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Abstract: To improve the convergence speed and solution precision of the standard Salp Swarm 
Algorithm (SSA), a hybrid Salp Swarm Algorithm based on Dimension-by-dimension Centroid 
Opposition-based learning strategy, Random factor and Particle Swarm Optimization’s social learning 
strategy (DCORSSA-PSO) is proposed. Firstly, a dimension-by-dimension centroid opposition-based 
learning strategy is added in the food source update stage of SSA to increase the population diversity 
and reduce the inter-dimensional interference. Secondly, in the followers’ position update equation of 
SSA, constant 1 is replaced by a random number between 0 and 1 to increase the randomness of the 
search and the ability to jump out of local optima. Finally, the social learning strategy of PSO is also 
added to the followers’ position update equation to accelerate the population convergence. The 
statistical results on ten classical benchmark functions by the Wilcoxon test and Friedman test show 
that compared with SSA and other well-known optimization algorithms, the proposed DCORSSA-
PSO has significantly improved the precision of the solution and the convergence speed, as well as its 
robustness. The DCORSSA-PSO is applied to system reliability optimization design based on the T-S 
fault tree. The simulation results show that the failure probability of the designed system under the cost 
constraint is less than other algorithms, which illustrates that the application of DCORSSA-PSO can 
effectively improve the design level of reliability optimization. 
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1. Introduction 

Optimization algorithm refers to the process of finding the best combination for a set of decision 
variables to solve a specific problem. For the complex optimization problems emerging in various 
fields such as engineering, economy, and medicine, it is not easy to find the optimal global solution by 
using traditional methods of mathematical optimization. However, the swarm intelligence optimization 
algorithm, which simulates the behavior of natural organisms, has successfully solved many complex 
optimization problems [1–4]. With the in-depth understanding of biological organisms, researchers 
have successively developed a series of swarm intelligence optimization algorithms, such as 
Particle Swarm Optimization (PSO) [5], Ant Colony Optimization (ACO) [6], Artificial Bee 
Colony (ABC) [7], Firefly Algorithm (FA) [8], Grey Wolf Optimizer (GWO) [9], Seagull 
Optimization Algorithm (SOA) [10], Slime Mould Algorithm (SMA) [11] and so on. 

Mirjalili et al. [12] proposed a Salp Swarm Algorithm (SSA) in 2017, which is a new swarm 
intelligence optimization algorithm. Its optimization idea came from the population mechanism of the 
salp swarm chain foraging in the ocean. Once the SSA was proposed, it has attracted the extensive 
attention of many scholars because of its simple principle and easy implementation. Currently, this 
algorithm has been widely used in the fields of feature extraction [13,14], image segmentation [15,16], 
dispatch optimization [17], nodes localization [18], and so on. 

The essence of the SSA is a random search optimization algorithm. It has the shortcomings of 
low accuracy in the later stage of iteration and is easy to get stuck at local optima. As a meta-heuristic 
algorithm, the searching behavior of SSA is divided into two main phases: exploration and exploitation 
phases. In exploration phase, it can efficiently discover the search space mostly by randomization, but 
it may face abrupt changes. In exploitation phase, it converges toward the most promising region. But, 
SSA often traps into local optima due to its stochastic nature and lack of balancing between exploration 
and exploitation. Thus, from this point, many studies have been presented to improve the performance 
of SSA and to overcome these defects. 

Some improvement of single strategy has applied to enhance the performance of SSA by scholars. 
Sayed et al. [19] used a chaotic mapping sequence to take place the random parameter, which 
significantly improved the convergence rate and resulting precision of SSA. Abbassi et al. [20] 
proposed an Opposition-based Learning Modified Salp Swarm Algorithm (OLMSSA) for the accurate 
identification of circuit parameters. Singh et al. [21] updated the position of the salp swarm by sine 
cosine to enhance the exploration and exploitation capability. Syed et al. [22] proposed a strategy based 
on the weighted distance position update called the Weighted Salp Swarm Algorithm (WSSA) to 
enhance the performance and convergence rate of the SSA. Singh et al. [23] proposed a Hybrid SSA-
PSO algorithm (HSSAPSO) by adding the speed optimization method of particle swarm optimization 
algorithm in the position update stage of salp swarm to avoid premature convergence of the optimal 
solution in the search space. 

