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Abstract: Objective: Diabetic retinopathy is the leading cause of vision loss in working-age adults. 
Early screening and diagnosis can help to facilitate subsequent treatment and prevent vision loss. Deep 
learning has been applied in various fields of medical identification. However, current deep learning-
based lesion segmentation techniques rely on a large amount of pixel-level labeled ground truth data, 
which limits their performance and application. In this work, we present a weakly supervised deep 
learning framework for eye fundus lesion segmentation in patients with diabetic retinopathy. Methods: 
First, an efficient segmentation algorithm based on grayscale and morphological features is proposed 
for rapid coarse segmentation of lesions. Then, a deep learning model named Residual-Attention Unet 
(RAUNet) is proposed for eye fundus lesion segmentation. Finally, a data sample of fundus images 
with labeled lesions and unlabeled images with coarse segmentation results is jointly used to train 
RAUNet to broaden the diversity of lesion samples and increase the robustness of the segmentation 
model. Results: A dataset containing 582 fundus images with labels verified by doctors, including 
hemorrhage (HE), microaneurysm (MA), hard exudate (EX) and soft exudate (SE), and 903 images 
without labels was used to evaluate the model. In ablation test, the proposed RAUNet achieved the 
highest intersection over union (IOU) on the labeled dataset, and the proposed attention and residual 
modules both improved the IOU of the UNet benchmark. Using both the images labeled by doctors 
and the proposed coarse segmentation method, the weakly supervised framework based on RAUNet 
architecture significantly improved the mean segmentation accuracy by over 7% on the lesions. 
Significance: This study demonstrates that combining unlabeled medical images with coarse 
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segmentation results can effectively improve the robustness of the lesion segmentation model and 
proposes a practical framework for improving the performance of medical image segmentation given 
limited labeled data samples. 

Keywords: diabetic retinopathy; deep learning; fundus image; lesion segmentation; weak supervision 
 

1. Introduction 

Diabetic retinopathy (DR) is a kind of specific change in fundus lesions and is a serious and 
syndromic manifestation of diabetes. Recent studies have also shown that DR affects not only the 
neural retina but also retinal pigment epithelium (RPE) cells in the outer layer of the retina, including 
changes in melanosomes and lipofuscin granules in RPE cytochrome granules [1,2]. According to a 
clinical meta-eye study [3], DR is a serious threat to human vision, leading to a large amount of 
blindness. Therefore, regular detection of retinopathy is of great significance for the treatment of 
patients with diabetic retinopathy. However, manual screening for diabetic retinopathy faces 
challenges such as an imbalance in the doctor-patient ratio and the varying experience of 
ophthalmologists. 

The clinical manifestations of DR mainly include microaneurysm (MA), hemorrhage (HE), hard 
exudate (EX), soft exudate (SE) and other lesions [4]. Studies suggest that the accurate segmentation 
of key lesions plays a crucial role in the early detection and diagnosis of DR [5–7]. In recent years, 
with the continuous development of computer vision technology, more image processing algorithms 
have been widely used in analyzing medical images for detection, segmentation and classification 
tasks [8–13]. Shankar et al. applied histogram-based segmentation to fundus images and proposed a 
synergic deep learning model to grade the severity levels of DR [14]. Hire et al. proposed an exudate 
segmentation method based on ant colony optimization [15]. Imani et al. used a morphological 
component analysis algorithm to separate lesions from vessels and detect exudate regions [16]. 
However, the complexity of lesion appearance and the interference of vessels, noise and imaging 
artifacts challenge the robustness of previous lesion segmentation algorithms. 

