can be induced by a fault. As a result, a considerable amount of research on 
fault diagnosis for aircraft control systems has been reported in the literature [5–9]. 

A number of approaches to the design of fault tolerant control systems (FTCSs) have been 
published. These methods can be broadly classified into passive FTCSs (PFTCSs) [10–12] and active 
FTCSs (AFTCSs). In [3], PFTCS and AFTCS were analysed and their fundamental components were 
compared from the theoretical perspective which highlighted their advantages and disadvantages. The 
PFTCS is designed off-line and does not access fault information on-line and only performs effectively 
for the presumed faults. In contrast, the AFTCS considers some limitations. In the AFTCS, the fault 
estimation is considered and then the fault tolerant controller synthesized online from the estimated 
fault information estimated is constructed. Therefore, the AFTCS methods satisfy the reliability 
and stability requirements for the aircraft control system. An AFTCS approach offers more 
efficiency than PFTCSs with different types of faults. However, the controller performance is 
primarily dependent on its fault detection and isolation unit for providing timely and accurate fault 
information. Generally, the AFTCS includes learning-based approaches [13–16], full state 
constraints [17], high-gain observers [18], unknown input observers [19,20], robust control [2,12,21–24], 
sliding mode control [25,26] and adaptive control strategies [11,12,27–30]. In [31], a robust adaptive 
fault diagnosis observer was proposed for a nonlinear aircraft system with actuator faults and external 
disturbances. The designed observer exhibits robustness to the disturbances and is sensitive to the 
actuator faults to be detected. However, the supremum of external disturbances is a constant selected at 
random, as described in [31]. Most of the existing research dealt with the constraint condition of the 
external disturbances, as shown in [31], for example, [27]. As a result, we examine the constraint 
condition that satisfies the system stability in this paper. In [12,32], it was assumed that the faults to 
be detected are known a prior. In [33], a robust hybrid observer for a switched linear system with a 
prior known fault was designed, and then the optimal trade-off algorithm between robustness to 
external disturbances and sensitivity to faults was realized by the LMI procedure. Fault estimation in 
the process of fault diagnosis can improve false alarm rates. Therefore, presenting an observer that can 
estimate the fault and states simultaneously is beneficial for the abovementioned fault-tolerant control 
design. In [7,34], the authors provided the state feedback and output feedback fault tolerant controller 
with constant gain matrices. The performance and precision of fault-tolerant controllers for systems 
are governed by the constant gain matrices of the FTC. However, the performance of FTC is not 
ensured by the constant gain. Therefore, the design of AFTCSs is crucial for the high performance 
demands in military applications, such as aircraft control systems. 

The main contributions of this paper are as follows. Our work was motivated by the limitations 
of the references mentioned above, unlike [27,35] we do not assume that the constraint condition of 
external disturbances was known as a priori or even norm bounded, for example, ( ) 6 g . Instead, a 

novel constraint condition that satisfies the system stability requirement is derived in this paper. This 
is the first study to research the external disturbance constraint condition under the design of AFTCS 
background. Moreover, a generalized fault diagnosis observer that can estimate the states and fault 
simultaneously based on Lyapunov stability theory by resorting to the external disturbance information 
derived previously is proposed. To obtain the desired performance fault-tolerant controller, the AFTCS, 
which can adaptively adjust controller parameters and compensate for the fault and external 
disturbances, is used. Furthermore, the proposed algorithm guarantees asymptotical convergence of 
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the states. 
The rest of this paper is organized as follows. The problem and preliminary lemma are briefly 

introduced in Section 2. The external disturbances of the system are analysed in Section 3. The fault 
estimation algorithm is discussed in Section 4. Some main results of the active adaptive fault tolerant 
control design method are proposed in Section 5. An aircraft control example is used to verify the 
effectiveness of the proposed algorithm in Section 6. Finally, conclusions are drawn in Section 7. 

Notations. For a given matrix A  , TA  denotes its transpose. I  denotes the identity matrix with 

appropriate dimensions.  represents the Euclidean norm of vectors or matrices. min ( )   and max ( )   
denote the minimum and maximum eigenvalues of matrix ( ) , respectively. 

2. Preliminaries and problem statement 

The system discussed in this research can be described as (1), which is a linear system with 
actuator faults and external disturbances. 

