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Abstract: We consider a two-box model for the administration of a therapeutic substance and discuss
two scenarios: First, the substance should have an optimal therapeutic concentration in the central
compartment (typically blood) and be degraded in an organ, the peripheral compartment (e.g., the
liver). In the other scenario, the concentration in the peripheral compartment should be optimized,
with the blood serving only as a means of transport. In either case the corresponding optimal control
problem is to determine a dosing schedule, i.e., how to administer the substance as a function u of
time to the central compartment so that the concentration of the drug in the central or in the peripheral
compartment remains as closely as possible at its optimal therapeutic level. We solve the optimal
control problem for the central compartment explicitly by using the calculus of variations and the
Laplace transform. We briefly discuss the effect of the approximation of the Dirac delta distribution
by a bolus. The optimal control function u for the central compartment satisfies automatically the
condition u ≥ 0. But for the peripheral compartment one has to solve an optimal control problem
with the non-linear constraint u ≥ 0. This problem does not seem to be widely studied in the current
literature in the context of pharmacokinetics. We discuss this question and propose two approximate
solutions which are easy to compute. Finally we use Pontryagin’s Minimum Principle to deduce the
exact solution for the peripheral compartment.
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1. Introduction

Optimal control theory has been applied to pharmacokinetic problems since the early 1980s: See
the landmark papers [1] from 1983 and [2] from 1986. The first of the two mentioned papers stud-
ies in particular the optimal injection of a drug with respect to a certain optimization criterion. The
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second paper describes a global optimization method for finding the optimum of functions involving
several real variables. As an application a method for the solution of certain optimal control problems
associated to compartmental modelling was introduced.

In recent years interest in optimal control theory to solve problems of drug administration in terms of
efficacy, toxicity, and overall costs has grown rapidly. See, e.g., the recent article [3] where the Control
Theory for Therapy Design (CT4TD) framework is introduced, which employs optimal control theory
on patient-specific pharmacokinetics and pharmacodynamics models, to deliver optimized therapeutic
strategies. In [4] an optimal control problem for cancer chemotherapy is considered. The results are
illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy. The
authors of [5] consider optimization of drug release characteristics or dosing schedules for anticancer
agents. They perform an optimal control analysis on a previously developed computational model for
the testosterone effects of triptorelin in prostate cancer patients with the goal of finding optimal drug-
release characteristics. In particular, numerical control optimization is used to find better therapeutic
approaches in order to improve the final outcome of the patients. In the recent article [6] the authors
investigate an optimal dosing strategy and develop an optimal dosing algorithm (OptiDose) that com-
putes the optimal individualized dosing regimen for pharmacokinetic-pharmacodynamic models by
using numerical methods. In [7] the Model Predictive Control (MPC) technology is discussed in the
context of optimal drug administration. This method takes into account the constraints of the system
and uses continuous plasma measurements to readjust the dosing schedule in an optimal and stable
way at any time. Another recent approach is described in [8] where robust optimal control models are
developed for optimal drug dosage design under model uncertainties.

With this article we address on the one hand experts in pharmacology who are interested in the
mathematical tools used to solve problems of optimal dosing schedules. For these readers, we provide
a brief and easily accessible introduction to the mathematical techniques. On the other hand, we would
like to introduce mathematicians to interesting applications in the field of pharmacokinetic research.
For them, the pharmacological context is briefly explained. Depending on the background, the reader
can skip individual sections.

While past research has often focused on theoretical foundation, like existence and uniqueness
of optimal control solutions, or numerical methods, the aim of this article is to provide a concrete
way to actually compute explicit solutions for a class of optimal control problems occurring in drug
administration. We keep the model as simple as possible so that it is easily accessible, while still
keeping the framework sufficiently general to be applicable in real situations. To make the article self-
contained we give a brief introduction to the theory of optimal control in Section 2. Section 3 discusses
the application of optimal control in a pharmacokinetic two-box model. The optimal control problem
for the central compartment is solved in Section 3.1. Finally, Section 3.2 deals with the corresponding
problem for the peripheral compartment, which is subject to a natural non-linear constraint: Here we
propose two approximate solutions which are easy to compute and to implement in the clinical context,
and the exact solution by applying Pontryagin’s Minimum Principle. At this point, we would like to
refer the interested reader to the general literature on the theory of optimal control and the Pontryagin
Minimum Principle, e.g., [9–11].
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2. The optimal control problem

