
MBE, 19(5): 5269–5292.

DOI: 10.3934/mbe.2022247

Received: 26 January 2022

Revised: 15 March 2022

Accepted: 17 March 2022

Published: 24 March 2022

http://www.aimspress.com/journal/MBE

Research article

Multi-strategy improved salp swarm algorithm and its application in

reliability optimization

Dongning Chen1,2,*, Jianchang Liu1,2, Chengyu Yao3, Ziwei Zhang1,2 and Xinwei Du1,2

1 Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,
Yanshan University, Qinhuangdao 066004, China

2 Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),
Ministry of Education of China, Qinhuangdao 066004, China

3 Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University,
Qinhuangdao 066004, China

* Correspondence: Email: dnchen@ysu.edu.cn; Tel: +8613930358806.

Abstract: To improve the convergence speed and solution precision of the standard Salp Swarm
Algorithm (SSA), a hybrid Salp Swarm Algorithm based on Dimension-by-dimension Centroid
Opposition-based learning strategy, Random factor and Particle Swarm Optimization’s social learning
strategy (DCORSSA-PSO) is proposed. Firstly, a dimension-by-dimension centroid opposition-based
learning strategy is added in the food source update stage of SSA to increase the population diversity
and reduce the inter-dimensional interference. Secondly, in the followers’ position update equation of
SSA, constant 1 is replaced by a random number between 0 and 1 to increase the randomness of the
search and the ability to jump out of local optima. Finally, the social learning strategy of PSO is also
added to the followers’ position update equation to accelerate the population convergence. The
statistical results on ten classical benchmark functions by the Wilcoxon test and Friedman test show
that compared with SSA and other well-known optimization algorithms, the proposed DCORSSA-
PSO has significantly improved the precision of the solution and the convergence speed, as well as its
robustness. The DCORSSA-PSO is applied to system reliability optimization design based on the T-S
fault tree. The simulation results show that the failure probability of the designed system under the cost
constraint is less than other algorithms, which illustrates that the application of DCORSSA-PSO can
effectively improve the design level of reliability optimization.

Keywords: salp swarm algorithm; social learning; centroid opposition-based learning; system

5270

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

reliability optimization; T-S fault tree

1. Introduction

Optimization algorithm refers to the process of finding the best combination for a set of decision
variables to solve a specific problem. For the complex optimization problems emerging in various
fields such as engineering, economy, and medicine, it is not easy to find the optimal global solution by
using traditional methods of mathematical optimization. However, the swarm intelligence optimization
algorithm, which simulates the behavior of natural organisms, has successfully solved many complex
optimization problems [1–4]. With the in-depth understanding of biological organisms, researchers
have successively developed a series of swarm intelligence optimization algorithms, such as
Particle Swarm Optimization (PSO) [5], Ant Colony Optimization (ACO) [6], Artificial Bee
Colony (ABC) [7], Firefly Algorithm (FA) [8], Grey Wolf Optimizer (GWO) [9], Seagull
Optimization Algorithm (SOA) [10], Slime Mould Algorithm (SMA) [11] and so on.

Mirjalili et al. [12] proposed a Salp Swarm Algorithm (SSA) in 2017, which is a new swarm
intelligence optimization algorithm. Its optimization idea came from the population mechanism of the
salp swarm chain foraging in the ocean. Once the SSA was proposed, it has attracted the extensive
attention of many scholars because of its simple principle and easy implementation. Currently, this
algorithm has been widely used in the fields of feature extraction [13,14], image segmentation [15,16],
dispatch optimization [17], nodes localization [18], and so on.

The essence of the SSA is a random search optimization algorithm. It has the shortcomings of
low accuracy in the later stage of iteration and is easy to get stuck at local optima. As a meta-heuristic
algorithm, the searching behavior of SSA is divided into two main phases: exploration and exploitation
phases. In exploration phase, it can efficiently discover the search space mostly by randomization, but
it may face abrupt changes. In exploitation phase, it converges toward the most promising region. But,
SSA often traps into local optima due to its stochastic nature and lack of balancing between exploration
and exploitation. Thus, from this point, many studies have been presented to improve the performance
of SSA and to overcome these defects.

Some improvement of single strategy has applied to enhance the performance of SSA by scholars.
Sayed et al. [19] used a chaotic mapping sequence to take place the random parameter, which
significantly improved the convergence rate and resulting precision of SSA. Abbassi et al. [20]
proposed an Opposition-based Learning Modified Salp Swarm Algorithm (OLMSSA) for the accurate
identification of circuit parameters. Singh et al. [21] updated the position of the salp swarm by sine
cosine to enhance the exploration and exploitation capability. Syed et al. [22] proposed a strategy based
on the weighted distance position update called the Weighted Salp Swarm Algorithm (WSSA) to
enhance the performance and convergence rate of the SSA. Singh et al. [23] proposed a Hybrid SSA-
PSO algorithm (HSSAPSO) by adding the speed optimization method of particle swarm optimization
algorithm in the position update stage of salp swarm to avoid premature convergence of the optimal
solution in the search space.

Moreover, multi-strategy improvement is adopted to enhance the SSA and has achieved good
results with the development of research and application of SSA. Zhang et al. [24] used the Gaussian
Barebone and stochastic fractal search mechanism to balance the global search ability and local search
ability of the basic SSA. Liu et al. [25] proposed a new SSA-based method named MCSSA, in which

5271

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

the structure of SSA is rearranged using a chaos-assisted exploitation strategy and multi-population
foundation to enhance its performance. Zhang et al. [26] proposed an ensemble composite mutation
strategy to boost the exploitation and exploration trends of SSA, as well as a restart strategy to assist
salps in getting away from local optimum. Zhao et al. [27] made an improvement of SSA called
AGSSA, in which an adaptive control parameter is introduced into the position update stage of
followers to boost the local exploitative ability of the population, and the elite gray wolf domination
strategy is introduced in the last stage of the population position update to help the population find the
global optimal solution faster. Zhang et al. [28] presented a chaotic SSA with differential evolution
(CDESSA), and in the proposed framework, chaotic initialization is utilized to produce a better initial
population aim at locating a better global optimal, and the differential evolution is used to build up the
search capability of each agent. Xia et al. [29] proposed a QBSSA, in which an adaptive barebones
strategy help to reach both accurate convergence speed and high solution quality and a quasi-
oppositional-based learning make the population away from trapping into local optimal and expand
the search space. Zhang et al. [30] proposed an enhanced SSA (ESSA), which improves the
performance of SSA by embedding strategies such as orthogonal learning, quadratic interpolation, and
generalized oppositional learning.

2. Motivation and innovation

Although the basic SSA enriches some characteristics like fast convergence speed and simple
implementation, it may trap at sub-optimal solutions easily in some cases when handling the more
complex optimization problems. Some improved algorithms of SSA have been provided by scholars
mentioned as above, but each algorithm has its own merits and drawbacks. Hence, there is no guarantee
which algorithm is best suited for a specific problem according to the “No free lunch” theorem [31].
In practical applications, there are special requirements on the accuracy or the convergence speed of
the algorithm, so it is necessary to adopt more strategies.

In basic SSA, when the whole swarm of salps falls into a sub-optimal solution, the algorithm is
trapped at that local solution and eventually stagnate at that suboptimal solution. So, we proposed a
strategy of using dimension-by-dimension centroid opposition-based learning to make the slap
population get more wide search space. Moreover, a random factor is used to increase the randomness
of the population distribution and PSO’s social learning strategy is added to speed up convergence.