Moreover, multi-strategy improvement is adopted to enhance the SSA and has achieved good 
results with the development of research and application of SSA. Zhang et al. [24] used the Gaussian 
Barebone and stochastic fractal search mechanism to balance the global search ability and local search 
ability of the basic SSA. Liu et al. [25] proposed a new SSA-based method named MCSSA, in which 
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the structure of SSA is rearranged using a chaos-assisted exploitation strategy and multi-population 
foundation to enhance its performance. Zhang et al. [26] proposed an ensemble composite mutation 
strategy to boost the exploitation and exploration trends of SSA, as well as a restart strategy to assist 
salps in getting away from local optimum. Zhao et al. [27] made an improvement of SSA called 
AGSSA, in which an adaptive control parameter is introduced into the position update stage of 
followers to boost the local exploitative ability of the population, and the elite gray wolf domination 
strategy is introduced in the last stage of the population position update to help the population find the 
global optimal solution faster. Zhang et al. [28] presented a chaotic SSA with differential evolution 
(CDESSA), and in the proposed framework, chaotic initialization is utilized to produce a better initial 
population aim at locating a better global optimal, and the differential evolution is used to build up the 
search capability of each agent. Xia et al. [29] proposed a QBSSA, in which an adaptive barebones 
strategy help to reach both accurate convergence speed and high solution quality and a quasi-
oppositional-based learning make the population away from trapping into local optimal and expand 
the search space. Zhang et al. [30] proposed an enhanced SSA (ESSA), which improves the 
performance of SSA by embedding strategies such as orthogonal learning, quadratic interpolation, and 
generalized oppositional learning. 

2. Motivation and innovation 

Although the basic SSA enriches some characteristics like fast convergence speed and simple 
implementation, it may trap at sub-optimal solutions easily in some cases when handling the more 
complex optimization problems. Some improved algorithms of SSA have been provided by scholars 
mentioned as above, but each algorithm has its own merits and drawbacks. Hence, there is no guarantee 
which algorithm is best suited for a specific problem according to the “No free lunch” theorem [31]. 
In practical applications, there are special requirements on the accuracy or the convergence speed of 
the algorithm, so it is necessary to adopt more strategies. 

In basic SSA, when the whole swarm of salps falls into a sub-optimal solution, the algorithm is 
trapped at that local solution and eventually stagnate at that suboptimal solution. So, we proposed a 
strategy of using dimension-by-dimension centroid opposition-based learning to make the slap 
population get more wide search space. Moreover, a random factor is used to increase the randomness 
of the population distribution and PSO’s social learning strategy is added to speed up convergence.  

The main contributions of this paper are as follows: 
1) An improved algorithm which combines dimension-by-dimension centroid opposition-based 

learning, random factor, and PSO’s social learning strategy (DCORSSA-PSO) is proposed. 
2) The performance of proposed DCORSSA-PSO is verified by comparing it with several well-

known algorithms in benchmark functions. 
3) The proposed DCORSSA-PSO is used to the design of system reliability optimization based 

on T-S fault tree and has achieved good result. 
The remainder section of this article is structured as follows. Section 3 introduces the basic 

principles of SSA. Section 4 introduces the mathematical principles of dimension-by-dimension 
centroid opposition-based learning, the addition of random factor and PSO’ social learning, and 
proposes DCOSSA, DCORSSA and DCORSSA-PSO. Section 5 contains simulation experiment 
and result analysis. In Section 6, the efficacy of the proposed DCORSSA-PSO is assessed on 
engineering design of system reliability optimization. Finally, conclusions and future works are 
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summarized in Section 7. 