We start with a general description of the problem of optimal control. An optimal control problem
has two components:

1) The first basic component is a control system. Typically, such a control system is described by a
system of ordinary differential equations:

ẋ = f (t, x, u), x(t0) = x0 (1)

Here x is the state of the system that takes values in Rn. Consider, for example, a compartmental
model where the components of the vector x indicate the concentration of an active pharmaceuti-
cal ingredient in the individual compartments. As usual, t denotes the time. At time t0 the initial
state of the system is x0 ∈ R

n. Additionally we have a control-input u(t) depending on t (also
called control function or simply control) which we can influence, i.e., control. This is, e.g., the
rate at which a drug is delivered to a compartment from the outside. Another example would be
that x describes the number of certain populations of an ecosystem and u is an external influence,
such as the input of pollutants, supply of food or the allowed shooting rate for hunting.

2) The second basic component is the cost functional. It assigns a “price” to each possible trajectory
x(t) of the system. Let us think of a control u(t) given concretely and the system (1) solved for
the given initial data. Let the corresponding “price” then be given by an integral

J(u) :=
∫ T

0
L(t, x(t), u(t))dt, (2)

where L is a given function and T > 0 is a (fixed in our case) time duration. That is, given the
control u(t), the resulting price J(u) can be determined. Here, “price” usually does not mean a
monetary amount, but simply a value to be optimized. For example, one would like that in a
given compartment (organ) the solution (drug concentration) there deviates as little as possible
from a given optimal target drug level during the time interval (0,T ): the average deviation (the
“price”) would thus have to be minimized. Or, in the case of the ecosystem, one would like to
increase the population of an endangered species as much as possible: The sum of the animals of
the population would be to maximize here.

This makes it already clear what the optimal control problem is all about:

Definition. The optimal control problem given by (1) and (2) is to find the control function u(t) for
which the cost functional J(u) is minimum or maximum.

3. Optimal control in a pharmacokinetic context

We illustrate the optimal control problem and its solution in an explicit example. For the general
theoretical background we refer to the literature mentioned in the introduction.

Consider a compartment system with a central and a peripheral component: blood and an organ
(see, e.g., [12, Chapter 6] for the use of compartment systems in pharmacokinetics). A drug is added
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to the blood at a certain rate u(t): This will play the role of the control function here. In the blood and
in the organ (for example the liver) the drug is degraded, while the two compartments exchange the
substance at given rates. The dynamics of the process and the rates are described in Figure 1.

kB kO

u(t) kOB

kBO

central compartment
(blood)

peripheral compartment
(organ)

Figure 1. A two compartment model.

Let the concentrations of the drug in the blood and in the organ be denoted by cB(t) and cO(t),
respectively. The corresponding system of differential equations for the vector

x =

(
cB

cO

)
is given by

ẋ = Ax + Bu, (3)

with the matrix

A =

(
−(kB + kOB) kBO

kOB −(kO + kBO)

)
and the vector

Bu(t) =

(
1
0

)
u(t).

At time t = 0 we suppose that both initial concentrations are zero: cB(0) = cO(0) = 0. In order to
solve the system (3) we apply the Laplace transformation to it: Let

CB •−−−◦ cB, CO •−−−◦ cO, U •−−−◦ u

denote the Laplace transforms of the functions cB, cO and u. Then the transformed system is

sX(s) = AX(s) + BU(s), (4)

with

X(s) =

(
CB(s)
CO(s)

)
, BU(s) =

(
U(s)

0

)
.

The solution of (4) is thus given by

X(s) = (sI − A)−1BU(s),

where I denotes the identity matrix. Hence we have

CB(s) =
(kO + kBO + s)U(s)

det(sI − A)
, CO(s) =

kOBU(s)
det(sI − A)

. (5)
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Using partial fraction decomposition we write the solutions as

CB(s) = U(s)
( α

s − λ1
+

β

s − λ2

)
, CO(s) = U(s)

( γ

s − λ1
+

δ

s − λ2

)
, (6)

where λ1, λ2 are the eigenvalues∗ of A, and

α =
kO + kBO + λ1

λ1 − λ2
, β =

kO + kBO + λ2

λ2 − λ1
, γ =

kOB

λ1 − λ2
, δ =

kOB

λ2 − λ1
.