1( ) ( ) ( ) ( ) ( )t t t t t   x Ax Bu D d Rf                            (1) 

2( ) ( ) ( )t t t y Cx D d                                 (2) 

where ( )tx  represents the state vector, ( )tu and ( )ty  are the control input vector and the measured 
output vector, respectively. ( )td  represents the external disturbance vector. The external disturbance 
vector can also be considered as the unmodelled errors and modelling uncertainties. ( )tf  represents 
the actuator fault that is estimated in this approach. A , B , C , 1D , 2D  and R are known as the constant 
matrices of appropriate dimensions. 

The following standard assumptions are introduced to keep the generality of the linear system 
described above. 

Assumption 1. ( C , A ) is observable, and A is a Hurwitz matrix. 
Assumption 2. ( B , A ) is controllable. 
Assumption 3. The actuator fault ( )tf  is the 1-th time derivative, that is, ( )tf , and is assumed 

to be bounded at the range of the fault occurring time. 
Remark 1. Assumptions 1 and 2 are general in most control system designs, and it is worth noting 

that the supremum of the external disturbances is denoted as 0
[0, ]

sup ( )
t T

t


 d  in most papers; 0  is the 

constant selected without the theory basis. However, whether the selected 0   affects the system 

deserves further study. Research results will be given in the next section. Fortunately, there are large 
classes of faults in real composed in Assumption 3. 

Definition 1. X is defined as the Banach space, and we denote ( ), 0T t t  as the bounded linear 

operator family X→X. The following conditions exist to ensure that  ( ), 0T t t  is a bounded linear 

operator semigroup. If the following equations hold: 

① (0)T  I ; 

② ( ) ( ) ( ) ( ) ( ) ( , 0)T t s T t T s T s T t t s    ; 

③ 
0

lim ( ) 0 ,
t

T t x x x X


   ; 

Definition 2. The AFTCS for systems (1) and (2) is to design AFTC law ( ( ), ( ))t t u u x f such that 
for (0) n x and ( )t f F , the trajectory of the system (1) is bounded for 0t  . 

Lemma 1. 1( )t  , 2 ( )t  , 3 ( )t  denote as positive semi-define continuous formula, if there exists
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0 R  such that 

1 0 2 1 30
( ) [ ( ) ( ) ( )]

t
t d            

and then： 1 0 2 3 00
( ) exp[ [ ( ) ( ) / ] ]

t
t d          

The main purpose of this paper is to construct a generalized fault diagnosis observer that can 
estimate the states and fault simultaneously. Subsequently, we propose an active adaptive state 
feedback controller that resorts to fault estimation information, which can result in the system with 
actuator faults in a stable condition. The whole scheme of the proposed algorithm is depicted as follows: 

    

Figure 1. Block diagram of the proposed algorithm.  

3. Stability analysis and derivation of the external disturbances constraint condition 

Generally, it is impractical to model the external disturbances accurately because of the universal 
existence of model uncertainties in real applications. At present, scholars deal with external 
disturbances assuming that they are norm bounded in general, as described above. However, the 
constraint condition of external disturbances plays a key role in system stability. Unfortunately, few 
papers examine the issues under the fault diagnosis background. A novel constraint condition of 
external disturbances that can satisfy the system stability is derived in this section. 

Theorem 1. Consider systems (1) and (2) with external disturbances and actuator faults. There 
exist 1, 0, 0M t   such that the system holds stable globally. As a result, the constraint condition of 
external disturbances satisfies the inequality as follows: 

0

( ) ( )
( )

M

M

  





Bu x

R
  

with definition  0 1R D R ,
( )

( )
( )





 

  
 

d

f
 . 

Proof. It is straightforward to obtain that matrix A can derive an operator set, and then the set can 
generate an asymptotically convergent linear semigroup t from Assumption 1 and Definition 1 for the 



5595 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5591–5609. 

state-space description systems (1) and (2). Consequently, there exist 1M   , 0   , 0t   such that t

satisfies: 

exp( )t M t                                  (3) 

The trajectory of systems (1) and (2) is represented as: 

 0 10
( ) ( ) ( ) ( ) ( )

t
t d        x x Ax Bu D d Rf                      (4) 

Then, there exists a stable linear semigroup t such that Formula (4) can be rewritten as: 

 10
( ) (0) ( ) ( ) ( )

t

t tt d        x x Bu D d Rf                       (5) 