3. Basic principles of salp swarm algorithm 

The salp swarm algorithm was proposed by Mirjalili et al. in 2017 [12], which is a heuristic 
swarm intelligent optimization algorithm that simulates the navigating and foraging behavior of 
salps. The salp chain consists of two types of salps: leader and follower. The leader is the salp at 
the head of the salp chain, and the other salps are considered followers. To enhance the population 
diversity of the algorithm and enhance the ability to jump out of the local optima, half the salps 
are selected as the leaders. 

The position update equation of the leader is as follows [32]: 
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where i
jx  is the position of the ith leader in the jth dimension; Fj is the position of food source in the 

jth dimension; ubj and lbj indicate the upper and lower bound of the jth dimension, respectively; c2 and 
c3 are random numbers in the range [0,1], which decide respectively the moving step and the moving 
direction (positive or negative) of the jth dimension. c1 is the convergence factor, which is used to 
balance the exploration and exploitation ability of the algorithm in the iterative process. c1 is defined 
as follows: 

 
2(4 / )

1 2 t Tc e  (2) 

where t is the current number of iterations and T is the maximum number of iterations. 
The position update equation of followers is as follows:  

 11
( )

2
i i i
j j jx x x    (3) 

where i ≥ 2 and i
jx  is the position of the ith follower in the jth dimension. Eq (3) shows that the ith 

follower in the jth dimension is updated according to the center of the previous generation of the ith 
follower and the i-1th follower in the jth dimension. 

4. An improved salp swarm algorithm 

Although the SSA is experienced to reach good accuracy compared with recent meta-heuristics, 
it may still face the shortcomings of getting trapped in local optima and is not suitable for highly 
complex optimization functions. To extend the search capability of SSA, a new hybrid salp swarm 
algorithm based on dimension-by-dimension centroid opposition-based learning strategy, random 
factor, and PSO’s social learning strategy (DCORSSA-PSO) is proposed to solve engineering problems. 
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4.1. DCOSSA 

4.1.1. Opposition-based learning 

Opposition-based learning is a novel learning strategy proposed by Tizhoosh in 2005 [33]. The 
principle is that the current optimal solution and the opposition-based learning solution are searched 
for simultaneously during the population iteration and the better one in these two solutions is retained 
to the next generation according to the fitness value. This searching method improves the population 
diversity and enhances the ability of the algorithm to jump out of the local solutions. 

Definition 1: Let x∈R be a real number and x∈[lb, ub]. The opposite number x  is defined 
as follows: 

 x lb ub x    (4) 
Analogously, the opposite number in a multidimensional case is also defined. 

Definition 2: Let  1 2, , , DX x x x   be a point in a D-dimensional coordinate system with x1, ..., 

xD∈R, and xj∈ [lbj, ubj]. The opposite point   1 2, , , DX x x x     is defined as: 

 ,   1j j j jx lb ub x j D      (5) 

4.1.2. Centroid opposition-based learning 

When the opposition-based learning method calculates the opposite point, two boundaries (min 
and max) are taken from two extreme points in the population for every dimension. The remaining 
points of the population are not considered, so this represents a weakness in terms of convergence 
speed. A Centroid Opposition-Based Computing (COBC) was proposed by Rahnamayan [34], which 
takes the entire population to generate the opposite points and hence improves the convergence speed 
and solution accuracy. 

Let (X1, ..., Xn) be n points in D-dimensional search space with each point in that space carrying 
a unit mass. Then the centroid of the body can be defined as follows: 
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where then we have  
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where xi, j is the jth dimension of ith point, Mj is the jth dimension centroid of all n points. 
The opposite-point 

iX  of the point Xi is calculated as follows: 
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4.1.3. Dimension-by-dimension centroid opposition-based learning 

At present, most algorithms adopt the method of variation for all dimension information of the 
population and select or eliminate evolution by comparing the fitness values of different individuals 
as a whole for all dimension, however, it is difficult to ensure that each selected dimensional 
information of the evolutionary individual is better than that of the eliminated individual. Therefore, 
there is often inter-dimensional interference in the calculation of the fitness value, which masks the 
information of evolution dimension and reduces the quality of solution and the convergence speed. 