In the form (6) the inverse Laplace transform is easy to carry out and by applying the appropriate
rules one finds as solution of (3)

cB(t) = αeλ1t
∫ t

0
e−λ1τu(τ)dτ + βeλ2t

∫ t

0
e−λ2τu(τ)dτ, (7)

cO(t) = γeλ1t
∫ t

0
e−λ1τu(τ)dτ + δeλ2t

∫ t

0
e−λ2τu(τ)dτ. (8)

For a nice concrete example, we recommend the numerical values

kOB = kB = 4, kO = 1, kBO = 3, (9)

in suitable units, which gives the integer eigenvalues λ1 = −10, λ2 = −2. We use these values to draw
graphs of the solutions in the figures below.

3.1. Optimal control in the central compartment

Suppose, the manufacturer of the drug that we use has defined an optimal concentration in the
central compartment (blood) with maximum therapeutic effect, let us say a certain value cB,opt. It is
therefore necessary to administer the drug in such a way so that during the treatment period (0,T ) the
concentration cB remains as closely as possible to this value cB,opt. This requirement can be formulated
as follows:

Optimal control problem for the central compartment: The integral

J(u) =

∫ T

0

(
cB(t) − cB,opt

)2dt (10)

is a measure for the deviation of the concentration cB from the optimal value cB,opt and should therefore
be minimal!

The control function u(t), namely the rate at which the drug is added to the blood, is present in J(u)
in the solution cB which we found above in (7). If we now insert this solution in (10), we obtain

J(u) =

T∫
0

(
αeλ1t

∫ t

0
e−λ1τu(τ)dτ + βeλ2t

∫ t

0
e−λ2τu(τ)dτ − cB,opt

)2
dt.

∗λ1 + λ2 = tr A, λ1λ2 = det A. We only consider the case λ1 , λ2 here. Observe that λ1, λ2 < 0.
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This integral has to be minimized by the optimal choice of the control function u(t). For this purpose
we use the calculus of variations: The basic idea of Leonhard Euler is to perturb the control function
u(t) a little bit. That is, we put in J instead of u the perturbed function u + εϕ. Here ε is a real number,
and ϕ is a perturbation function that we can choose arbitrarily. Now we consider the function

f : R→ R, ε 7→ J(u + εϕ). (11)

If we assume that u is the sought optimal control function that minimizes J, then f has a local
minimum at 0, that is, f ′(0) = 0 holds regardless of the choice of ϕ. If we calculate f ′(0) concretely,
we get

f ′(0) = 2

T∫
0

(
αeλ1t

∫ t

0
e−λ1τϕ(τ)dτ + βeλ2t

∫ t

0
e−λ2τϕ(τ)dτ

)(
cB(t) − cB,opt

)
dt. (12)

The integrand of the outer integral is a product of two bracket expressions. In the first bracket, we
are free to choose ϕ as we wish. In particular, it can be shown that the first bracket can be made to
represent any triangular function da,b by appropriate choice of ϕ (see Figure 2). Indeed this can even
be explicitly achieved by setting the red bracket equal to da,b and applying the Laplace transform.

0 aa − b a + b

1

da,b

Figure 2. Graph of a triangle function da,b.

In this way we can replace the first bracket expression in (12) by any triangular function da,b, and
the integral must always yield the value 0. The fundamental lemma of the calculus of variations now
states that this is only possible if the function in the second bracket is identically equal to 0 on the
interval (0,T ): Namely, assume by way of contradiction that the second bracket is different from 0 in
a point t ∈ (0,T ). Then, by continuity, it is strictly positive or strictly negative on an interval around t.
But by choosing the support (a− b, a + b) of dab inside said interval, we get a value f ′(0) , 0, contrary
to our assumption. This argument shows that the optimal control function u must satisfy the condition

cB(t) − cB,opt = αeλ1t
∫ t

0
e−λ1τu(τ)dτ + βeλ2t

∫ t

0
e−λ2τu(τ)dτ − cB,opt = 0 (13)

for all t ∈ (0,T ). Observe that this condition actually means J(u) = 0. If we subject this condition to
the Laplace transform, we get by (5)

CB(s) =
(kO + kBO + s)U(s)

det(sI − A)
=

cB,opt

s
.