Recent deep learning technology development has further improved the performance of 
fundus segmentation and classification tasks, providing key information for the diagnosis of 
fundus diseases [17–19]. Tavakoli et al. studied the automatic detection of MA using a combination 
of a matching-based approach and a deep learning model and compared the effect of two different 
image preprocessing methods [20]. Yu et al. proposed an end-to-end deep semantic edge learning 
image segmentation architecture based on ResNet and a skip-layer architecture to address the problem 
of edge pixels belonging to more than one semantic class [21]. Mo et al. proposed cascaded deep 
residual networks that fuse multilevel hierarchical information to segment exudates accurately and 
efficiently to recognize DME [22]. Chen et al. proposed an encoder-decoder architecture with atrous 
separable convolution for semantic image segmentation, resulting in a faster and stronger segmentation 
result. Nevertheless, at this time, the number of fundus images of patients with pixel-level lesion 
markers is relatively insufficient, and the existing training samples cannot fully reflect the diversity of 
practical datasets, limiting the segmentation accuracy of a deep learning model to a certain extent. 
Therefore, methods are required to fully take advantage of the large amount of diverse unlabeled 
fundus images and improve the robustness of current deep learning-based fundus lesion segmentation 
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algorithms [12,13]. 
In this study, we first designed an efficient lesion segmentation algorithm based on the grayscale 

and morphological features of fundus lesions and used this algorithm to perform coarse segmentation 
on unlabeled fundus datasets to expand the number of fundus image samples for training a fine lesion 
segmentation model based on deep learning. Then, we developed a UNet-based deep learning model 
that applied the residual structure and attention mechanism for fundus lesion segmentation. The 
performance of the model was improved by weakly supervised learning, which takes advantage of both 
a labeled preprocessed fundus image and an unlabeled fundus image with coarse segmentation results. 

2. Methodology 

2.1. Characteristics of fundus lesions 

The fundus images used in our study were taken from patients with retinopathy using color fundus 
photography with a relatively complete fundus structure. In these images, MA usually appears as dark 
red round dots with distinct boundaries. HE refers to the leakage of blood from abnormal vessels, also 
mostly in the form of dark red spots, except some in the form of flames. The shape and size are irregular, 
and the density within the area is not uniform. The HE severity varies with its location. EX is the 
leakage of lipoprotein and other substances from abnormal blood vessels. It is usually bright yellow 
or yellowish-white and is usually clumped and ring-shaped, with obvious boundaries. SE is caused by 
fiber layer ischemia of the retinal nerve, which is white or yellow-white cotton-flocculent with a fuzzy 
boundary, also known as cotton wool spots [23]. Typical examples of the four lesions on a fundus 
image are shown in Figure 1. 

 

Figure 1. Diagram of fundus retinopathy. 

2.2. Image preprocessing 

Each fundus image was first enhanced to improve the detectability of lesions. Based on the 
traditional adaptive histogram equalization (CLAHE) algorithm [24], which is widely used in the 
preprocessing of image segmentation tasks [25], algorithms including gamma correction, contrast 
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transformation enhancement, intensity range adjustment, etc. were applied to enhance the local details 
and suppress noise in each fundus image. 

2.3. Lesion coarse segmentation algorithm based on grayscale and morphological features 

Since the morphology and brightness features carry most lesion information, in this study, we use 
the grayscale image as the input for the proposed segmentation algorithm, which can not only retain 
the gradient information but also reduce the feature dimension. Fundus lesions can be classified into 
dark lesions and bright lesions according to their grayscale characteristics in enhanced fundus images [26]. 
The candidate areas of dark lesions mainly include HE and MA, as well as some fundus blood vessels 
and image noise/artifacts. The candidate areas of bright lesions mainly include EX and SE, as well as 
the optic disc region and noise/artifacts. The proposed lesion segmentation process is shown in Figure 2. 
The numbers in the diagram represent the key steps, which are described below. 

 

Figure 2. Flow chart of the lesion segmentation algorithm. 

1) Dual thresholds (TL and TH) were used to perform preliminary segmentation on the preprocessed 
grayscale images to obtain the candidate regions of dark and bright lesions, respectively: 

𝑓ሺ𝑥, 𝑦ሻ௥௖ ൌ ൜
255, 𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐿
0    , 𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐿

                            (1) 
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𝑓ሺ𝑥, 𝑦ሻ௪௖ ൌ ൜
255, 𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐻
0    , 𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐻

                            (2) 

where 𝑓ሺ𝑥, 𝑦ሻ௥௖ is a candidate dark lesion region and 𝑓ሺ𝑥, 𝑦ሻ௪௖ is a candidate bright lesion region. 
2) A threshold (TB) was selected to binarize the grayscale image to extract all blood vessels and their 
approximate areas in the fundus image by: 