The main contributions of this paper are as follows:
1) An improved algorithm which combines dimension-by-dimension centroid opposition-based

learning, random factor, and PSO’s social learning strategy (DCORSSA-PSO) is proposed.
2) The performance of proposed DCORSSA-PSO is verified by comparing it with several well-

known algorithms in benchmark functions.
3) The proposed DCORSSA-PSO is used to the design of system reliability optimization based

on T-S fault tree and has achieved good result.
The remainder section of this article is structured as follows. Section 3 introduces the basic

principles of SSA. Section 4 introduces the mathematical principles of dimension-by-dimension
centroid opposition-based learning, the addition of random factor and PSO’ social learning, and
proposes DCOSSA, DCORSSA and DCORSSA-PSO. Section 5 contains simulation experiment
and result analysis. In Section 6, the efficacy of the proposed DCORSSA-PSO is assessed on
engineering design of system reliability optimization. Finally, conclusions and future works are

5272

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

summarized in Section 7.

3. Basic principles of salp swarm algorithm

The salp swarm algorithm was proposed by Mirjalili et al. in 2017 [12], which is a heuristic
swarm intelligent optimization algorithm that simulates the navigating and foraging behavior of
salps. The salp chain consists of two types of salps: leader and follower. The leader is the salp at
the head of the salp chain, and the other salps are considered followers. To enhance the population
diversity of the algorithm and enhance the ability to jump out of the local optima, half the salps
are selected as the leaders.

The position update equation of the leader is as follows [32]:

  
  

1 2 3

1 2 3

0 0.5

0.5 1

j j j j
i
j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c

      
    

 (1)

where i
jx is the position of the ith leader in the jth dimension; Fj is the position of food source in the

jth dimension; ubj and lbj indicate the upper and lower bound of the jth dimension, respectively; c2 and
c3 are random numbers in the range [0,1], which decide respectively the moving step and the moving
direction (positive or negative) of the jth dimension. c1 is the convergence factor, which is used to
balance the exploration and exploitation ability of the algorithm in the iterative process. c1 is defined
as follows:

2(4 /)

1 2 t Tc e (2)

where t is the current number of iterations and T is the maximum number of iterations.
The position update equation of followers is as follows:

 11
()

2
i i i
j j jx x x   (3)

where i ≥ 2 and i
jx is the position of the ith follower in the jth dimension. Eq (3) shows that the ith

follower in the jth dimension is updated according to the center of the previous generation of the ith
follower and the i-1th follower in the jth dimension.

4. An improved salp swarm algorithm

Although the SSA is experienced to reach good accuracy compared with recent meta-heuristics,
it may still face the shortcomings of getting trapped in local optima and is not suitable for highly
complex optimization functions. To extend the search capability of SSA, a new hybrid salp swarm
algorithm based on dimension-by-dimension centroid opposition-based learning strategy, random
factor, and PSO’s social learning strategy (DCORSSA-PSO) is proposed to solve engineering problems.

5273

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

4.1. DCOSSA

4.1.1. Opposition-based learning

Opposition-based learning is a novel learning strategy proposed by Tizhoosh in 2005 [33]. The
principle is that the current optimal solution and the opposition-based learning solution are searched
for simultaneously during the population iteration and the better one in these two solutions is retained
to the next generation according to the fitness value. This searching method improves the population
diversity and enhances the ability of the algorithm to jump out of the local solutions.

Definition 1: Let x∈R be a real number and x∈[lb, ub]. The opposite number x is defined
as follows:

 x lb ub x   (4)
Analogously, the opposite number in a multidimensional case is also defined.

Definition 2: Let  1 2, , , DX x x x  be a point in a D-dimensional coordinate system with x1, ...,

xD∈R, and xj∈ [lbj, ubj]. The opposite point  1 2, , , DX x x x     is defined as:

 , 1j j j jx lb ub x j D     (5)

4.1.2. Centroid opposition-based learning

When the opposition-based learning method calculates the opposite point, two boundaries (min
and max) are taken from two extreme points in the population for every dimension. The remaining
points of the population are not considered, so this represents a weakness in terms of convergence
speed. A Centroid Opposition-Based Computing (COBC) was proposed by Rahnamayan [34], which
takes the entire population to generate the opposite points and hence improves the convergence speed
and solution accuracy.

Let (X1, ..., Xn) be n points in D-dimensional search space with each point in that space carrying
a unit mass. Then the centroid of the body can be defined as follows:

 1 2 nX X X
M

n

    
 (6)

where then we have

,

1

n

i j
i

j

x
M

n



 (7)

where xi, j is the jth dimension of ith point, Mj is the jth dimension centroid of all n points.
The opposite-point

iX of the point Xi is calculated as follows:

, ,

2

2 , 1
i i

i j j i j

X M X

x M x j D

   
     




 (8)

5274

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

4.1.3. Dimension-by-dimension centroid opposition-based learning

At present, most algorithms adopt the method of variation for all dimension information of the
population and select or eliminate evolution by comparing the fitness values of different individuals
as a whole for all dimension, however, it is difficult to ensure that each selected dimensional
information of the evolutionary individual is better than that of the eliminated individual. Therefore,
there is often inter-dimensional interference in the calculation of the fitness value, which masks the
information of evolution dimension and reduces the quality of solution and the convergence speed.

The dimension-by-dimension update evaluation strategy refers to evaluating the fitness value
separately for each dimension, which can reduce the inter-dimensional interference between each
dimension of the individual and avoid the problem of low variation efficiency. This operation for
population individuals can more accurately evaluate the fitness value in each iteration. However, for
the high-dimensional test functions, it will greatly increase the time complexity of the algorithm.
Through the test, it is found that better results can still be achieved by updating the dimensional
information of the optimal individual instead of each individual.

4.1.4. DCOSSA

This paper combines the dimension-by-dimension update strategy with the centroid opposition-
based learning strategy, and proposes a Dimension-by-dimension Centroid Opposition-based learning
Salp Swarm Algorithm (DCOSSA). The basic step is: Firstly, calculate the opposite point of the
centroid of the current population through Eqs (4)–(8). Then, replace the information at the first
dimension of the food source with the first dimension of the opposite point of the center of gravity. If
the fitness value of the new food source is better than the fitness value of the original food source, the
opposite solution information of the population center of gravity of this dimension is retained,
otherwise, the update result of this dimension is discarded. At last, update the next food source
information in dimension order until all dimensions are updated.

The pseudo-code of the strategy of dimension-by-dimension centroid opposition-based learning
is as follows:

Calculate the center position M of the iterative population according to Eq (6)
for j = 1: Dim

Calculate opposite solution of the food source position jF according to Eq (8)

If f (jF)is better than f (Fj) then

Fj = jF

end if
end for

4.2. DCORSSA

According to the position update Eq (3) of followers in the salp swarm algorithm, the position of
follower takes the center of gravity of the corresponding position of the salp in the previous generation
and the position adjacent to the previous salp. The head follower uses the information of the leader
slap besides its information of previous generation, so the whole population of followers are affected
gradually by the leader slap. It can be seen from Eq (1) that the leader’s position is updated near the

5275

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

food source. Therefore, when the food source does not fall into the local solutions, this end-to-end
search mechanism can enable the followers to fully carry out local exploitation, but the gradual
transmission of the global optimal information is not conducive to the rapid convergence of the
algorithm. Moreover, when the food source falls into the local solutions, the followers will fall into the
dilemma of invalid region search, that is, the lack of population diversity, so the algorithm is easy to
fall into the local extremes.