The dimension-by-dimension update evaluation strategy refers to evaluating the fitness value 
separately for each dimension, which can reduce the inter-dimensional interference between each 
dimension of the individual and avoid the problem of low variation efficiency. This operation for 
population individuals can more accurately evaluate the fitness value in each iteration. However, for 
the high-dimensional test functions, it will greatly increase the time complexity of the algorithm. 
Through the test, it is found that better results can still be achieved by updating the dimensional 
information of the optimal individual instead of each individual. 

4.1.4. DCOSSA 

This paper combines the dimension-by-dimension update strategy with the centroid opposition-
based learning strategy, and proposes a Dimension-by-dimension Centroid Opposition-based learning 
Salp Swarm Algorithm (DCOSSA). The basic step is: Firstly, calculate the opposite point of the 
centroid of the current population through Eqs (4)–(8). Then, replace the information at the first 
dimension of the food source with the first dimension of the opposite point of the center of gravity. If 
the fitness value of the new food source is better than the fitness value of the original food source, the 
opposite solution information of the population center of gravity of this dimension is retained, 
otherwise, the update result of this dimension is discarded. At last, update the next food source 
information in dimension order until all dimensions are updated. 

The pseudo-code of the strategy of dimension-by-dimension centroid opposition-based learning 
is as follows: 

Calculate the center position M of the iterative population according to Eq (6) 
for j = 1: Dim 

Calculate opposite solution of the food source position jF according to Eq (8) 

If f ( jF )is better than f (Fj) then 

Fj = jF  

end if 
end for 

4.2. DCORSSA 

According to the position update Eq (3) of followers in the salp swarm algorithm, the position of 
follower takes the center of gravity of the corresponding position of the salp in the previous generation 
and the position adjacent to the previous salp. The head follower uses the information of the leader 
slap besides its information of previous generation, so the whole population of followers are affected 
gradually by the leader slap. It can be seen from Eq (1) that the leader’s position is updated near the 



5275 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5269–5292. 

food source. Therefore, when the food source does not fall into the local solutions, this end-to-end 
search mechanism can enable the followers to fully carry out local exploitation, but the gradual 
transmission of the global optimal information is not conducive to the rapid convergence of the 
algorithm. Moreover, when the food source falls into the local solutions, the followers will fall into the 
dilemma of invalid region search, that is, the lack of population diversity, so the algorithm is easy to 
fall into the local extremes. 

The above searching mechanism is fixed and lack of dynamic adjustment. Therefore, this paper 
proposes a DCORSSA algorithm on the basis of DCOSSA, that is, a random factor is added to the 
update equation of its followers to enhance the update randomness, so that population can get more 
chance to jump out of the local optima. 

A random factor c4 between 0 and 1 replaces the constant 1 of Eq (3). So, the new position update 
equation of followers is as follows:  

 14 ( )
2

i i i
j j j

c
x x x    (9) 

4.3. DCORSSA-PSO 

As mentioned above in Section 4.2, the one-by-one transfer mechanism of salp chain makes 
the convergence speed is slow. So, in this section, we introduce the social learning strategy of PSO 
on the basis of DCORSSA. The Particle Swarm Optimization (PSO) is a very practical swam 
optimization algorithm proposed by Kennedy and Eberhart [5]. Particles search for optimization 
through information sharing mechanism. That is, particles obtain their own historical experience 
(individual optimal pi) and group experience (global optimal pg) through information exchange 
between individuals to achieve the purpose of optimization. The update formula of velocity and 
position are as follows:  

 1 1 2 2( 1) ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]i i i i g i
j j j j j jv t v t c r t p t x t c r t p t x t       (10) 