𝑓ሺ𝑥, 𝑦ሻ௕௖ ൌ ൜
255, 𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐵
0     , 𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐵

                              (3) 

Then, multiple sizes of kernels (MK) were selected to carry out continuous opening and closing 
morphological operations on the binarized images to connect the small breakpoints in the blood vessels 
and remove the discrete noise pixels: 

The erosion operator [27]: 

ሾ𝜀஻ሺ𝑋ሻሿሺ𝑥ሻ ൌ 𝑚𝑖𝑛 ሼ𝑋஻ሽ                              (4) 

and the dilation operator [27]: 

ሾ𝛿஻ሺ𝑋ሻሿሺ𝑥ሻ ൌ 𝑚𝑎𝑥 ሼ𝑋஻ሽ                             (5) 

where ሾ𝜀஻ሺ𝑋ሻሿሺ𝑥ሻ represents the structural element B that corrodes from a child element x of set X, 
ሾ𝛿஻ሺ𝑋ሻሿሺ𝑥ሻ represents the expansion operation of structural element B on a child element x in set X, 
and 𝑋஻ represents the x value in the structural element B. 

The opening operation [27]: 

𝑔ሺ𝑥, 𝑦ሻ௢ ൌ 𝑜𝑝𝑒𝑛ሾ𝑓ሺ𝑥, 𝑦 ሻ, 𝐵ሿ ൌ 𝑑𝑖𝑙𝑎𝑡𝑒ሼ𝑒𝑟𝑜𝑑𝑒ሾ𝑓ሺ𝑥, 𝑦ሻ, 𝐵ሿ, 𝐵ሽ             (6) 

and the closing operation [27]: 

𝑔ሺ𝑥, 𝑦ሻ௖ ൌ 𝑐𝑙𝑜𝑠𝑒ሾ𝑓ሺ𝑥, 𝑦 ሻ, 𝐵ሿ ൌ 𝑒𝑟𝑜𝑑𝑒ሼ𝑑𝑖𝑙𝑎𝑡𝑒ሾ𝑓ሺ𝑥, 𝑦ሻ, 𝐵ሿ, 𝐵ሽ             (7) 

Finally, to obtain more accurate blood vessel segmentation results, the center point of each 
remaining region was selected for polynomial fitting verification: 

Polynomial fitting verification [28]: 

∆ൌ |𝑦௜ି𝑦௫೔
| ൌ |𝑦௜ െ ሺ𝑎଴ ൅ 𝑎ଵ𝑥௜ ൅ 𝑎ଶ𝑥௜

ଶሻ| ൑ 𝐿                   (8) 

where ∆  represents the offset, 𝑥௜  and 𝑦௜  represent the central coordinates of each region, 𝑦௫೔
 

represents the output of the polynomial fitting verification with 𝑥௜ as its input, 𝑎଴,  𝑎ଵ,  𝑎ଶ represent 
three constants in the polynomial fitting verification, and L represents the maximum allowable offset. 
The objective function of polynomial fitting is minimizing the mean square error (MSE) [29]: 

𝑄ሺ𝑎଴, 𝑎ଵ, 𝑎ଶሻ ൌ ∑ ሺ𝑦ሺ𝑥௜ሻ െ௠
௜ୀଵ 𝑦௜ሻଶ ൌ ∑ ሺ𝑎଴ ൅ 𝑎ଵ𝑥௜ ൅ 𝑎ଶ𝑥௜

ଶ െ௠
௜ୀଵ 𝑦௜ሻଶ          9) 

3) The approximate convergence point of the blood vessels in the image was obtained by calculating 
the horizontal and vertical histograms: 

ሺ𝑥, 𝑦ሻ௢௣௧௜௖ ൌ ሺ𝑚𝑎𝑥௜ ሼ∑ 𝑝௝ሽ௔
௝ୀଵ , 𝑚𝑎𝑥௝ሼ∑ 𝑝௜ሽሻ௕

௜ୀଵ                     (10) 
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where i and j represent the row and column of the image, respectively, a and b represent the number 
of pixels in each row and column, respectively, and p represents the pixel value. 