The above searching mechanism is fixed and lack of dynamic adjustment. Therefore, this paper
proposes a DCORSSA algorithm on the basis of DCOSSA, that is, a random factor is added to the
update equation of its followers to enhance the update randomness, so that population can get more
chance to jump out of the local optima.

A random factor c4 between 0 and 1 replaces the constant 1 of Eq (3). So, the new position update
equation of followers is as follows:

 14 ()
2

i i i
j j j

c
x x x   (9)

4.3. DCORSSA-PSO

As mentioned above in Section 4.2, the one-by-one transfer mechanism of salp chain makes
the convergence speed is slow. So, in this section, we introduce the social learning strategy of PSO
on the basis of DCORSSA. The Particle Swarm Optimization (PSO) is a very practical swam
optimization algorithm proposed by Kennedy and Eberhart [5]. Particles search for optimization
through information sharing mechanism. That is, particles obtain their own historical experience
(individual optimal pi) and group experience (global optimal pg) through information exchange
between individuals to achieve the purpose of optimization. The update formula of velocity and
position are as follows:

 1 1 2 2(1) () ()[() ()] ()[() ()]i i i i g i
j j j j j jv t v t c r t p t x t c r t p t x t      (10)

 (1) () (1)i i i
j j jx t x t v t    (11)

where i
jv is the velocity of the ith particle in the jth dimension, i

jx is the position of the ith particle in
the jth dimension, t refers to the iteration number, w is inertia weight that aims at determining the effect
of previous velocities on current velocity, c1 represents the individual learning factor and c2 represents
the social learning factor, r1 and r2 are random variables used to increase the randomness of particle
flight, whose values are normally distributed in [0, 1], i

jp and g
jp indicate the elements of individual

optimal location and global optimal location in the jth dimension, respectively.
Equation (10) includes three parts: the first part is the “inertia” part, which is the motion inertia

of particles, reflecting the tendency of particles to maintain their previous velocity; the second part is
the “individual learning”, which reflects the trend of particles moving to their previous best position
in history; the third part is the “social learning”, which reflects the trend of particles moving to the best
position in the previous history of the population.

Finally, based on DCORSSA, this paper further proposes a DCORSSA-PSO algorithm. That is,
the social learning strategy of PSO which is the third part of Eq (10) is introduced to the position update
equation of the followers of DCORSSA. On the basis of increasing the random distribution of its own
position, the improved algorithm makes full use of the global information and strengthens the tendency

5276

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

of individuals to move to the food source.
The position update equation of followers of proposed DCORSSA-PSO is as follows:

  5 rand(0,1)i i i
j j j jx x c F x     (12)

where i
jx is the position of the ith follower in the jth dimension updated by Eq (9), Fj is the food

source position of the jth dimension, c4 is random number between 0 and 1, c5 is the social learning
factor, taken c5 = 1.49.

The flow chart of the algorithm DCORSSA-PSO is shown in Figure 1.

Evaluate the fitness function of each search agent and determine the best one as the F

End

Start

Initialize the parameters

Generate the initial crowd randomly

Update coefficient of c1 by Eq (2)

Update the position of the F and apply the stragety of dimension
by dimension centroid opposition learning on it

Output F

 i≤N/2?

 Meet stop condition?

Update the position of the leader
by Eq (1)

Update the position of the follower
by Eq (9) and Eq (12)

Yes No

No

Yes

Figure 1. Flow chart of DCORSSA-PSO.

The pseudo-code of DCORSSA-PSO is as follows:
Set the initial parameters of the algorithm: population numbers N, population dimensions Dim,

population iteration times T, search upper bound ub and search lower bound lb;
Initialize the population randomly, calculate the fitness value of each individual, and take the

position with the optimal fitness value as the food source position F;
for t = 1: T

5277

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

for i = 1: N
if i <= N/2

Update the position of leader by Eq (1)
else

Update the position of followers by Eqs (9) and (12)
end if

end for
Update the food source position F and its fitness value
Calculate the center position M of the iterative population according to Eq (6)

for j = 1: Dim
Calculate opposite solution of the food source position jF according to Eq (8)

If f (jF)is better than f (Fj) then

Fj = jF

end if
end for

end for

4.4. Computational complexity of DCORSSA-PSO

According to the literature [12], the computational complexity of the SSA algorithm is O(t(d
∗n + Cof∗n)) where t shows the number of iterations, d is the number of variables (dimension), n
is the number of solutions, and Cof indicates the cost of the objective function. In the DCORSSA-
PSO, the fitness function is recalculated for each dimension of the food source with the dimension-
by-dimension centroid opposition-based learning, so the amount of operation of O (Cof * d) is
increased; simultaneously, to increase the search vitality of the algorithm and improve the search
speed of the algorithm, random factor and PSO’s social learning strategy are introduced. Still, the
number of code execution is not increased. So the computational complexity of DCORSSA-PSO
algorithm is O(t(d∗n + Cof∗n + Cof*d)). It can be seen that the computational complexity of the
DCORSSA-PSO algorithm is higher than that of standard SSA, and it increases with the increase
of population dimension.

5. Simulation experiment and result analysis

5.1. Testing environment

Test environment: the hard disk running environment is CPUi5-7200U, the memory is 12GB, the
software running environment is windows10 system, and the running software is MATLAB 2019b.
These parameters of different algorithms are set the same: population sizes N = 30, population
dimensions Dim = 30, and the maximum number of iterations T = 500. Respective parameter settings
for involved algorithms are shown in Table 1.

5278

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Table 1. Parameter settings for involved algorithms.

Algorithm Parameters

SSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1];

DCOSSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1];

DCORSSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; c4∈[0,1];

DCORSSA-PSO c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; c4∈[0,1]; c5 = 1.49;

PSO w∈[0.4, 0.9]; c1 = c2 = 1.49;

GWO r1∈[0,1]; r2∈[0,1]

5.2. Test function

Ten classical benchmark functions, as shown in Table 2, are used to evaluate the performance of
DCORSSA-PSO. SSA, PSO, DCOSSA and GWO are the algorithms for comparison. In the ten
functions, f1~f4 are unimodal test functions that can test the optimization accuracy of the algorithms,
f5~f8 are multimodal test functions that can test the global optimization ability and convergence speed
of the algorithms, f9~f10 are ill-conditioned test functions that can test the exploration and exploitation
capabilities of the algorithms.

Table 2. Benchmark functions used in the study.

Benchmark function Range fmin

  2
1

1

n

i
i

f x x


  [-100, 100] 0

 2
1 1

nn

i i
i i

f x x x
 

   [-10, 10] 0

   3
1

max
n

i
i

f x x


 [-100, 100] 0

   2

4
1

0.5
n

i
i

f x x


    [-100, 100] 0

   2
5

1

10 cos 2π 10
n

i i
i

f x x x


     [-5.12, 5.12] 0

  2
6

1 1

1
cos 1

4000

nn
i

i
i i

x
f x x

i 

    [-600, 600] 0

  2 2
7

1 1

1 cos 2 0.1
n n

i i
i i

f x x x
 

 
    

 
  [-32, 32] 0

   2
8

1 1

1 1
20exp 0.2 exp cos 2 20

n n

i i
i i

f x x x e
n n


 

   
            

  [-100, 100] 0

  4
9

1

n

i
i

f x ix rand


  [-1.28, 1.28] 0

     
1 2 22

10 1
1

100 1
n

i i i
i

f x x x x





       [-30, 30] 0

5279

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Table 3. Test results of DCORSSA-PSO and compared algorithms.