We solve this equation for U(s) and get by partial fraction decomposition

U(s) =
cB,opt (s − λ1)(s − λ2)

s(kO + kBO + s)
= cB,opt

(
λ1λ2

(kO + kBO)s
+

kBOkOB

(kO + kBO)(kO + kBO + s)
+ 1

)
.
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So now we only have to reconstruct the control function u from its Laplace transform U. The
original functions of the two fractions are easy to find:

λ1λ2

(kO + kBO)s
•−−−◦

λ1λ2

kO + kBO
=

det A
kO + kBO

= kB +
kOkOB

kO + kBO
(14)

kBOkOB

(kO + kBO)(kO + kBO + s)
•−−−◦ e−(kO+kBO)t kBOkOB

kO + kBO
(15)

However, observe that the constant function 1 does not correspond to an original function of the
Laplace transform. But we can specify a sequence of functions whose Laplace transforms approximate
arbitrarily well the function 1. Namely, we consider the sequence of functions

δn(t) = n
(
H(t) − H(t − 1

n )
)
, n ∈ N,

where H denotes the Heaviside function: see Figure 3.

0 1/n

n

δn

Figure 3. Graph of the function δn.

With this choice we indeed have

δn ◦−−−•
n
s

(1 − e−s/n)→ 1 for n→ ∞.

Here, we have used de L’Hôpital’s rule for the calculation of the limit. For the formal limit of the
sequence δn we write

δn → δ, and hence 1 •−−−◦ δ. (16)

δ is not a function but the Dirac delta distribution. We briefly comment on its interpretation for readers
who are less familiar with this concept: Note that for any n we always have∫ ∞

−∞

δn(t)dt = 1.

When an elastic ball hits the ground and bounces back, a large force acts on the ball in a short period
of time. This force F can therefore be expressed (in suitable units) by a function F(t) = δn(t). The
integral

∫ ∞
−∞

F(t)dt = 1 is then just the (constant) change in momentum of the ball, which it experiences
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when bouncing back. The harder the ball, the shorter the period of contact with the ground. The
distribution δ is therefore an idealization of such an impulse.

But let us go back to our optimal control problem. Putting together (14)–(16) we are now ready to
state the following.

Theorem 1. The control function

u(t) = cB,opt

(
δ(t) +

1
kO + kBO

(
det A + e−(kO+kBO)tkBOkOB

))
solves the optimal control problem for the central compartment, and J(u) = 0. The limits are

0 < lim
t→∞

u(t) =
cB,opt det A
kO + kBO

= cB,opt

(
kB +

kOkOB

kO + kBO

)
< lim

t→0+
u(t) = cB,opt(kB + kOB),

and u is monotone decreasing. In particular, u satisfies automatically the natural constraint u(t) ≥ 0.

Clinical interpretation of the result. Optimal treatment means that the patient is given an injection
at the beginning t = 0 as a bolus with the amount that would, if it were not degraded, raise the
concentration of the drug in the blood to the optimal concentration cB,opt: This corresponds to the
term cB,optδ (see, e.g., [12, Chapter 7] for the pharmacokinetics of an intravenous bolus injection).
At the same time, the infusion (drip) is set up so that the delivery occurs according to cB,opt

kO+kBO

(
det A +

e−(kO+kBO)tkBOkOB

)
. Such dosages are possible via programmable infusion pumps (see, e.g., [12, Chapter

11]).

The left hand side of Figure 4 shows the solution cB, if δ is approximated by the sequence δn: Also
in reality, the administration of a syringe requires a certain time, i.e., a time interval (0, 1/n).

t
0 1/n

cB,opt

cB

cB,opt det A
kO+kBO

t
0 1/n

u

Figure 4. Graphs of the solutions cB (left) and of the corresponding control function u (right):
bolus in time interval (0, 1/n), infusion starting at time t = 0. The numerical values in (9) are
used for these graphs.

Somewhat disturbing is the overshooting of the optimal concentration. The reason is that the in-
fusion starts at the same time as the bolus, so the two doses add up in the time interval (0, 1/n)
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(see Figure 4 on the right). In an extreme case and for a drug with a very narrow therapeutic win-
dow, the overshoot might even reach a toxic level. Although the excess becomes smaller when
the time period for the bolus is shortened, the overshoot remains. This can be avoided if the in-
fusion is switched on only after the administration of the syringe, i.e., with the control function
u(t) =

cB,opt

kO+kBO
(det A + e−(kO+kBO)(t−1/n)kBOkOB)H(t − 1

n ). Figure 5 shows on the left the behaviour of
the solution cB in the case of such a delayed infusion, and the corresponding control function on the
right.

t
0 1/n

cB,opt
cB

cB,opt det A
kO+kOB

t
0 1/n

u

Figure 5. Graphs of the solution cB (left) and of the corresponding control function u (right):
bolus in time interval (0, 1/n), infusion starting after the bolus.