Then, to guarantee that in fundus images with different angles and directions, the proportion of 
space occupied by the optic disc is always fixed, we took the convergence point as the center and an 
empirical percent value (P%) of the image resolution as the radius to draw a circular region as the 
candidate location region of the optic disc. 

ℎሺ𝑥, 𝑦ሻ௖௜௥௖௟௘  ൌ ቊ
255, ඥሺ𝑦௜ െ 𝑦௖ሻଶ ൅ ሺ𝑥௜ െ 𝑥௖ሻଶ ൑ 𝑝% ∗ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0,      ඥሺ𝑦௜ െ 𝑦௖ሻଶ ൅ ሺ𝑥௜ െ 𝑥௖ሻଶ ൐ 𝑝% ∗ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
            (11) 

where ℎሺ𝑥, 𝑦ሻ௖௜௥௖௟௘ is a circle candidate region of the optic disc, 𝑥௜, 𝑦௜ represent the coordinates of 
each pixel in the image, and 𝑥௖, 𝑦௖ represent the coordinates of the convergence point. 

Finally, an AND operation was performed to obtain the final segmentation results of the optic 
disc region: 

𝑔ሺ𝑥, 𝑦ሻௗ௜௦௖ ൌ 𝑓ሺ𝑥, 𝑦ሻ௪௖ ∧ ℎሺ𝑥, 𝑦ሻ௖௜௥௖௟௘                      (12) 

where ℎሺ𝑥, 𝑦ሻ௖௜௥௖௟௘ is the circle candidate region of the optic disc. 
4) The main blood vessels in the dark lesion candidate region were extracted and removed using a 
vessel segmentation algorithm. The noise was suppressed and removed through a morphological 
operation, including expansion and corrosion, connected domain calculations, including area 
calculations, contour calculations and edge processing. 
5) The optic disc in the bright lesion candidate region was removed using an optic disc segmentation 
algorithm, and the noise was also reduced through a morphological operation, connected domain 
calculation and edge processing methods. 
6) After acquiring each lesion’s connected domains in an image, the area of the connected domains 
and the coordinates of the four vertices of the minimum enclosing rectangle were calculated. The 
screening and identification of MA were realized based on three limiting parameters. The first two 
limiting parameters filtered the shape of the candidate connected domain based on the characteristic 
that MA is mostly round or oval, and the third limiting parameter filtered the candidate area of the 
connected domain based on the assumption that MA is usually small. 

The 1st limiting parameter: 

𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠ሺ𝑖ሻ ൌ ቐ
𝑟𝑒𝑚𝑎𝑖𝑛,         𝐴𝑅𝐴 ൌ

௛೔

௪೔
൏ 𝜆

𝑟𝑒𝑚𝑜𝑣𝑒,         𝐴𝑅𝐴 ൌ
௛೔

௪೔
൐ 𝜆

                      (13) 

The 2nd limiting parameter: 

𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠ሺ𝑖ሻ ൌ ቐ
𝑟𝑒𝑚𝑎𝑖𝑛,         𝑅𝐴 ൌ

௔௥௘௔ ௢௙ ஺೔

௔௥௘௔ ௢௙ ஻೔
൏ 𝜇

𝑟𝑒𝑚𝑜𝑣𝑒,        𝑅𝐴 ൌ
௔௥௘௔ ௢௙ ஺೔

௔௥௘௔ ௢௙ ஻೔
൐ 𝜇

                   (14) 

The 3rd limiting parameter: 

𝑜𝑛𝑡𝑜𝑢𝑟𝑠ሺ𝑖ሻ ൌ ൜
𝑟𝑒𝑚𝑎𝑖𝑛,              𝛼 ൏ 𝐼 ൌ 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠ሺ𝑖ሻ ൏ 𝛽
𝑟𝑒𝑚𝑜𝑣𝑒,                                        𝑒𝑙𝑠𝑒                               

            (15) 
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where ARA is the aspect ratio of the area, RA is the ratio of the area, I is a closed interval, 𝜆, 𝜇, 𝛼, 𝛽 
are parameters, h and w represent the length and width of each connected domain, respectively, 𝐴௜ 
represents the area of the circular region drawn with the center of each connected domain as the 
midpoint and the mean distance between the center point and each contour as the radius, and 𝐵௜ 
represents the area of each connected domain. 