Modelled the 2-norm form for each side of (5) 

 10
( ) (0) ( ) ( ) ( )

t

t tt d        x x Bu D d Rf                     (6) 

It follows with definition (0) ax  

 10
( ) (0) ( ) ( ) ( )

t

t tt d        x x Bu D d Rf  

00
( ) exp( ) exp[ ( )][ ( ) ( )]

t
t Ma t M t d        x Bu R   

0

0

( ) exp( ) [ ( ) ( )]
( ) exp( )

( )

t M
t t Ma d

   
 


 

   
x Bu R

x
x


 

Furthermore, we can obtain from Lemma 1 

0

0

[ ( ) ( )]
( ) exp( ) exp{ }

( )

t M
t t Ma d

 
 




  
Bu R

x
x


 

0

0

[ ( ) ( )]
( ) exp{ }

( )

t M
t Ma d

 
 


 

  
  


Bu R

x
x


 

If the system with external disturbances and actuator faults asymptotically converges, the 
following representation should be satisfied: 

0[ ( ) ( )]
0

( )

M  





 
Bu R

x


                            (7) 

Since 

0 0( ) ( ) [ ( ) ( )] ( )M M M         R Bu Bu R x   

Therefore, the constraint condition of the external disturbances (including actuator faults) that can 
satisfy the system asymptotic convergence is represented as 

0

( ) ( )
( )

M

M

  





Bu x

R
                             (8) 

As a result, we can analyse the system stability by applying Eq (8). This completes the proof. 
Remark 2. The system considered in this paper can hold stable under the constraint conditions 
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derived above. Not all the assumed norm bounded conditions result in the system in a stable condition. 
For example, we denote the constraint condition of external disturbances as in most papers:

0
[0, ]

sup ( )
t T

t


 d . It is obvious that systems (1) and (2) are unstable when 0 is greater than that of the 

external disturbance supremum. Therefore, the stability analysis method in this paper is constructive 
for AFTCSs or even systems analysis. 

4. Generalized fault diagnosis observer (GFDO) design 

This section focuses on the generalized fault diagnosis observer (GFDO) design to estimate the 
fault and the state simultaneously. Two defined performance indices should be satisfied for the 
proposed observer. 

Consider the observer for systems (1) and (2) as follows: 

 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )t t t t t t    x Ax Bu Rf L y y                     (9) 

ˆ ˆ( ) ( )t ty Cx                                   (10) 

where, ˆ( )tx is an estimate for state ( )tx , ˆ ( )tf is an estimate for actuator fault ( )tf , L is the matrix to be 

designed. Define ˆ( ) ( ) ( )t t t r y y  , ˆ( ) ( ) ( )t t t e x x  and ˆ( ) ( ) ( )f t t t e f f  as the residual, state estimation 

error and fault estimation error, respectively. 
Theorem 2. Consider systems (1) and (2) with the generalized fault diagnosis observer. For the 

given positive constant scalars 0 and , if there exist symmetric positive definite matrices P and 1P such 
that the following conditions are feasible, then there exist 1R  , 2R  and L  such that the proposed 

generalized fault diagnosis observer has progressive convergence with the index definition 
performance. 

1 2

1 1 2 2 2
2

1 2 2

2 2

[( ) ( )] ( )

( ) 0
0

( ) 0

T T

T T T

T T

T



       
       
   
 

   

A LC P P A LC PR P D LD C

R P R R R R R

D LD P I D

C R D I

 

2
1

1
2

0

0 0

0

T



  
   
  

I R

R I

I I

 

2
0

max 2
( )


 


 

with definition 

2 1 2 1

2 2 2 2 1

1 2 1 2 2 1 1 1

1 2 1 2 2 1 1 1 1 1 1 1

1 1

0 0 0

0 0 0

( )

0 0 0

T T T T

T T T T

T T

I I

I I

 
  
      
 

    
  

C R P C R P

D R P D R P

P R C P R D P R P

P R C P R D R P R P P R P

P P

  

Proof. The time derivative of ( )te for 0t  represents as 
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  1

1 2

ˆ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )f

t t t

t t t t t t t t t

t t t

 

        

    

 e x x

Ax Bu D d Rf Ax Bu Rf L y y

A LC e Re D LD d

         (11) 

Then, ( )f te  follows, similar to the matrices 1R 2R  and, which are designed further according to the 

definition 1 2
ˆ ˆ( ) ( ) ( )t t t 
f R f R r  

2 1

2 1 2 2 1

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

f

f

t t t

t t t

t t t t t

 

  

    






e f f

R r R f f

R Ce R e R D d R f f

                     (12) 

Denote 
( )

( )
( )f

t
t

t

 
  
 

e
e

e
, 1

( )

( ) ( )

( )

t

t t

t

 
   
  

d

f

f

 . 