3.2. Optimal control in the peripheral compartment

The optimal control problem for the peripheral compartment (the organ, e.g., the liver) is signifi-
cantly more delicate for the following reason: The control function u which we found for the central
compartment respects automatically the natural side condition u ≥ 0. This is not the case for the pe-
ripheral compartment as we shall see below. We therefore have to implement the non-linear constraint
u ≥ 0 explicitly in the formulation of the problem:

Optimal control problem for the peripheral compartment: Minimize the deviation of the concentration
cO from the optimal therapeutic concentration cO,opt, i.e., the cost functional

J(u) =

∫ T

0

(
cO(t) − cO,opt

)2dt, (17)

under the constraint u ≥ 0.

With the solution for cO in (8) we obtain the explicit expression

J(u) =

T∫
0

(
γeλ1t

∫ t

0
e−λ1τu(τ)dτ + δeλ2t

∫ t

0
e−λ2τu(τ)dτ − cO,opt

)2
dt.

Neglecting the constraint, the optimality condition which corresponds to (13) turns out to be

cO(t) − cO,opt = γeλ1t
∫ t

0
e−λ1τu(τ)dτ + δeλ2t

∫ t

0
e−λ2τu(τ)dτ − cO,opt = 0.
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According to (5) the Laplace transformed version of this equation is

CO(s) =
kOBU(s)

det(sI − A)
=

cO,opt

s

which gives

U(s) =
cO,opt det(sI − A)

kOBs
.

Applying the inverse Laplace transformation leads to

u(t) =
cO,opt

kOB

(
det A − δ(t) tr A + δ′(t)

)
.

This solution, however, violates the non-linear, pointwise constraint u(t) ≥ 0 for any reasonable
approximation of the delta distribution. E.g., we have δ′n(t) = n

(
δ(t) − δ(t − 1/n)

)
. Indeed, pushing the

level of the concentration in the peripheral compartment to the desired level cO,opt as fast as possible
would require a massive bolus at time t = 0. But then one would have to reduce (by negative values of
u) the concentration in the central compartment in order to avoid that the flow from the central to the
peripheral compartment raises the concentration there far beyond the level cO,opt.

Before we address the problem of this constraint, it is instructive to consider the dual problem:
Observe that the control function u determines the solution cO in (8). But vice versa, a given function
cO determines the corresponding control function u: Indeed, by (5) we have

U(s) =
1

kOB
CO(s) det(sI − A) =

1
kOB

CO(s)(s − λ1)(s − λ2).

The inverse Laplace transformation yields

u(t) =
1

kOB

(
cO(t) det A − c′O(t) tr A + c′′O(t) + c′O(0)δ(t)

)
, (18)

where we have used that cO(0) = 0. We can therefore reformulate the optimal control problem as
follows:

Dual formulation of the optimal control problem for the peripheral compartment: The integral∫ T

0

(
cO(t) − cO,opt

)2dt (19)

is to be minimized under the side conditions

cO(t) det A − c′O(t) tr A + c′′O(t) ≥ 0, c′O(0) ≥ 0, cO(0) = 0. (20)

In this formulation, the control function u has disappeared. It is no longer a problem of optimal con-
trol, but simply a problem in the calculus of variations with inequality constraints (such problems can
be treated by the method of slack variables: see, e.g., [13] or [14]). We use it in the following sections
because (20) indicates how the solution cO behaves where the differential inequality is saturated.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5312–5328.



5322

3.2.1. A dosage scheme without overshoot

In view of the dual formulation of the optimal control problem, a reasonable approach is to choose
cO(t) as a C1 function with cO(t) ≡ cO,opt on an interval (T0,T ] such that the integrand in (19) vanishes
on this interval, and cO(t) det A−c′O(t) tr A+c′′O(t) ≡ 0 on [0,T0], with cO(0) = 0 (compare (20)). Hence,
cO(t) has the form

cO(t) = κ
(
eλ1t − eλ2t) on [0,T0]. (21)