Finally, the remaining connected domains were regarded as the MA segmentation results: 

𝑔ሺ𝑥, 𝑦ሻெ஺ ൌ 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠ሺ𝑟𝑒𝑚𝑎𝑖𝑛ሻ                          (16) 

7) HE identification and segmentation was realized using an XOR operation: 

𝑔ሺ𝑥, 𝑦ሻுா ൌ 𝑓ሺ𝑥, 𝑦ሻ௥௖ ⊕ 𝑔ሺ𝑥, 𝑦ሻெ஺                        (17) 

8) Two groups of threshold valuesሺ𝑇𝐺1ሺ𝑇𝐺1𝐴, 𝑇𝐺1𝐴^) and 𝑇𝐺2ሺ𝑇𝐺2𝐵, 𝑇𝐺2𝐵^ሻሻ were selected to 
obtain the difference in the segmentation edges: 

𝑓ሺ𝑥, 𝑦ሻ௚௧ଵ ൌ ൜
255,   𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐺1𝐴
0,        𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐺1𝐴

                           (18) 

𝑓ሺ𝑥, 𝑦ሻ௚௧ଵ^ ൌ ൜
255,   𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐺1𝐴^
0,        𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐺1𝐴^

                       (19) 

𝑓ሺ𝑥, 𝑦ሻ௚௧ଶ ൌ ൜
255,   𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐺2𝐵
0,        𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐺2𝐵

                         (20) 

𝑓ሺ𝑥, 𝑦ሻ௚௧ଶ^ ൌ ൜
255,   𝑓ሺ𝑥, 𝑦ሻ ൐ 𝑇𝐺2𝐵^
0,        𝑓ሺ𝑥, 𝑦ሻ ൏ 𝑇𝐺2𝐵^

                       (21) 

𝑓ሺ𝑥, 𝑦ሻௗ௜௙ ൌ ሺ𝑓ሺ𝑥, 𝑦ሻ௚௧ଵ⨁𝑓ሺ𝑥, 𝑦ሻ௚௧ଵ^ሻ ⨁ሺ𝑓ሺ𝑥, 𝑦ሻ௚௧ଶ⨁𝑓ሺ𝑥, 𝑦ሻ௚௧ଶ^ሻ        (22) 

After that, an XOR operation was performed to obtain the SE contours: 

𝑓ሺ𝑥, 𝑦ሻ௖௦௘ ൌ 𝑓ሺ𝑥, 𝑦ሻ௪௖ ⊕ 𝑓ሺ𝑥, 𝑦ሻௗ௜௙                       (23) 

Finally, the SE lesion segmentation result was obtained by filling the inner regions of the contours: 

𝑔ሺ𝑥, 𝑦ሻௌா ൌ ൜
255,          𝑓ሺ𝑥, 𝑦ሻ  ∈ 𝑓ሺ𝑥, 𝑦ሻ௖௦௘

0,             𝑓ሺ𝑥, 𝑦ሻ ∉ 𝑓ሺ𝑥, 𝑦ሻ௖௦௘
                       (24) 

9) The EX lesion segmentation result was obtained by conducting an XOR operation: 

𝑔ሺ𝑥, 𝑦ሻா௑ ൌ 𝑓ሺ𝑥, 𝑦ሻ௪௖ ⊕ 𝑔ሺ𝑥, 𝑦ሻௌா                           (25) 

2.4. Lesion segmentation based on deep learning 

2.4.1 Framework of RAUNet 

UNet is a conventional fully convolutional network for semantic segmentation, which was 
originally proposed for medical image segmentation [30]. UNet has a large number of feature channels 
in the upsampling part, which allows the network to propagate context information to higher resolution 
layers. By supplying the expansive path with finer spatial information, skip connections are applied to 
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boost UNet’s segmentation accuracy of target borders and improve gradient flow. Therefore, UNet can 
be trained on fewer data samples [31]. The encoder-decoder architecture and skip connection in UNet 
also help to capture multiscale information in images [32]. To further boost the training process of the 
deep neural network, we introduced a residual module to better solve the problem of network 
degradation, avoid gradient dispersion and improve the network fitting ability. At the same time, to 
better allocate the limited information processing resources to the important parts of the model and 
improve the detection ability of small target lesions, we introduced an attention mechanism. The 
proposed deep learning-based lesion segmentation network model was named Residual-Attention 
Unet (RAUNet). 