 ( 1) ( ) ( 1)i i i
j j jx t x t v t     (11) 

where i
jv is the velocity of the ith particle in the jth dimension, i

jx  is the position of the ith particle in 
the jth dimension, t refers to the iteration number, w is inertia weight that aims at determining the effect 
of previous velocities on current velocity, c1 represents the individual learning factor and c2 represents 
the social learning factor, r1 and r2 are random variables used to increase the randomness of particle 
flight, whose values are normally distributed in [0, 1], i

jp  and g
jp  indicate the elements of individual 

optimal location and global optimal location in the jth dimension, respectively.  
Equation (10) includes three parts: the first part is the “inertia” part, which is the motion inertia 

of particles, reflecting the tendency of particles to maintain their previous velocity; the second part is 
the “individual learning”, which reflects the trend of particles moving to their previous best position 
in history; the third part is the “social learning”, which reflects the trend of particles moving to the best 
position in the previous history of the population. 

Finally, based on DCORSSA, this paper further proposes a DCORSSA-PSO algorithm. That is, 
the social learning strategy of PSO which is the third part of Eq (10) is introduced to the position update 
equation of the followers of DCORSSA. On the basis of increasing the random distribution of its own 
position, the improved algorithm makes full use of the global information and strengthens the tendency 
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of individuals to move to the food source. 
The position update equation of followers of proposed DCORSSA-PSO is as follows: 

  5 rand(0,1)i i i
j j j jx x c F x      (12) 

where i
jx  is the position of the ith follower in the jth dimension updated by Eq (9), Fj is the food 

source position of the jth dimension, c4 is random number between 0 and 1, c5 is the social learning 
factor, taken c5 = 1.49. 

The flow chart of the algorithm DCORSSA-PSO is shown in Figure 1. 

Evaluate the fitness function of each search agent and determine the best one as the F

End

Start

Initialize the parameters

Generate the initial crowd randomly

Update  coefficient of c1 by Eq (2)

Update the position of the F and apply the stragety of dimension 
by dimension centroid opposition learning on it

Output F

            i≤N/2?

 Meet stop condition?  

Update the position of the leader  
by Eq (1)

Update the position of the follower 
by Eq (9) and Eq (12)

Yes No

No

Yes

 

Figure 1. Flow chart of DCORSSA-PSO. 

The pseudo-code of DCORSSA-PSO is as follows: 
Set the initial parameters of the algorithm: population numbers N, population dimensions Dim, 

population iteration times T, search upper bound ub and search lower bound lb; 
Initialize the population randomly, calculate the fitness value of each individual, and take the 

position with the optimal fitness value as the food source position F; 
for t = 1: T 
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for i = 1: N  
if i <= N/2 

Update the position of leader by Eq (1) 
else  

Update the position of followers by Eqs (9) and (12) 
end if 

end for 
Update the food source position F and its fitness value 
Calculate the center position M of the iterative population according to Eq (6) 

for j = 1: Dim 
Calculate opposite solution of the food source position jF according to Eq (8) 

If f ( jF )is better than f (Fj) then 

Fj = jF  

end if 
end for 

end for 

4.4. Computational complexity of DCORSSA-PSO 

According to the literature [12], the computational complexity of the SSA algorithm is O(t(d
∗n + Cof∗n)) where t shows the number of iterations, d is the number of variables (dimension), n 
is the number of solutions, and Cof indicates the cost of the objective function. In the DCORSSA-
PSO, the fitness function is recalculated for each dimension of the food source with the dimension-
by-dimension centroid opposition-based learning, so the amount of operation of O (Cof * d) is 
increased; simultaneously, to increase the search vitality of the algorithm and improve the search 
speed of the algorithm, random factor and PSO’s social learning strategy are introduced. Still, the 
number of code execution is not increased. So the computational complexity of DCORSSA-PSO 
algorithm is O(t(d∗n + Cof∗n + Cof*d)). It can be seen that the computational complexity of the 
DCORSSA-PSO algorithm is higher than that of standard SSA, and it increases with the increase 
of population dimension. 