In order to obtain a global C1 function we have to choose κ and T0 in (21) such that cO(T0) = cO,opt

and c′O(T0) = 0. A short calculation gives

T0 = −
log(λ1/λ2)
λ1 − λ2

, κ =
cO,opt

eλ1T0 − eλ2T0
. (22)

So, we obtain for cO and the corresponding control function u, given by (18),

cO(t) =

κ(eλ1t − eλ2t) for t ≤ T0

cO,opt for t > T0
, u(t) = −

cO,opt

kOB
λ1

(λ1

λ2

)λ2/(λ1−λ2)
δ(t) +

cO,opt det A
kOB

H(t − T0) (23)

(see Figure 6).

t
0 T0

cO,opt
cO

t
0 T0

cO,opt det A
kOB

u

Figure 6. Graphs of the function cO (left) and of the corresponding control function u (right)
with the values T0, κ given by (22).

Clinical interpretation. The dosing scheme in (23) means that at time t = 0 a bolus with a dose
−

cO,opt

kOB
λ1

(λ1
λ2

)λ2/(λ1−λ2) is given†, and at time t = T0 a constant drip cO,opt det A
kOB

per time unit starts.

The nice feature of this dosing scheme is, that its parameters are explicitly given in terms of the
constants governing the pharmacokinetic process, and that the optimal concentration cO,opt is never
exceeded. Moreover, it requires only one syringe at time t = 0. However, this is not the solution of the
optimal control problem, since J is not minimal with this choice of u.

†recall, that λ1, λ2 < 0
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3.2.2. Restricting the class of control functions

If we allow a mild overshoot of the concentration in the organ, we can slightly improve the dosing
schedule from Section 3.2.1. To do this we restrict the set of the control functions to a finite dimensional
space: We minimize the original cost functional (17) for the class C of piecewise constant functions of
the form

C :=
{
u(t) = κδ(t) + bH(t − T0) : κ ≥ 0, b ≥ 0,T0 ≥ 0

}
.

We accept here that the minimum of the cost function in this smaller class C is larger than if we
allow all admissible control functions. The advantage is, on the other hand, that we have to determine
the minimum only in a finite dimensional set.

In order to find the optimal values κ̄, b̄ and T̄0 we proceed as follows: According to (8) we obtain
for a control function u in the class C

cO(t) =
κkOB

λ1 − λ2

(
eλ1t − eλ2t) +

bkOB

λ1λ2(λ1 − λ2)
H(t − T0)

(
λ1(1 − eλ2(t−T0)) − λ2(1 − eλ1(t−T0))

)
.

Since the therapy is likely to take a long time, we set T = ∞ in (17). Then, for the integral in (17)
to be finite, limt→∞ cO(t) = cO,opt must hold. This is the case if and only if b = b̄ =

cO,opt det A
kOB

. Then, J(u)
in (17) becomes a function in the variables κ and T0:

J(u) =

2kOBcO,optκ(λ2
1(eλ2T0 − 2) − λ2

2(eλ1T0 − 2)) + (λ1 − λ2)(c2
O,opt(tr A(2T0 det A − tr A) − det A) − k2

OBκ
2)

2(λ1 − λ2) det A tr A

This function has on the set {(κ,T0) : κ > 0,T0 > 0} a global minimum where its gradient

∇J =


kOB((cO,opt(λ2

1(eλ2T0−2)−λ2
2(eλ1T0−2)))+kOBκ(λ2−λ1))

(λ1−λ2) det A tr A

cO,opt(kOBκ(λ1eλ2T0−λ2eλ1T0 ))
(λ1−λ2) tr A + c2

O,opt


vanishes. The numerical solution of ∇J = 0 then yields the optimal values for κ and T0. Hence, we
have:

Theorem 2. The optimal dosing schedule among the control functions in the class C for the peripheral
compartment is u(t) = κ̄δ(t) +

cO,opt det A
kOB

H(t − T̄0) where κ̄ and T̄0 are the positive solutions of the system

kOBκ̄(λ1 − λ2) = cO,opt(λ2
1(eλ2T̄0 − 2) − λ2

2(eλ1T̄0 − 2)),

λ2(cO,optλ2 + kOBκ̄eλ1T̄0) = λ1(cO,optλ1 + kOBκ̄eλ2T̄0).
(24)

The corresponding graphs are shown in Figure 7.
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t
0 T̄0

cO,opt
cO

t
0 T̄0

cO,opt det A
kOB

u

Figure 7. Graphs of the solution cO (left) and of the corresponding control function u (right)
with the values T̄0, κ̄ given by (24).