2.4.2 Finetuning the segmentation model based on weakly supervised training 

To improve the robustness of the segmentation model, in this study, we proposed a framework to 
fine-tune the deep learning model by jointly using the labeled dataset and data with coarse labels 
obtained using the proposed grayscale and morphological feature-based segmentation method. 
Generally, weak supervision includes incomplete supervision, inexact supervision and inaccurate 
supervision [33]. The proposed training framework takes a mixed dataset as the input to RAUNet and 
fine-tunes the weights of the whole network through batch iteration using the Adam optimizer. 
Therefore, it can be considered a weak supervision structure. The hyperparameters of the deep learning 
model, including training duration, learning rate, step size, etc., were manually optimized to achieve 
better model robustness and generalization. The specific training process is shown in Figure 3. 

 

Figure 3. Flow chart of the weakly supervised training-based segmentation model. 



5301 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5293-5311. 

2.4.3 Evaluation indices 

The accuracy and intersection over union (IOU) were selected as the two main evaluation indices 
for lesion segmentation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ሺ𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ሻ ∩ 𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑙𝑎𝑏𝑒𝑙ሻሻ /𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑙𝑎𝑏𝑒𝑙ሻ         (26) 

𝐼𝑂𝑈 ൌ ሺ𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ሻ ∩ 𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑙𝑎𝑏𝑒𝑙ሻሻ/ሺ𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ሻ ∪ 𝐴𝑟𝑒𝑎 𝑜𝑓 ሺ𝑙𝑎𝑏𝑒𝑙ሻሻ  (27) 

The receiver operating characteristic (ROC) curve was also drawn, and the area under the curve 
(AUC) was calculated to better evaluate the actual performance of the model. 

3. Results and discussion 

3.1. Data samples 

Three groups of data samples were used as input to the deep learning model: 
1) A total of 528 labeled fundus images from Beijing Tongren Hospital manually labeled by 
professional ophthalmologists. 
2) A total of 532 fundus images from the OIADDR dataset [34] extracted by professionals and 
annotated by ophthalmologists. 
3) A total of 425 fundus images from the Messidor dataset [35] with coarse segmentation labels of lesions 
derived using the proposed segmentation method based on grayscale and morphological features. 

We reduced the resolution of each image to 320 × 320 to accommodate images with poor 
resolution. All 1485 fundus images were randomly divided into a training set and verification set at a 
ratio of 4:1. All the images in the verification set were labeled manually by ophthalmologists. 

3.2. Coarse segmentation of fundus lesions based on grayscale and morphological characteristics 

A total of 528 fundus images with a resolution of 1400 × 1200 labeled by doctors were used to 
evaluate the proposed grayscale and morphological feature-based segmentation algorithm. The 
processing time of a single image was approximately 7 s on a PC platform with an RTX 2080 graphics 
card. The parameters of the proposed coarse segmentation method were set empirically and are shown 
in Table 1. The overall segmentation accuracies for HE, MA, EX and SE were 27.80, 37.67, 36.30 
and 45.32%, respectively, with IOUs of 18.87, 7.58, 29.90 and 41.71%, respectively. The effect of 
image preprocessing and the actual segmentation effect are shown in Figure 4. 
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Table 1. Parameters selected for the coarse segmentation. 

After image preprocessing, the image details were greatly enhanced, and the influence of noise 
in each image was suppressed; therefore, the visual interpretation of an image was improved. 
Comparing the segmentation results and the ground truths, we can see that the proposed segmentation 
algorithm based on the grayscale and morphological features can segment most of the key lesions in 
an image effectively, and the coarse segmentation results derived were generally in accordance with 
the ground truth. 