Functions Measure SSA DCOSSA DCORSSA DCORSSA-PSO PSO GWO

f1

Mean 2.40×10-7 2.28×10-9 2.70×10-27 5.80×10-44* 2.08×102 1.42×10-27

Best 3.70×10-8 9.29×10-12 6.45×10-32 1.42×10-46* 5.82×101 3.07×10-29

Std 4.09×10-7 5.16×10-9 5.86×10-27 1.17×10-43* 1.08×102 1.82×10-27

Time/s 1.01×10-1* 1.99×10-1 2.01×10-1 2.11×10-1 2.71×10-1 1.70×10-1

f2

Mean 1.96 1.36×10-5 1.00×10-14 7.80×10-23* 6.30 7.96×10-17

Best 1.71×10-1 1.03×10-6 6.24×10-16 2.12×10-24* 3.57 4.54×10-18

Std 1.46 3.95×10-5 1.18×10-14 9.73×10-23* 1.75 4.69×10-17

Time/s 9.37×10-2* 1.83×10-1 1.80×10-1 1.93×10-1 2.41×10-1 1.47×10-1

f3

Mean 1.20×101 1.08 9.05×10-15 7.16×10-23* 1.24×101 8.01×10-7

Best 5.19 1.36×10-1 6.79×10-17 1.98×10-24* 4.76 1.16×10-7

Std 3.35 6.96×10-1 1.29×10-14 8.06×10-23* 3.19 7.47×10-7

Time/s 9.07×10-2* 1.75×10-1 1.72×10-1 1.85×10-1 2.36×10-1 1.41×10-1

f4

Mean 1.08×10-7 9.70×10-10* 3.39×10-7 6.50×10-8 1.67×102 7.97×10-1

Best 2.54×10-8 9.62×10-12* 2.56×10-8 2.41×10-8 5.07×101 2.57×10-1

Std 8.12×10-8 2.23×10-9* 8.51×10-7 2.66×10-8 8.92×101 2.57×10-1

Time/s 9.29×10-2* 1.79×10-1 1.76×10-1 1.91×10-1 2.42×10-1 1.44×10-1

f5

Mean 6.16×101 4.64×10-1 0* 0* 1.31×102 3.42

Best 2.79×101 2.80×10-12 0* 0* 8.73×101 0*

Std 1.80×101 5.68×10-1 0* 0* 2.41×101 4.36

Time/s 1.05×10-1* 1.98×10-1 1.92×10-1 2.00×10-1 2.59×10-1 1.52×10-1

f6

Mean 9.54×10-1 1.00×10-1 0* 0* 2.65 4.12×10-13

Best 8.49×10-1 4.44×10-2 0* 0* 1.57 5.00×10-15

Std 4.30×10-2 3.49×10-2 0* 0* 1.04 4.65×10-13

Time/s 1.22×10-1* 2.42×10-1 2.36×10-1 2.46×10-1 2.77×10-1 1.70×10-1

f7

Mean 1.96 1.04 2.96×10-15 2.25×10-23* 2.75 1.83×10-1

Best 1.00 7.00×10-1 1.22×10-16 1.86×10-25* 1.80 9.99×10-2

Std 4.18×10-1 2.40×10-1 2.99×10-15 2.90×10-23* 4.88×10-1 3.79×10-2

Time/s 9.56×10-2* 1.94×10-1 1.91×10-1 2.00×10-1 2.46×10-1 1.51×10-1

f8

Mean 2.46 7.58×10-6 8.23×10-15 8.88×10-16* 5.84 9.80×10-14

Best 9.31×10-1 7.50×10-7 8.88×10-16* 8.88×10-16* 4.45 7.55×10-14

Std 7.42×10-1 1.01×10-5 1.23×10-14 0* 8.80×10-1 1.49×10-14

Time/s 1.08×10-1* 2.04×10-1 1.98×10-1 2.10×10-1 2.62×10-1 1.52×10-1

f9

Mean 1.51 5.48×10-2 6.72×10-5* 7.24×10-4 1.22 1.72×10-2

Best 5.85×10-1 1.73×10-2 1.32×10-7* 7.12×10-6 3.09×10-2 8.50×10-4

Std 6.72×10-1 1.91×10-2 6.83×10-5* 1.55×10-3 1.23 1.55×10-2

Time/s 1.59×10-1* 3.16×10-1 3.18×10-1 3.27×10-1 3.06×10-1 2.09×10-1

f10

Mean 2.77×102 5.65×101 2.79×101 2.64×101* 5.39×103 2.69×101

Best 2.49×101* 3.96×10-2 2.74×101 2.62×101 5.89×102 2.57×101

Std 4.33×102 4.31×101 2.05×10-1 1.33×10-1* 5.25×103 7.83×10-1

Time/s 1.24×10-1* 2.47×10-1 2.47×10-1 2.60×10-1 2.81×10-1 1.78×10-1

Note: the mark “*” at the top right of the data indicates the best result obtained by all algorithms.

5280

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

5.3. Experimental results and analysis

To objectively test the optimization performance of the algorithm of DCORSSA-PSO, the same
initial population is selected for all algorithms, and the average fitness value, optimal fitness value,
standard deviation of fitness value, and the average running time of each algorithm for 30 times
independently are counted to evaluate the algorithm comprehensively. The comparison results of each
algorithm are shown in Table 3.

From the experimental results of 30 independent runs in Table 3, it can be seen that the
optimization performance of each algorithm in the standard test functions is different. The optimal
value and average value can measure the accuracy of the optimization algorithm. In multimodal
functions f5 and f6, DCORSSA-PSO and DCORSSA can search the theory optimal value 0, showing
excellent optimization ability. In the test functions f1~f3, f7, the DCORSSA-PSO algorithm is superior
to other algorithms in terms of both the average value and the optimal value. In the test functions f8
and f10, DCORSSA-PSO is superior to other algorithms in terms of the average value. In the unimodal
test function f1, DCORSSA-PSO is more than 10 orders of magnitude higher than other algorithms in
the accuracy of the optimal value. Compared with SSA, the convergence accuracy of DCORSSA and
DCORSSA-PSO is also greatly improved, which indicates that adding different optimization strategies
is very helpful to improve the optimization of SSA. At the same time, in the ill-conditioned function
f9, the optimization accuracy of DCORSSA-PSO reaches 7.12 × 10-6; although its accuracy is improved
compared with SSA, it is worse than DCORSSA. In the ill-conditioned function f10, although the
DCORSSA-PSO algorithm improves the mean optimization accuracy compared with the SSA
algorithm, the optimal value search is still insufficient compared with the SSA algorithm. In unimodal
function f4, DCORSSA-PSO inferiors to DCOSSA in terms of average value and optimal value. These
cases which DCORSSA-PSO does not get the best performance indicate that the DCORSSA-PSO
algorithm is still insufficient in search of some functions.

The standard deviation can measure the optimization stability of the optimization algorithm.
Except for f4 and f9, the standard deviation of the DCORSSA-PSO algorithm calculated 30 times
independently is always less than that of other algorithms, which shows that the improved DCORSSA-
PSO algorithm can ensure the optimization stability of the algorithm when dealing with unimodal,
multimodal, even ill-conditioned functions.