Thus, we obtain the following formulas from (11) and (12): 

1 2
1

2 1 2 2 1

0 0
( ) ( ) ( )t t t

    
       

 A LC R D LD
e e

R C R R D R I
                     (13) 

Hence, the residual ( )tr follows that 

   2 1( ) ( ) ( )t t t r C 0 e D 0 0                            (14) 

One performance index for the generalized observer is defined as 

1( ) ( )t tr                                   (15) 

where  is the positive constant. 
For the generalized observer system described by (13) and (14), a Lyapunov candidate function 

is defined as 

( ) ( ) ( ) ( ) ( )T T
f fV t t t t t e Pe e e                             (16) 

In term of (15), we have 

2
1 10

( ) ( ) ( ) ( ) ( ) ( ) 0
t T T V d V t            r r                       (17) 

The derivative of ( )V t can be obtained according to (16) 

1 2 1 2

2 1 2 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T
f f f f

T T
f f

T T
f f f

V t t t t t t t t t

t t t t t t t t

t t t t t t t t

   

               

        

    



e Pe e Pe e e e e

A LC e Re D LD d Pe e P A LC e Re D LD d

R Ce R e R D d R f f e e R Ce 1 2 2 1

1 2

1 2

2 1 2 2 1

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

f

T T T T T T
f

T T T T
f

T T T T T T T T T T
f f f f f

t t t t

t t t t t t

t t t t t t

t t t t t t t t

    
    

    

    





R e R D d R f f

e A LC Pe e R Pe d D LD Pe

e P A LC e e PRe e P D LD d

e C R e e R e d D R e f R e f

2 1 2 2 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T
f

T T T T T
f f f f f f

t t

t t t t t t t t t t     
e

e R Ce e R e e R D d e R f e f
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Substitute ( )V t into (17), and for simplification, we denote the operation result as 

 1 20
( ) ( ) ( ) 0

t
d V t                                    (18) 

where  

2 2 1 2

1 2 1 1 2 2
2

2 1 2 2 2 2 2

[( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T T T T

T T T T T
f f

T T T T T


    

 

          
             
         

C C A LC P P A LC PR C R C D P D LD e

e e d R P R C R R R D e

D C D LD P D R D D I d

  

2
1

2 1
2

0 ( )

( ) ( ) ( ) ( ) 0 ( )

0 ( )

T

T T T
f f

 
    

 

    
         
      




I R f

f e f R I e

I I f

  

Therefore, the generalized observer asymptotically converges if 1( ) 0   and 2 ( ) 0  . 

By the Schur complement lemma, the proposed observer asymptotically converges when the 
parameters of the generalized observer satisfy the following constraint conditions: 

1 2

1 1 2 2 2
2

1 2 2

2 2

[( ) ( )] ( )

( ) 0
0

( ) 0

T T

T T T

T T

T



       
       
   
 

   

A LC P P A LC PR P D LD C

R P R R R R R

D LD P I D

C R D I

         (19) 

2
1

1
2

0

0 0

0

T



  
   
  

I R

R I

I I

                                            (20) 

In this paper, we aim to obtain a high-precision fault estimation error. Therefore, another 
performance index is defined as: 

0( )f t e                                   (21) 

where 0 is a prior known constant. 

Denote the Lyapunov candidate function 

1 1( ) ( ) ( )T
f fV t t t e P e  

Since the performance index (21) can be rewritten as: 

2 2
0 0 1 10 0

( ) ( ) ( ) ( ) ( ) ( ) 0
t tT T

f f f fd V d V t                     e e e e            (22) 

The time derivative of 1( )V t is: 

1 1 1 1 2 1 2 2 1

1 1 1 2 1 2 2 1

1 1 1 1 2 1 2 2

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ

T T T T T T T T T

T T T T T T T T T

T T T T

V t t t t t t t t t

t t t t t t t t

t t t t t t t t

   

   