 

Figure 4. Image enhancement and segmentation result. 

Coarse segmentation Parameters 

Preliminary segmentation thresholds (TL and TH) 50 and 200 

Binarization threshold (TB) 15 

Open and close operations kernels (MK) (5,11,23) 

Linear fitting parameters (L) 10 

The radius of the circle (P) 1/15 of the image resolution 

The aspect ratio of the area (ARA) λ = 1.75 

The ratio of the area (RA) μ = 0.5 

The area of the connected domain (𝐼) α = 8, β = 53 
groups of thresholds for SE (TG1and TG2) 159, 160 and 199, 200 
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3.3. Comparison with state-of-the-art models 

The proposed RAUNet segmentation model was compared with existing state-of-the-art 
segmentation models. The IDRiD [36] open segmentation dataset was employed for the experiment 
(54 for training and 27 for testing). FCRN, CASENet, DeepLabv3+, LSeg and the proposed RAUNet 
model were used for training and testing. As seen in Table 2, RAUNet proposed in this paper was 
superior to the other four models in the segmentation AUC of all four types of lesions, especially for 
the two types of small target lesions, HE and MA. 

Table 2. Test result comparison. 

Model 
EX HE SE MA Mean 

AUC AUC AUC AUC mAUC 

CASENet [21] 0.7483 0.4486 0.3269 0.4013 0.4813 

FCRN [22] 0.5469 0.4189 0.5163 0.3386 0.4552 

DeepLabv3+ [37] 0.7125 0.4762 0.5932 0.1602 0.4855 

LSeg [11] 0.7945 0.6374 0.7113 0.4627 0.6515 

RAUNet 0.9321 0.8018 0.8479 0.6176 0.7976 

3.4. RAUNet ablation experiments 

To verify the contribution of each improvement of the proposed segmentation model, ablation 
experiments were conducted. The original UNet, UNet with a residual module and the proposed 
RAUNet (UNet with a residual module and attention mechanism) were trained and evaluated with 
labeled dataset A (381 for training and 147 for testing). 

Table 3. Ablation test results. 

Model 
EX HE SE MA Mean 

Acc. IOU Acc. IOU Acc. IOU Acc. IOU mAcc. mIOU mTime/pic (s)

UNet 0.8762 0.6140 0.4847 0.3342 0.6133 0.5728 0.5408 0.4558 0.6288 0.4942 2.9861 

Res-UNet 0.7845 0.6161 0.4728 0.3582 0.6749 0.5793 0.5510 0.4694 0.6208 0.5058 1.0386 

RAUNet 

(Res.+Att.) 
0.8531 0.6448 0.5402 0.3892 0.6743 0.5961 0.5461 0.4809 0.6534 0.5278 6.4896 
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Figure 5. ROC curves of the four networks. 

 

Figure 6. Comparison of the segmentation results derived using different networks. 

It can be observed from Table 3 that compared with UNet as the benchmark, for all lesions, the 
IOU between the segmentation result and ground truth was gradually improved by introducing the 
residual module and attention mechanism. The IOU obtained by RAUNet was significantly higher 
than that of the other networks. For the mean segmentation accuracy of all lesions, the result derived 
by the proposed RAUNet is the highest. We also calculated the mean time required for each model to 
process a single image. As shown in the last column of Table 3, the processing time of the proposed 
segmentation algorithm is larger than that of UNet and Res-UNet due to the added attention mechanism. 
However, we believe this is acceptable since diagnosing DR usually does not require strict real-time 
processing, and the processing time of the proposed algorithm can be largely reduced by improving 
the hardware and computation efficiency. 
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The receiver operating characteristic (ROC) curves shown in Figure 5 are also in accordance with 
the above results. The proposed RAUNet obtained the largest AUC, followed by UNet combined with 
the residual and attention modules. 