In terms of average running time, the SSA algorithm has a shorter running time than PSO
algorithm and GWO algorithm, which shows that the improved DCOSSA, DCORSSA and
DCORSSA-PSO have inherent advantages in operation speed. The average running time of
DCORSSA-PSO algorithm is slightly longer than that of the DCOSSA, which does not cause a
significant increase in running time, indicating that the addition of random factor and PSO’s social
learning strategy have little impact on the time complexity of the algorithm. The average running time
of DCORSSA-PSO algorithm and DCORSSA is longer than that of the SSA algorithm, mainly due to
the addition of dimension-by-dimension centroid opposition-based learning strategy.

The Wilcoxon signed-rank test [35] with a significance level of 0.05 was used to judge the
statistical difference between the improved algorithm DCORSSA-PSO and the comparative algorithms
such as SSA. The statistical results are shown in Table 4, in which: “+” indicates that the test result of
DCORSSA-PSO is superior to the corresponding comparison algorithm. “=” indicates that the
performance of the DCORSSA-PSO test result is similar to the corresponding comparison algorithm,
and there is no statistically significant difference. “-” indicates that the DCORSSA-PSO test result is
inferior to that of the corresponding comparison algorithm.

5281

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Table 4. Wilcoxon signed-rank test of DCORSSA-PSO and other algorithms.

Comparison group +/=/- Comparison group +/=/-

DCORSSA-PSO VS SSA 9/1/0 DCORSSA-PSO VS PSO 10/0/0

DCORSSA-PSO VS DCOSSA 9/0/1 DCORSSA-PSO VS GWO 10/0/0

DCORSSA-PSO VS DCORSSA 7/2/1 ---

According to the Wilcoxon signed-rank test results described in Table 4, it can be learned that
DCORSSA-PSO wins in 45(= 9 + 9 + 7 + 10 + 10) cases, loses in 2 cases and shows a tie in the other cases
in the total 50 (=5*10) cases. In general, the DCORSSA-PSO algorithm is better than other algorithms
such as SSA algorithm in most functions, which proves the effectiveness of the proposed improved method.

In addition, in order to further evaluate the statistical comparison of the optimization performance
of each algorithm, Friedman test [36] is used to study the difference between each algorithm as is
shown in Table 5. The average ranking value (ARV) represents the average ranking value of the
Friedman test of an algorithm that runs 30 times of all test functions independently. The smaller the
ARV, the higher the optimization performance of the algorithm.

Table 5. Friedman test of DCORSSA-PSO and other algorithms.

Algorithm SSA DCOSSA DCORSSA DCORSSA-PSO PSO GWO
ARV 4.8533 3.5700 2.2567 1.4300 5.8700 3.0200
rank 5 4 2 1 6 3

From Table 5, we can clearly see the statistical results of the Friedman test. The ARV of
DCORSSA-PSO integrating the three learning strategies is 1.4300, and the rank is No.1, which
indicates that DCORSSA-PSO is significantly better than other comparison algorithms in solving these
test functions. In addition, the rank of DCORSSA and DCOSSA combining the other strategies are
No.2 and No.4 respectively, indicating that the above-mentioned optimization strategies are of great
help in improving the optimization accuracy of the SSA algorithm.

Figure 2 shows the average convergence curve of each algorithm in 10 standard test functions.
To better observe the optimization effect of the algorithm, the logarithm based on 10 is taken for the
optimization fitness values of f1~f10.

(a) Performance comparison on the f1 function.

(b) Performance comparison on the f2 function.

continued on next page

l g
 f

(x
)

l g
 f

(x
)

5282

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

(c) Performance comparison on the f3 function.

(d) Performance comparison on the f4 function.

(e) Performance comparison on the f5 function.

(f) Performance comparison on the f6 function.

(g) Performance comparison on the f7 function.

(h) Performance comparison on the f8 function.

(i) Performance comparison on the f9 function.

(j) Performance comparison on the f10 function.

Figure 2. Average convergence curve of the standard test functions.

In Figure 2, it can be seen that the optimization speed and accuracy of DCOSSA added with the

0 100 200 300 400 500
Iterations

-25

-20

-15

-10

-5

0

5
l g

 f
(x

)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

0 100 200 300 400 500
Iterations

-10

-5

0

5

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

0 100 200 300 400 500
Iterations

-20

-15

-10

-5

0

5

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

0 100 200 300 400 500
Iterations

-20

-15

-10

-5

0

5

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

0 100 200 300 400 500
Iterations

-25

-20

-15

-10

-5

0

5

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

l g
 f

(x
)

0 100 200 300 400 500
Iterations

-5

-4

-3

-2

-1

0

1

2

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

l g
 f

(x
)

SSA
DCOSSA
DCORSSA
DCORSSA-PSO
PSO
GWO

5283

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

dimension-by-dimension centroid opposition-based learning strategy are greatly improved compared
with SSA, which shows that the dimension-by-dimension centroid opposition-based learning strategy
is of great benefit to improve the population diversity and the ability to jump out of the local solutions.
Compared with DCOSSA and the other three algorithms, DCORSSA-PSO which adds a random factor
and integrates the social learning strategy of PSO, declines rapidly in the middle of the iteration, and
its optimization speed is significantly ahead. Especially in the middle and early iterations of the
function, the DCORSSA-PSO algorithm can almost quickly search for the optimal value, and
continues to show high search activity in the later iterations. Even in multimodal functions f5 and f6,
the curves are interrupted because the DCORSSA-PSO algorithm searches the theoretical optimal
value 0 (the independent variable of lg cannot be 0).

All the above show that the DCORSSA-PSO algorithm is effective in dealing with unimodal,
multimodal, and ill-conditioned test functions, and it has better optimization accuracy and speed, which
is very helpful to solve the problems to be optimized in engineering practice.

6. System reliability optimization model

Nowadays, more and more engineering problems are adopting optimization methods to get
optimal performance [37], while system reliability optimization is one of the most useful engineering
fields. System reliability optimization refers to finding an optimal design under certain resource
constraints to obtain the highest reliability of the system or minimizing the investment while meeting
specific reliability index requirements, thus obtaining the maximum economic benefits. At present,
practice shows that the optimal redundancy allocation design is one of the most usually used methods
to reduce system failure probability and improve system reliability. Redundancy design means that
when a part of the system fails, the redundant part is activated through the monitoring and switching
mechanism to complete the same function instead of the failed part, to reduce the failure probability
of the system.

Many scholars have used intelligent optimization algorithms to solve reliability optimization
problems. In literature [38], an enhanced nest cuckoo optimization algorithm was used to study the
system reliability redundancy allocation with a cold-standby strategy. Literature [39] carried out
reliability optimization of a fuzzy multi-objective system based on genetic algorithm and cluster
analysis. Literature [40] proposed a new particle swarm optimization algorithm based on fuzzy
adaptive inertia weight to solve the reliability redundancy allocation problem.

6.1. T-S fault tree construction

Fault tree analysis is one of the commonly used reliability analysis methods, which is oriented by
system failure and unit failure. A fault tree is composed of events and gates. It is named fault tree
because its fault logic relationship is graphically represented like a tree with the top event as root, event
logic causality represented by the gate as a branch, and bottom event as a leaf. T-S model [41] was
proposed by Takagi and Sugeno in 1985. Through if-then rules, a series of local linear subsystems and
membership functions were used to accurately describe nonlinear systems. Song et al. [42] constructed
T-S gates to describe event relations based on the T-S model, proposing the T-S fault tree analysis
method. Yao et al. [43] proposed a new reliability optimization method based on the T-S fault tree and
EPSO (Extended PSO).