   









f P f f R P f e C R P f d D R P f

f P  f f R P f e C R P f d D R P f

f P f f P R f f P R Ce f P R D d

1 1 1 1 2 1 2 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tt t t t t t t t f P f + f P R f f P R Ce f P R D d

 

Therefore, if and only if 2
0 1( ) ( ) ( ) 0T

f f V       e e  , the inequality (22) holds. For the sake of 

convenient description, denote ˆ( ) ( ) ( ) ( ) ( )T T T T T Tt t t t t   
e d f f f  and substitute 1( )V t  into   , it 
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follows that 

2
0

T                                     (23) 

with definition

2 1 2 1

2 2 1 2 2 1

1 2 1 2 2 1 1 1

1 2 1 2 2 1 1 1 1 1 1 1

1 1

0 0 0

0 0 0

( )

0 0 0

T T T T

T T T T

T T

I I

I I

 
  
      
 

    
  



C R P C R P

D R P D R P

P R C P R D P R P

P R C P R D R P R P P R P

P P

. 

Since 

2 2

min max( ) ( )T         

Hence, it is obvious that Eq (23) holds if 2 2
max 0( )   , as a result 

2
0

max 2
( )


 


                                (24) 

The proposed generalized fault diagnosis observer that meets the index definition performance 
asymptotically converges with conditions (19), (20) and (24), which completes the proof. 

Remark 3. From Theorem 2, we know that unlike the observer at present, the proposed 
generalized fault diagnosis observer can estimate actuator fault and state simultaneously. In addition, 
the defined performance index ensures high precision and high performance for the observer. To 
enlarge the research set of 1R , 2R  and L , selecting the minimum value of 2  is feasible in real 

applications. In other words, the minimum value of 2  is available because the performance 

requirement for state estimation error is known as a prior. According to Theorem 1, we can obtain the 
external disturbance information. Therefore, matrices 1R , 2R and Lare available by Theorems 1 and 2. 

5. Active adaptive fault tolerant controller design 

In this section, we focus on the active adaptive state feedback fault tolerant controller design. 
Consider systems (1) and (2), and the AFTC is designed as 

1 2
ˆ( ) ( ) ( ) ( )t t t t u k x k                                (25) 

where 1̂( )tk  and 2 ( )tk  are adaptive control laws defined as 

1 1 2
ˆ ( ) ( ) ( )Tt t t 
k x x P B                               (26) 

2 2 3

2 2

2

ˆ( ( ) ) ( ) ( )
( )

( )

T T T

T

t t k t
t

t
 

x P B x P B
k

x P B
                        (27) 

3 2 2
ˆ ( ) ( )Tk t t

x P B                                (28) 

where 1  and 2  are the given constant matrix and positive constant, respectively. Denoted as 

1 1 1
ˆ( ) ( )t t k k k , 3 3 3

ˆ( ) ( )k t k t k  and 1k , 3k are unknown constants that will be obtained later. Therefore, the 

solution set of AFTCS is located in 1 3( ( ), ( ), ( ))t t k tx k . 

System Model (1) can be rewritten as follows by applying adaptive controller (25): 
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1 2 1
ˆ( ) ( ( )) ( ) ( ) ( ) ( )t t t t t t    x A Bk x Bk D d Rf                      (29) 

In the following, the controller parameters of the AFTCS are assured by Theorem 3, guaranteeing 
the system with actuator fault and external disturbances asymptotically convergence. 

Theorem 3. Consider the system described as in (29) with the adaptive control laws (25). If there 
exists a symmetric positive definite matrix 2P and the unknown parameters selected in AFTCS satisfy 

the constraint conditions (35) and (36), then the proposed active adaptive fault tolerant controller 
asymptotically converges with the gain matrix (26) to (28). 

Proof. Define a Lyapunov candidate function for the system described by (29) as 

2
1 1 2

2 1 3 2 1, 1 1, 2 3
1

( ( ), ( ), ( )) ( ) ( ) ( ) ( ) ( )T T
i i

i

V t t k t t t t t k t 



     x k x P x k k                  (30) 

where, 1, 1 2
ˆ ( ) ( ) ( )T

i it t t 
k x x P b  , 1, 1, 1,

ˆ( ) ( )i i it t k k k  and the parameters therein are defined as 

1 1,1 1,2
ˆ ˆ ˆ( ) ( ) ( )t t t   k k k  , 11

1,1

21

ˆ ( )ˆ ( )
ˆ ( )

t
t

t

 
  
  

k
k

k
 , 12

1,2

22

ˆ ( )ˆ ( )
ˆ ( )

t
t

t

 
  
  

k
k

k
 , 1 1,1 1,2   k k k  , 11

1,1
21

 
  
 

k
k

k
 , 12

1,2
22

 
  
 

k
k

k
 ,  1 2B b b  ,

11
1

21

b

b

 
  
 

b , 12
2

22

b

b

 
  
 

b . 