Some typical examples of the segmentation results of the four networks are shown in Figure 6. It 
can be observed that introducing residual and attention modules improved the UNet visual 
segmentation result. The residual module increased the model’s sensitivity to HE and SE while 
reducing the false alarm rate of EX. The attention mechanism largely improved the segmentation for 
small lesions such as HE and MA. Therefore, the proposed RAUNet further obtained results closer to 
the ground truth labels than the compared networks for all kinds of lesions. 

3.5. Weakly supervised segmentation of fundus lesions based on deep learning 

The weakly supervised training model was evaluated on the basis of controlling the validation set 
unchanged. The loss, accuracy and IOU varying with the number of iteration epochs of the weakly and 
fully supervised models (taking EX as an example) are shown in Figures 7 and 8, respectively, where 
red represents the result derived by the verification set and blue represents that of the training set. 

 

 

 

Figure 7. Changing indicator curves for the weakly supervised training model with 
increasing number of training epochs. 
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Figure 8. Changing indicator curves for the fully supervised training model with 
increasing number of training epochs. 

Table 4. Experimental results of weakly supervised and fully supervised models. 

Model 
EX HE SE MA Mean 

Acc. IOU Acc. IOU Acc. IOU Acc. IOU mAcc. mIOU

RAUNet 

0.7061 0.5821 0.4129 0.3918 0.6946 0.6331 0.5955 0.5737 0.6023 0.5452(Fully 

supervised) 

RAUNet 

0.7714 0.5849 0.6184 0.4466 0.743 0.6403 0.5789 0.5684 0.6779 0.5601(weakly 

supervised) 

As shown in Figure 7, for the proposed weakly supervised model, the evaluation indices on the 
validation and training datasets showed a generally synchronous upward trend with the increase in the 
number of training epochs. However, as shown in Figure 8, for the fully supervised learning model, 
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when the number of training epochs reached a certain value, the evaluation indices of the validation 
set no longer increased with that of the training set, indicating a certain degree of overfitting. 

A comparison of the segmentation results derived from the fully and weakly supervised training 
is shown in Table 4 (weakly supervised: 1200 for training and 285 for testing; fully supervised: 381 
for training and 285 for testing). For HE, EX and SE, the segmentation accuracy and IOU of the 
segmentation results using weakly supervised training were higher than those using fully supervised 
training. However, the segmentation result of MA was not improved by weakly supervised learning. 
This may be attributed to the small size of MA, which may be caused by the effect of noise on grayscale 
and morphological feature-based segmentation. Overall, the segmentation performance was 
significantly improved by the proposed weakly supervised model. The coarse segmentation results 
derived from the proposed coarse segmentation model sufficiently take advantage of the large amount 
of unlabeled data samples and increase the diversity of the lesions by adding small turbulence on the 
segmentation label, which can avoid overfitting and improve the robustness of the proposed weakly 
supervised model. 

The confusion matrices of the four lesions obtained using weakly supervised training are shown 
in Figure 9. It can be seen that most of the correctly segmented lesion areas are significantly higher 
than the misclassified and missed areas. The misclassification rate for HE is higher, resulting in the 
lowest accuracy and IOU, which is partly due to the complex appearance of this kind of lesion. 

 

Figure 9. The confusion matrices of the four lesions obtained using weakly supervised training. 
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4. Conclusions 

Lesion segmentation in fundus images is beneficial to the diagnosis and treatment of patients. 
However, due to the low contrast, small size and variant appearance characteristics of the lesions, 
conventional image segmentation algorithms usually cannot obtain satisfactory segmentation results. 
In this study, a weakly supervised framework was proposed for fundus lesion segmentation using 
grayscale and morphological features of lesions and a deep neural network. 

Experimental results proved that: 1) the CLAHE image enhancement algorithm effectively 
improved the contrast between lesions and background; 2) an attention mechanism can improve the 
segmentation accuracy by increasing the sensitivity of the model to small lesions, and a residual 
module can improve the multiscale feature extraction ability of the network and avoid the problem of 
gradient dispersion of a deep neural network; 3) the introduction of a coarse labeled training dataset 
derived from the proposed segmentation method based on the grayscale and morphological features 
effectively increased the diversity of lesion samples and further improved the generalization and 
robustness of the segmentation model using weakly supervised training. 
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