5284

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Hypothetically, a mechanical system consists of two subsystems, each of which can improve the
system reliability by adding a redundant design. In this paper, the T-S fault tree analysis method is used
to construct the reliability allocation optimization model of the system, and the DCORSSA-PSO
algorithm is used to optimize its reliability allocation. The T-S fault tree of the mechanical system is
shown in Figure 3.

x1 x2 x3

y3(T)

y1 y2

x4 x5

G1 G2

G3

S S

S

Figure 3. T-S fault tree of a mechanical system.

In Figure 3, x1~x5 are the bottom events, y1~y2 are the intermediate events, and y3 is the top event.
G1~G3 are T-S gates. Fuzzy numbers 0, 0.5 and 1 represent the three states of normal, semi failure, and
complete failure of each part, respectively. The fault states of each part are independent of each other.
According to expert experience and historical data, the rule tables of the T-S gate are defined as shown
in Tables 6–8.

Table 6. Rule table of T-S gate 1.

rules x1 x2 x3
y1

rules x1 x2 x3
y1

0 0.5 1 0 0.5 1

1 0 0 0 1 0 0 15 0.5 0.5 1 0 0 1

2 0 0 0.5 0.2 0.5 0.3 16 0.5 1 0 0 0 1

3 0 0 1 0 0 1 17 0.5 1 0.5 0 0 1

4 0 0.5 0 0.3 0.5 0.2 18 0.5 1 1 0 0 1

5 0 0.5 0.5 0.2 0.3 0.5 19 1 0 0 0 0 1

6 0 0.5 1 0 0 1 20 1 0 0.5 0 0 1

7 0 1 0 0 0 1 21 1 0 1 0 0 1

8 0 1 0.5 0 0 1 22 1 0.5 0 0 0 1

9 0 1 1 0 0 1 23 1 0.5 0.5 0 0 1

10 0.5 0 0 0.2 0.5 0.3 24 1 0.5 1 0 0 1

11 0.5 0 0.5 0.1 0.4 0.5 25 1 1 0 0 0 1

12 0.5 0 1 0 0 1 26 1 1 0.5 0 0 1

13 0.5 0.5 0 0.1 0.5 0.4 27 1 1 1 0 0 1

14 0.5 0.5 0.5 0.1 0.4 0.5 - - - - - - -

5285

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Table 7. Rule table of T-S gate 2.

rules x4 x5
y2

rules x4 x5
y2

0 0.5 1 0 0.5 1

1 0 0 1 0 0 6 0.5 1 0 0 1

2 0 0.5 0.4 0.4 0.2 7 1 0 0.1 0.2 0.7

3 0 1 0.1 0.1 0.8 8 1 0.5 0 0 1

4 0.5 0 0.8 0.1 0.1 9 1 1 0 0 1

5 0.5 0.5 0.1 0.5 0.4 - - - - - -

Table 8. Rule table of T-S gate 3.

rules y1 y2
y3

rules y1 y2
y3

0 0.5 1 0 0.5 1

1 0 0 1 0 0 6 0.5 1 0 0 1

2 0 0.5 0.4 0.5 0.1 7 1 0 0.1 0.2 0.7

3 0 1 0.1 0.1 0.8 8 1 0.5 0 0 1

4 0.5 0 0.8 0.1 0.1 9 1 1 0 0 1

5 0.5 0.5 0.1 0.5 0.4 - - - - - -

Taking Table 6 as an example, each row in rules1~27 represents a G1 gate rule. For example,
in rule1, the fault states of bottom events x1, x2, and x3 are 0, 0, and 0 respectively, then the
occurrence probability of fault state 0 of y1 is P1(y1 = 0) = 1, the occurrence probability of fault
state 0.5 of y1 is P1(y1 = 0.5) = 0, the occurrence probability of fault state 1 of y1 is P1(y1 = 1) = 0.
Under the same rule, the sum of the occurrence possibilities of each fault state of the superior event
y1 is 1, that is, P1(y1 = 0) + P1(y1 = 0.5) + P1(y1 = 1) = 1.

6.2. System reliability optimization model

According to the T-S fault tree and the corresponding rule gate of the system, a system reliability
optimization model is constructed with the lowest system fault probability as the objective function
and the overall cost of the system as the constraint. Among them, the system cost is the sum of the
expenses of each component unit, its connectors, and switching equipment. The unit cost increases
nonlinearly with the improvement of its reliability. The objective function and cost constraint
expression are as follows:

      
3 9 9

2 1 1

min 0.5 1l l l l
q o o

q l l

P T T P P T P P T
  

       (13)

 

5

03
1

2

s.t exp
4

ln 1

i

i

i

i
i i

i

i

n
n C

P x












 
 

                   




 (14)

where P(T = Tq) is the fault probability of top event T when its fault state is Tq; Pl(T = 0.5) and Pl(T = 1)

5286

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

respectively represent the probability when the fault state of top event T is 0.5 and 1 in the rule l; lP0 is the
execution degree of T-S rule;)(ia

ixP is the failure probability of bottom event xi when its failure state is
ia

ix ; ni is the redundancy number of the element; μ is the fault-free operation time, taken μ = 1000 h; C0 is
the constraint value of system cost, taken C0 = 175. αi and βi can be seen in Table 9.

Table 9. Constraint parameter values of αi and βi.

i 1 2 3 4 5

105αi 2.540×10-5 2.483 × 10-5 6.420 × 10-5 7.160 × 10-5 2.417 × 10-5

βi 1.500 1.500 1.500 1.500 1.500

6.3. Fitness function

The penalty function is one of the main constraint optimization methods available at present,
whose core idea is to transform the original constrained optimization problem into an unconstrained
problem by constructing auxiliary functions. In this paper, the cost constraint in the system reliability
optimization model is transformed into an unconstrained optimization problem by introducing a
penalty function. That is, a penalty factor is added to the fitness value of the salps that does not satisfy
the cost constraints, so that the infeasible solution can be eliminated in the process of evolution. In this
paper, the maximum probability value of system fault N (N = 1) is used as the penalty factor, and the
failure probability fitness function is constructed as follows:

 

 

3

0
2

3

2

q
q

q
q

P T T C C

fitness

P T T N Otherwise






 

 
  





 (15)

6.4. Results comparison and analysis

The DCORSSA-PSO algorithm is compared with SSA, PSO, and GWO algorithms. Set the
maximum number of iterations of the above five algorithms T = 500. And the reliability optimization
results of the algorithms are shown in Table 10.

Table 10. Optimization results of four algorithms.