The time derivate of 2 1, 3( ( ), ( ), ( ))iV t t k tx k is 

2
1 1 1

2 1 3 2 2 1, 1 1, 1, 1 1, 2 3 3
1

1 2 2 1 2 2 2 1

( ( ), ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

ˆ ˆ( ) ( ( )) ( ( )) ( ) 2 ( ) ( ) 2 ( ) ( )

2

T T T T
i i i i

i

T T T T

V t t k t t t t t t t t t k t k t

t t t t t t t t

  



       

       


          x k x P x x P x k k k k

x A Bk P P A Bk x x P Bk x P D d

x

 

2 1( ) ( )T t t  P Rf

 

where, for convenient of statement, denote as
2

1 1 1
1 2 3 3 1, 1 1, 1, 1 1,

1

2 ( ) ( ) ( ) ( ) ( ) ( )T T
i i i i

i

k t k t t t t t  



             k k k k   . And 

Then, according to the updated laws (26)–(28), 2 1 3( ( ), ( ), ( ))V t t k t x k follows that 

2 2 3

2 1 3 1 2 2 1 2 2

2

2 1 2 1

ˆ( ( ) ) ( ) ( )
ˆ ˆ( ( ), ( ), ( )) ( ) ( ( )) ( ( )) ( ) 2 ( )

( )

2 ( ) ( ) 2 ( ) ( )

T T T

T T T

T

T T

t t k t
V t t k t t t t t t

t

t t t t

 
         
 

   

 x P B x P B
x k x A Bk P P A Bk x x P B

x P B

x P D d x P R f

 

where, 

2
1 1 1

1 2 3 3 1, 1 1, 1, 1 1,
1

2
1

2 3 3 3 1, 2
1

2

3 2 3 2 1, 2
1

2 ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ2 ( ( ) ) ( ) 2 ( ) ( ) ( )

ˆ2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( )

T T
i i i i

i

T T
i i

i

T T T T
i i

i

k t k t t t t t

k t k k t t t t

k t t k t t t t





  









      

  

  







       

 



k k k k

k x x P b

x P B x P B k x x P b

 

 

As a result 

2 1 3 1 2 2 1 2 1

2

2 3 2 1, 2
1

ˆ ˆ( ( ), ( ), ( )) ( ) ( ( )) ( ( )) ( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( )

T T T

T T T T
i i

i

V t t k t t t t t t t

t t k t t t t


      

   





x k x A Bk P P A Bk x x P D d

x P R f x P B k x x P b
     (31) 
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Equation (31) can be rewritten as 

2 1 3 2 2 2 1

2

2 3 2 1, 2
1

( ( ), ( ), ( )) ( )( ) ( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) 2 ( ) ( )

T T T

T T T T
i i

i

V t t k t t t t t

t t k t t t


  

   

 x k x A P P A x x P D d

x P R f x P B k x x P b
      (32) 

Therefore, there exist the following constraint such that 2 1 3( ( ), ( ), ( )) 0V t t k t  x k  

2 1 2 3 22 ( ) ( ) 2 ( ) ( ) 2 ( ) 0T T Tt t t t k t  x P D d x P R f x P B              (33) 

2

2 2 1, 2
1

( )( ) ( ) 2 ( ) ( ) 0T T T T
i i

i

t t t t


  x A P P A x k x x P b                    (34) 

For constraint condition (33), we can know the value of ( )td and fault estimation from Theorems 1 

and 2, respectively. For simplification, denote 1 1 ( )t  D d , 2 ( )t  R f . 