Clinical interpretation. Compared to the values in (22), the initial bolus is slightly larger, and the
waiting time for the drip to start a bit longer. For the numerical values in (9), the value of J for this
control function is about 9% lower than for the control function in (23).

3.2.3. Solution with Pontryagin’s Minimum Principle

We now apply Pontryagin’s Minimum Principle in order to solve the optimal control problem in the
peripheral compartment exactly. To do this, we consider the Hamiltonian of the problem: In general,
if we want to minimize J =

∫ T

0
L(x(t), u(t))dt where x solves the system ẋ = F(x, u), x(0) = x0, with

control function u, the Hamiltonian is given by H(x, u, p) = L(x, u) + p>F(x, u). Here, p is a Lagrange
multiplier, and now only control functions u in a given class U are allowed. Suppose x̄ is the solution
for the optimal control function ū and the corresponding Lagrange multiplier p̄. Then Pontryagin’s
Minimum Principle states that ū minimizes H for all t ∈ (0,T ), i.e.,

H(x̄(t), ū(t), p̄(t)) ≤ H(x̄(t), u(t), p̄(t)) (25)

holds for all admissible control functions u ∈ U. In addition the state and co-state equations

˙̄x = F(x̄, ū)
˙̄p = −Hx(x̄, ū, p̄)

must hold.
In our case we have

H(x, u, p) = (cO − cO,opt)2 + p1(a11cB + a12cO + u) + p2(a21cB + a22cO),

where ai j are the coefficients of the matrix A. The class U of admissible control functions consists of
all functions u for which u(t) ≥ 0 for all t ∈ [0,T ]. So, we have to solve the following state and co-state
equations:

ċB = a11cB + a12cO + u (26)
ċO = a21cB + a22cO (27)
ṗ1 = −a11 p1 − a21 p2 (28)
ṗ2 = −a12 p1 − a22 p2 − 2(cO − cO,opt) (29)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5312–5328.



5325

Observe that only the term p1u in the Hamiltonian depends on u. Therefore the condition (25) for
the optimal control function ū reduces to the following:

At any time t the inequality p̄1(t)ū(t) ≤ p̄1(t)u(t) must hold for all functions u(t) ≥ 0. (30)

This means, that on an interval where p̄1 > 0 the control function ū must vanish identically, and
ū(t) > 0 is only possible where p̄1(t) ≤ 0. Moreover, p̄1 < 0 cannot hold on a set of positive measure,
since there u = ∞ would lead to J = ∞. Moreover, observe that on an interval where p1 vanishes,
also p2 vanishes by (28) and therefore, by (29), cO must be identical to the optimal value cO,opt on said
interval.

For simplicity, we assume again that T = ∞. The idea to construct the solution to (26)–(30) is
the following: Suppose p1 vanishes on a maximum interval [0,∞), then we construct the solution
backward in time, and finally we shift everything in time to the right so that the zero of cO is at t = 0.
In concrete terms, we proceed as follows: Let X(t) = ( f (t), g(t))> be a solution of the homogeneous
system Ẋ = AX with g(0) = cO,opt. Then, g is of the form

ga(t) = cO,opt
(
aeλ1t + (1 − a)eλ2t)

where a is a free parameter which will be determined below. Observe that ga satisfies ga(t) det A −
g′a(t) tr A + g′′a (t) = 0 (compare (20)). Both eigenvalues of A are strictly negative, and we assume that
λ1 < λ2 < 0. If the parameter a satisfies

0 > a >
λ2

λ2 − λ1
,

then we have

ga(0) = cO,opt, g′a(0) < 0, and ga(T0) = 0 for T0 = T0(a) =
− log(1 − 1/a)√
(tr A)2 − 4 det A

< 0.

Then one solves the systems (28) and (29) with p1(0) = p2(0) = 0 with ga in place of cO in (29).
The resulting solution p1, p2 depends on a and can be written down explicitly, but the expression is
unpleasantly long. It turns out, however, that p1 is strictly positive on a maximum interval (T1(a), 0)
with T1(a) < 0 depending on a. Now, choose the parameter a = ā such that T1(ā) = T0(ā): For this
value a = ā, the functions gā and p1 are both strictly positive on (T0, 0) and vanish in T0. How do
we find this value ā? The function a 7→ p1(T0(a)) has a negative minimum in a = λ2

λ2−λ1
< 0 and is

monotone increasing with lima↗0 p1(T0(a)) = ∞. Therefore the equation p1(T0(a)) = 0 has a unique
solution ā ∈ ( λ2

λ2−λ1
, 0) which can be determined numerically.