Optimized

parameters

SSA DCORSSA-PSO PSO GWO

P(xi) ni P(xi) ni P(xi) ni P(xi) ni

x1 1.28 × 10-1 3 1.09 × 10-1 3 1.58 × 10-1 3 1.37 × 10-1 3

x2 9.22 × 10-2 3 1.08 × 10-1 3 1.58 × 10-1 3 1.68 × 10-1 3

x3 1.38 × 10-1 3 9.00 × 10-2 3 1.07 × 10-1 3 1.88 × 10-1 3

x4 1.26 × 10-1 3 1.41 × 10-1 3 1.70 × 10-1 3 1.57 × 10-1 3

x5 1.16 × 10-1 3 9.66 × 10-2 3 1.11 × 10-1 3 1.59 × 10-1 3

P 5.03 × 10-3 3.71 × 10-3* 8.03 × 10-3 1.22 × 10-2

C 175.00 175.00 115.76 105.89*

Time/s 4.91 × 10-1* 6.05 × 10-1 8.17 × 10-1 5.09 × 10-1

5287

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

According to the optimization results in Table 10, when taking the minimum failure probability
of the system as the objective function, the system failure probability optimized by the DCORSSA-
PSO algorithm is lower than that of other algorithms including SSA, PSO, GWO, which proves the
feasibility and superiority of the improved algorithm. In terms of running time, SSA has the shortest
one, while DCORSSA-PSO has the longest one. This indicates that the multi-strategy improvement of
DCORSSA-PSO spend more time, but the running time of DCORSSA-PSO is less than one second
which can fulfill the needs of practical engineering.

In addition, in order to more intuitively show the reliability optimization process of the four
algorithms, the iterative curve is shown in Figure 4.

Figure 4. Optimization comparison curves.

To test the stableness of the DCORSSA-PSO algorithm, let all the algorithms run 30 times at the
same initial condition. Table 11 shows the statistical results of failure probability.

Table 11. Statistical results of five algorithms.

Measure SSA DCORSSA-PSO PSO GWO

Mean 6.956 × 10-3 3.746 × 10-3* 5.196 × 10-3 8.304 × 10-3

Best 3.710 × 10-3 3.709 × 10-3* 4.387 × 10-3 4.404 × 10-3

Std 3.703 × 10-3 3.886 × 10-5* 8.625 × 10-4 2.518 × 10-3

Time/s 5.466 × 10-1* 6.795 × 10-1 8.975 × 10-1 5.617 × 10-1

From Table 11, we can find that in a statistical sense, DCORSSA-PSO compared with SSA, PSO
and GWO still get the best result of failure probability including mean value, best value and standard
deviation except for running time. The average failure probability obtained by DCORSSA-PSO
algorithm relatively reduced by 46.14% compared to SSA, which shows that DCORSSA-PSO greatly
improves the optimization performance of SSA by integrating the multi-strategy improvement.

In this paper, a box plot is used to analyze the data distribution of the system failure
probability. The box plot consists of five parts: upper limit, upper quartile, median, lower quartile
and lower limit. The upper limit is connected to the upper quartile with a dashed line, and same to
the lower limit and the lower quartile. The center mark indicates the median. Figure 5 shows the
boxplot of different algorithms.

P

5288

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Figure 5. Boxplot of the different algorithms.

In the statistical result of Figure 5, y-axis P means the failure probability, and it can be found that
DCORSSA-PSO has the lowest median of P value, which means that the reliability calculated by
DCORSSA-PSO is the highest. In addition, the box obtained by DCORSSA-PSO is very compact, that
is, the range of the box formed between the upper quartile and the lower quartile is the smallest,
indicating that DCORSSA-PSO has less volatility compared to the datasets of other algorithms.
Therefore, DCORSSA-PSO outperforms other algorithms. On the other hand, outliers (+) appear in
the failure probability optimized by SSA, DCORSSA-PSO and PSO, indicating that further research
in performance improvement is needed for DCORSSA-PSO.

7. Conclusions and future works

This paper proposes a DCORSSA-PSO algorithm that hybridizes dimension-by-dimension
centroid opposition-based learning strategy, random factor and PSO’s social learning strategy based
on standard SSA. The improved algorithm mainly improves the standard SSA algorithm in three parts:
a) a dimension-by-dimension centroid opposition-based learning strategy is added to the food source
update, which can expand the population search range, strengthen the dimension evolution information,
and enhance the ability to jump out of the local solutions; b) random factor is added in the update
equation of followers to enhance the diversity of population distribution; c) drawing on the experience
of PSO’s social learning strategy, in the update equation of followers, the food source is added to
directly guide the followers to improve the convergence speed of the algorithm. The comparison results
in the synthesis of ten standard test functions and the reliability optimization example show that the
DCORSSA-PSO algorithm is superior to other algorithms in optimization, which proves that the above
improvement strategy has good feasibility and superiority to improve the optimization performance of
the SSA algorithm. As a future plan, the method of increasing the diversity of the population will be
introduced into the research of DCORSSA-PSO such as the levy-flight theory, chaos mapping. At the
same time, DCORSSA-PSO can be employed to optimize pattern classification, fuzzy control,
machine learning, etc.

P

5289

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grant No.
51975508), Natural Science Foundation of Hebei Province (Grant No. E2021203061).

Conflict of interest

All authors declare that there is no conflict of interests in this paper.

References

1. B. Nautiyal, R. Prakash, V. Vimal, G. Liang, H. Chen, Improved salp swarm algorithm with
mutation schemes for solving global optimization and engineering problems, Eng. Comput. Ger.,
80 (2021), 35415–35439, https://doi.org/10.1007/s00366-020-01252-z

2. E. H. Houssein, M. A. Mahdy, D. Shebl, A. Manzoor, R. Sarkar, W. M. Mohamed, An efficient
slime mould algorithm for solving multi-objective optimization problems, Expert Syst. Appl., 187
(2022), 115870. https://doi.org/10.1016/j.eswa.2021.115870

3. G. Dhiman, K. K. Singh, M. Soni, A. Nagar, M. Dehghani, A. Slowik, et al., MOSOA: A new
multi-objective seagull optimization algorithm, Expert Syst. Appl., 167 (2021), 114150.
https://doi.org/10.1016/j.eswa.2020.114150

4. J. Xue, B. Shen, A novel swarm intelligence optimization approach: sparrow search algorithm,
Syst. Sci. Control Eng., 8 (2020), 22–34. https://doi.org/10.1080/21642583.2019.1708830

5. J. Kennedy, R. Eberhart, Particle swarm optimization, in Icnn95-international Conference on
Neural Networks, 1995. https://doi.org/10.1109/ICNN.1995.488968

6. A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in Proceedings of
the first European conference on artificial life, (1991), 134–142

7. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm, J. Glob. Optim., 39 (2007), 459–471.
https://doi.org/10.1007/s10898-007-9149-x

8. X. Yang, Engineering Optimization: An Introduction with Metaheuristic Application, 2010.
https://doi.org/10.1002/9780470640425.ch2

9. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61.
https://doi.org/10.1016/j.advengsoft.2013.12.007

10. G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for large-scale
industrial engineering problems, Knowl.-based Syst., 165 (2019), 169–196.
https://doi.org/10.1016/j.knosys.2018.11.024

11. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for
stochastic optimization, Future Gener. Comp. Sy., 111 (2020), 300–323.
https://doi.org/10.1016/j.future.2020.03.055

12. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm
algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114
(2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

5290

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

13. R. A. Ibrahim, A. A. Ewees, D. Oliva, M. A. Elaziz, S. F. Lu, Improved salp swarm algorithm
based on particle swarm optimization for feature selection, J. Amb. Intel. Hum. Comp., 10 (2019),
3155–3169. https://doi.org/10.1007/s12652-018-1031-9

14. A. G. Hussien, A. E. Hassanien, E. H. Houssein, Swarming behaviour of salps algorithm for
predicting chemical compound activities, in the 8th IEEE International Conference on Intelligent
Computing and Information Systems (ICICIS), (2017), 315–320.
https://doi.org/10.1109/intelcis.2017.8260072