Hence, inequation (33) can be rewritten as 

1 2
3k

 


B
                                   (35) 

On the other hand, 

2
2 2

2 2 1, 2 max 2 2 1 2
1

( )( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( )T T T T T
i i

i

t t t t t t


    x A P P A x k x x P b A P P A x k P B x  

Therefore, inequation (34) follows if the unknown constant 1k  satisfies 

min 2 2
1

2

( )

2

T 


A P P A
k

P B
                              (36) 

As a result, the AFTCS with the updated laws (25) to (28) and unknown constant constraint 
conditions (35) and (36) guarantees that the system asymptotically converges under external 
disturbances and actuator fault interference, which completes the proof. 

Remark 4. In contrast to most existing papers [28,29], we sufficiently consider the external 
disturbance effect on the system. The proposed AFTCS meets the high-performance requirement in 
the aircraft control system. It is worth noting that information about ( )td and ( )tf is available based 

on Theorems 1 and 2, and it is involved in 1 and 2 for selecting 3k . On the other hand, if we can obtain 
the fault information from the generalized fault diagnosis observer, then 2  can be obtained. 

6. Results analysis and discussion 

The proposed approach has been performed on the F-18 aircraft control system to evaluate the 
performance of the proposed algorithm. The following sections show the detailed implementations and 
simulation results. 

6.1 Simulation outlines 

Considering the system model described as (1) and (2), the corresponding matrices of the 
longitudinal dynamic equation of the F-18 aircraft motion are as follows [9]: 
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1.175 0.9871

8.458 0.8776

 
    

A ,
0.194 0.03593

19.29 3.803

  
    

B , 1 2

0.1 0.2

0.2 0.1

 
   

 
D D ,

1 0

0 1

 
  
 

C ,
0.1 0.2

0.2 0.1

 
  
 

R  

The whole simulation time is 100T s . The initial values of the states are  (0) 0 0
Tx . The input 

control pre-designed is assumed to be  ( ) 0.6 0.6
T

t u and the system with the external disturbances 

 ( ) 0.15*sin(0.6* ) 0.5
T

t t d  . Besides, the system suffers with the actuator fault  1 2( ) ( ) ( )
T

t f t f tf  . 

The actuator fault pattern is chosen as 

1

2

( ) 0

0 [0,30)

( ) 0.5*(1 exp(0.15*( 30))) [30,60]

0 (60,100)

f t t T

t

f t t t

t

 
 
    

 

                  (37) 

As shown in Figure 2, the system states are divergent at the beginning and then asymptotically 
converge to  lim ( ) 1.286 2.437

T

t
t


  x  under the control input. Therefore, we conclude that the system 

performs well under the control input predesigned in the fault-free case. 

 

Figure 2. State responses under the fault-free case. 

6.2 GFDO simulation 

In the GFDO simulation section, the parameters 1R , 2R  and L  in Theorem 2 are solved by 

LMITOOL in MATLAB. Then, the proposed GFDO in Section 4 is implemented by applying the 
calculated parameters. 

We can obtain from (24) that the minimum of  can enlarge the searching range of 1R , 2R and L . 

Therefore, the initial value of  is denoted as: 

 = 0.2 0.38 -0.15 0.5 0 0.67 0.49 0.72 0.35 1.75
T  

The performance index is defined as =1.86 , 0 =2.57 . To solve the parameters in (19), (20) and (23), 
the matrices to be solved are denoted as 1 2 3* P R R , 1 1 4* P R R , 0* P L L . As a result, the parameters 
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are obtained by LMITOOL as follows: 

1

0.4118 0.1937

0.0020 0.4316

  
   

R , 2

0.2288 0.1148

0.0012 0.2405

 
   

R ,
3.0603 3.3398

2.1064 5.4404

 
   

L  

Subsequently, the GFDO can be applied by the above parameters. Figures 3 and 4 illustrate the 
state estimation error and fault estimation, respectively. From Figures 3 and 4, we conclude that the 
desired GFDO results are obtained. Furthermore, Figure 3 shows that the state estimation error 
asymptotically converges to zero, and the state estimation error increases abruptly because of the fault 
effect. Figure 4 illustrates that fault estimation can predict the fault signal steadily and accurately. In 
other words, the GFDO is reliable and effective, as shown in Figures 3 and 4, In conclusion, Table 1 
summarizes the mean and standard deviation (std) of the SEE, as well as the desired results. Moreover, 
Figure 5 shows the state estimation of GFDO compared with the system (1) response under the fault 
case. Clearly, the fault signal affects the state estimation of GFDO during the fault occurring time

[30,60]t . Therefore, we can diagnose whether the fault occurs by designing the residual signals. It is 

straightforward to do so by the proposed GFDO. In this paper, we focus on fault estimation and fault-
tolerant controller design. Therefore, the residual design is not stated here. In addition, in real systems, 
the states are obtained by the designed observer. From Figure 5, we can conclude that the state 
estimation of the GFDO can track the system state perfectly. Therefore, the simulation results also 
demonstrate the validity and reliability of the proposed GFDO. It is worth noting that we define the 
fault pattern as (37) in this simulation. However, the desired fault estimation results are still achieved 
by the GFDO if the fault pattern is composed in Assumption 3. 