Now we are almost done. We only have to shift the constructed functions to the right, so that the
zero T0 ends up at t = 0:

Theorem 3. With the notation above, the optimal control solution for the peripheral compartment is

cO(t) =

gā(t − T0) for t ≤ T0

cO,opt for t ≥ T0

and the control function u is given by

u(t) =
1

kOB

(
c′O(0)δ(t) − g′ā(0)δ(t − T0) + cO,opt det(A)H(t − T0)

)
.
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Indeed, this solution satisfies the conditions of the Pontryagin Minumum Principle by construction.
Observe that u is given by (18): It is important to note that c′O is discontinuous in T0. Therefore, in (18)
we have c′′O(T0) = −g′ā(0)δ(t − T0). Notice also that cB follows easily from (27).

Clinical interpretation of the result. The optimal treatment is as follows:

i) A bolus with the dose c′O(0)
kOB

at time t = 0

ii) No infusion in the time interval (0,T0)

iii) A bolus with the dose −g′ā(0)
kOB

at time t = T0

iv) A constant drip with cO,opt det A
kOB

per time unit for t > T0.

Figure 8 shows the solution for the numerical values in (9). In addition, Figure 9 shows the corre-
sponding solution cB and the co-state solution p1. See also [12, Chapter 12] for multiple intravenous
bolus injections.

t
0 T0

cO,opt
cO

t
0 T0

cO,opt det A
kOB

u

Figure 8. Graphs of the solution cO (left) and of the corresponding control function u (right).

t
0 T0

cB

c′O(0)
kOB

t
0 T0

p1

Figure 9. Graphs of the solution cB (left) and the co-state solution p1 (right). For t > T0 we
have cB(t) = cO,opt

kBO+kO
kOB

, the jump at T0 is −g′ā(0)
kOB

.
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We close the discussion with two final remarks:

• A posteriori, the optimal control solution which we found by the Pontryagin Minimum Principle
is optimal not only for T = ∞, but for all T ≥ T0.

• For the numerical values in (9) the cost functional J is only about 0.5% smaller for the Pontryagin
solution compared to the solution which we found in Section 3.2.2.

4. General conclusions

The optimal control problem for the central compartment is easy to solve explicitly (Section 3.1).
In particular, the natural constraint u ≥ 0 is automatically satisfied. In contrast, this constraint must
be explicitly considered for the solution in the peripheral compartment. If one is only interested in an
approximate solution, different variants are available: An approximate solution without overshoot can
easily be specified explicitly in terms of the parameters of the system (Section 3.2.1). Numerically,
it is also quite easy to calculate the parameters of an approximate solution if one restricts the control
functions to a finite-dimensional space (Section 3.2.2). With somewhat greater numerical effort, the
parameters of the exact solution of the optimal control problem can be determined using the Pontryagin
Minimum Principle (Section 3.2.3). In each case, the dosage schedule can be easily derived from the
respective result. The two approximate solutions get by with only one syringe, while the Pontryagin
solution requires two syringes.

Acknowledgements

I would like to thank the referees for their careful reading and the valuable suggestions which
significantly helped to improve the content of the article. I also thank Chris Busenhart and his father
for the reference to the work of Hans P. Geering.

Conflict of interest

The author declares there is no conflict of interest.

References

1. Y. Cherruault, M. Guerret, Parameters identification and optimal control in pharmacokinetics, Acta
Appl. Math., 1 (1983), 105–120. https://doi.org/10.1007/BF00046831

2. B. Some, Y. Cherruault, Optimization and optimal control of pharmacokinetics, Biomedicine &
pharmacotherapy, 40 (1986), 183–187.

3. F. Angaroni, A. Graudenzi, M. Rossignolo, D. Maspero, T. Calarco, R. Piazza, et al., An optimal
control framework for the automated design of personalized cancer treatments, Front. Bioeng.
Biotechnol., 2020. https://doi.org/10.3389/fbioe.2020.00523

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5312–5328.

http://dx.doi.org/https://doi.org/10.1007/BF00046831
http://dx.doi.org/https://doi.org/10.3389/fbioe.2020.00523


5328
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