15. S. Wang, H. Jia, X. Peng, Modified salp swarm algorithm based multilevel thresholding for color
image segmentation, Math. Biosci. Eng., 17 (2020), 700–724.
https://doi.org/10.3934/mbe.2020036

16. S. Zhao, P. Wang, A. A. Heidari, Chen, W. He, S. Xu, Performance optimization of salp swarm
algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer
microscopy, Comput. Biol. Med., 139 (2021), 105015.
https://doi.org/10.1016/j.compbiomed.2021.105015

17. A. M. Tudose, I. I. Picioroaga, D. O. Sidea, C. Bulac, Solving single-and multi-objective optimal
reactive power dispatch problems using an improved salp swarm algorithm, Energies, 14 (2021),
1222–1222. https://doi.org/10.3390/en14051222

18. H. M. Kanoosh, E. H. Houssein, M. M. Selim, Salp swarm algorithm for node localization in
wireless sensor networks, J. Comput. Netw. Commun., 2019 (2019), 1–12.
https://doi.org/10.1155/2019/1028723

19. G. I. Sayed, G. Khoriba, M. H. Haggag, A novel chaotic salp swarm algorithm for global
optimization and feature selection, Appl. Intel., 48 (2018), 3462–3481.
https://doi.org/10.1007/s10489-018-1158-6

20. A. Abbassi, R. Abbassi, A. A. Heidari, D. Oliva, H. L. Chen, A. Habib, et al., Parameters
identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,
Energy, 198 (2020), 117333. https://doi.org/10.1016/j.energy.2020.117333

21. N. Singh, L. H. Son, F. Chiclana, J. P. Magnot, A new fusion of salp swarm with sine cosine for
optimization of non-linear functions, Eng. Comput. Ger., 36 (2020), 185–212.
https://doi.org/10.1007/s00366-018-00696-8

22. M. A. Syed, R. Syed, Weighted salp swarm algorithm and its applications towards optimal sensor
deployment, J. King Saud. Univ.-Com., (2019). https://doi.org/10.1016/j.jksuci.2019.07.005

23. N. Singh, S. B. Singh, E. H. Houssein, Hybridizing salp swarm algorithm with particle swarm
optimization algorithm for recent optimization functions, Evol. Intell., (2020), 1–34.
https://doi.org/10.1007/s12065-020-00486-6

24. Q. Zhang, Z. Wang, A. A. Heidari, W. Gui, Q. Shao, H. Chen, et al. Gaussian Barebone salp swarm
algorithm with stochastic fractal search for medical image segmentation: a COVID-19 case study,
Comput. Biol. Med., 139 (2021), 104941. https://doi.org/10.1016/j.compbiomed.2021.104941

25. Y. Liu, Y. Shi, H. Chen, A. Asghar Heidari, W. Gui, M. Wang, et al., Chaos-assisted multi-
population salp swarm algorithms: framework and case studies, Expert Syst. Appl., 168 (2021),
114369. https://doi.org/10.1016/j.eswa.2020.114369

26. H. Zhang, Z. Wang, W. Chen, A. A. Heidari, M. Wang, X. Zhao, et al., Ensemble mutation-driven
salp swarm algorithm with restart mechanism: Framework and fundamental analysis, Expert Syst.
Appl., 165 (2021), 113897. https://doi.org/10.1016/j.eswa.2020.113897

5291

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

27. S. Zhao, P. Wang, X. Zhao, H. Turabieh, M. Mafarja, H. Chen, Elite dominance scheme ingrained
adaptive salp swarm algorithm: a comprehensive study, Eng. Comput. Ger., 165 (2021), 113897.
https://doi.org/10.1007/s00366-021-01464-x

28. H. Zhang, T. Liu, X. Ye, A. A. Heidari, G. Liang, H. Chen, et al, Differential evolution-assisted
salp swarm algorithm with chaotic structure for real-world problems, Eng. Comput. Ger., (2022),
1–35. https://doi.org/10.1007/s00366-021-01545-x

29. J. Xia, H. Zhang, R. Li, Z. Wang, Z. Cai, Z. Gu, et al, Adaptive barebones salp swarm algorithm
with quasi-oppositional learning for medical diagnosis systems: a comprehensive analysis, J.
Bionic. Eng., 19 (2022), 1–17. https://doi.org/10.1007/s42235-021-00114-8

30. H. Zhang, Z. Cai, X. Ye, M. Wang, F. Kuang,·H. Chen, et al, A multi-strategy enhanced salp swarm
algorithm for global optimization, Eng. Comput. Ger., 1 (2020). https://doi.org/10.1007/s00366-
020-01099-4

31. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol.
Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893

32. M. M. Saafan, E. M. El-Gendy, IWOSSA: An improved whale optimization salp swarm algorithm
for solving optimization problems, Expert Syst. Appl., 176 (2021), 114901.
https://doi.org/10.1016/j.eswa.2021.114901

33. H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in
International conference on computational intelligence for modelling, control and automation and
international conference on intelligent agents, web technologies and internet commerce, 1 (2005),
695–701. https://doi.org/10.1109/CIMCA.2005.1631345

34. S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, G. F. Naterer, Computing opposition
by involving entire population, in 2014 IEEE congress on evolutionary computation (CEC),
(2014), 1800–1807. https://doi.org/10.1109/CEC.2014.6900329

35. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,
Swarm Evol. Comput., 1 (2011), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002

36. S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining:
experimental analysis of power, Inf. Sci., 180 (2010), 2044–2064.
https://doi.org/10.1016/j.ins.2009.12.010

37. P. Jiang, J. Cheng, Q. Zhou, L. Shu, J. Hu, Variable-fidelity lower confidence bounding approach
for engineering optimization problems with expensive simulations, AIAA J., 57 (2019), 5416–
5430. https://doi.org/10.2514/1.J058283

38. M. A. Mellal, E. Zio, System reliability-redundancy optimization with cold-standby strategy by
an enhanced nest cuckoo optimization algorithm, Reliab. Eng. Syst. Safe, 201 (2020), 106973.
https://doi.org/10.1016/j.ress.2020.106973

39. B. N. Chebouba, M. A. Mellal, S. Adjerid, Fuzzy multiobjective system reliability optimization
by genetic algorithms and clustering analysis, Qual. Reliab. Eng. Int., 37 (2020), 1484–1503.
https://doi.org/10.1002/qre.2809

40. A. Samanta, K. Basu, A novel particle swarm optimization with fuzzy adaptive inertia weight for
reliability redundancy allocation problems, Intell. Decis. Technol., 13 (2019), 91–99.
https://doi.org/10.3233/IDT-190357

5292

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5269–5292.

41. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control,
IEEE T. Syst. Man CY., 15 (1985), 116–132. https://doi.org/10.1109/tsmc.1985.6313399

42. H. Song, H. Zhang, C. Chan, Fuzzy fault tree analysis based on T-S model with application to
INS/GPS navigation system, Soft Comput., 13 (2009): 31–40. https://doi.org/10.1007/s00500-
008-0290-3

43. C. Yao, B Wang, D. Chen, Reliability optimization of multi-state hydraulic system based on T-S
fault tree and extended PSO algorithm, IFAC Proceed. Vol., 46 (2013), 463–468.
https://doi.org/10.3182/20130410-3-CN-2034.00012

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