 

Figure 3. State estimation error. 
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Figure 4. Fault signal and estimation. 

 

Figure 5. State response of system (1) and GFDO. 

Table 1. Statistics character of state estimation error. 

 1e  2e

mean 0.2746 -0.1131
std 0.5752 0.2722

6.3 AFTCS implementation 

To validate the effectiveness of AFTCS in Section 5, the AFTCS implementation is performed in 
Simulink. In real systems, when the fault is diagnosed by the proposed GFDO, the normal control law 
switches to the AFTCS in that obtaining the desired control performance. 

To verify the effectiveness of the proposed AFTCS, simulations with the following parameters 
and initial conditions are given, and the fault and external disturbances are considered in Section 6.2. 

0 10 20 30 40 50 60 70 80 90 100
-50

-40

-30

-20

-10

0

10

t/s

fa
ul

t 
si

gn
al

 a
nd

 f
au

lt 
es

tim
at

io
n

 

 
fault estimation

fault signal

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

t/s

st
at

e 
re

sp
on

se
 o

f 
sy

st
em

 a
nd

 G
F

D
O

 

x1

x2
x1est

x2est



5605 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5591–5609. 

1 0.00116  I , 2 0.00067  , 1

0 0ˆ (0)
0 0

 
  
 

k , 3 (0) 0.79k   

It is necessary to note that the performance of AFTCS is susceptible to the choice of the selected 
parameters 1 and 2 . Therefore, to obtain the desired performance, we should choose reasonable values 

for these parameters in real applications. 
Figures 6–8 are the estimated curves of controller parameters 1̂( )tk , 2 ( )tk and 3 ( )k t , respectively. In 

addition, Figure 9 shows the control law of AFTCSs. Furthermore, Figure 10 and Table 2 show that 
the desired performance is obtained by the designed AFTCS. In addition, Figure 10 shows the 
comparison results of the state response between AFTCS and the system with normal control law

 ( ) 0.6 0.6
T

t u . Figure 10 demonstrates that the state curves shock sharply under the normal controller 

during the outage, and from the state curves of AFTCS, it is clear that the states asymptotically 
converge. In comparison with the normal controller, the AFTCS shows a better state response, which 
means the states hold steady compared with the normal controller during the outage. Clearly, the state 
statistic characters under the normal control and AFTCS are concluded in Table 2, which also 
demonstrates the effectiveness and superiority of the proposed AFTCS. 

 

Figure 6. Estimation of 1̂( )tk . 

 

Figure 7. Estimation of 2 ( )tk . 
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Figure 8. Estimation of 3 ( )k t . 

 

Figure 9. Control input of AFTCS. 

 

Figure 10. State response comparison between normal control and AFTCS. 
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Table 2. State statistics character under the normal control AFTCS. 

 1x  2x  1AFTCS_x 2AFTCS_x

mean -1.313 -1.809 -0.8305 -1.434 

std 0.4867 1.694 0.4268 1.271 

7. Conclusions 

In this paper, the novel external disturbance constraint condition that satisfies the system stability 
is derived. Some systems are not stable with the norm bounded assumption. Therefore, the algorithm 
in Section 3 is meaningful for external disturbance analysis. Then, the GFDO and AFTCS algorithms 
are proposed. The simulation results show the effectiveness and superiority of the proposed algorithm. 
In the implementation of GFDO, the desired fault and state estimation performance are obtained. In 
addition, the states are severely impacted by the normal controller during the outage. However, when the 
fault is diagnosed and switched to AFTCS, then the system states asymptotically converge and obtain the 
desired performance. In future work, the proposed algorithm GFDO and AFTCS will be tested with other 
simulated parameters, and the GFDO will be tested with experimental datasets. 
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