5. Simulation experiment and result analysis 

5.1. Testing environment 

Test environment: the hard disk running environment is CPUi5-7200U, the memory is 12GB, the 
software running environment is windows10 system, and the running software is MATLAB 2019b. 
These parameters of different algorithms are set the same: population sizes N = 30, population 
dimensions Dim = 30, and the maximum number of iterations T = 500. Respective parameter settings 
for involved algorithms are shown in Table 1. 
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Table 1. Parameter settings for involved algorithms. 

Algorithm Parameters 

SSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; 

DCOSSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; 

DCORSSA c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; c4∈[0,1]; 

DCORSSA-PSO c1∈[2 × e-16, 2 × e]; c2∈[0,1]; c3∈[0,1]; c4∈[0,1]; c5 = 1.49; 

PSO w∈[0.4, 0.9]; c1 = c2 = 1.49; 

GWO r1∈[0,1]; r2∈[0,1] 

5.2. Test function 

Ten classical benchmark functions, as shown in Table 2, are used to evaluate the performance of 
DCORSSA-PSO. SSA, PSO, DCOSSA and GWO are the algorithms for comparison. In the ten 
functions, f1~f4 are unimodal test functions that can test the optimization accuracy of the algorithms, 
f5~f8 are multimodal test functions that can test the global optimization ability and convergence speed 
of the algorithms, f9~f10 are ill-conditioned test functions that can test the exploration and exploitation 
capabilities of the algorithms. 

Table 2. Benchmark functions used in the study. 
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Table 3. Test results of DCORSSA-PSO and compared algorithms. 

Functions Measure SSA DCOSSA DCORSSA DCORSSA-PSO PSO GWO 

f1 

Mean 2.40×10-7 2.28×10-9 2.70×10-27 5.80×10-44* 2.08×102 1.42×10-27

Best 3.70×10-8 9.29×10-12 6.45×10-32 1.42×10-46* 5.82×101 3.07×10-29

Std 4.09×10-7 5.16×10-9 5.86×10-27 1.17×10-43* 1.08×102 1.82×10-27

Time/s 1.01×10-1* 1.99×10-1 2.01×10-1 2.11×10-1 2.71×10-1 1.70×10-1 

f2 

Mean 1.96 1.36×10-5 1.00×10-14 7.80×10-23* 6.30 7.96×10-17

Best 1.71×10-1 1.03×10-6 6.24×10-16 2.12×10-24* 3.57 4.54×10-18

Std 1.46 3.95×10-5 1.18×10-14 9.73×10-23* 1.75 4.69×10-17

Time/s 9.37×10-2* 1.83×10-1 1.80×10-1 1.93×10-1 2.41×10-1 1.47×10-1 

f3 

Mean 1.20×101 1.08 9.05×10-15 7.16×10-23* 1.24×101 8.01×10-7 

Best 5.19 1.36×10-1 6.79×10-17 1.98×10-24* 4.76 1.16×10-7 

Std 3.35 6.96×10-1 1.29×10-14 8.06×10-23* 3.19 7.47×10-7 

Time/s 9.07×10-2* 1.75×10-1 1.72×10-1 1.85×10-1 2.36×10-1 1.41×10-1 

f4 

Mean 1.08×10-7 9.70×10-10* 3.39×10-7 6.50×10-8 1.67×102 7.97×10-1 

Best 2.54×10-8 9.62×10-12* 2.56×10-8 2.41×10-8 5.07×101 2.57×10-1 

Std 8.12×10-8 2.23×10-9* 8.51×10-7 2.66×10-8 8.92×101 2.57×10-1 

Time/s 9.29×10-2* 1.79×10-1 1.76×10-1 1.91×10-1 2.42×10-1 1.44×10-1 

f5 

Mean 6.16×101 4.64×10-1 0* 0* 1.31×102 3.42 

Best 2.79×101 2.80×10-12 0* 0* 8.73×101 0* 

Std 1.80×101 5.68×10-1 0* 0* 2.41×101 4.36 

Time/s 1.05×10-1* 1.98×10-1 1.92×10-1 2.00×10-1 2.59×10-1 1.52×10-1 

f6 

Mean 9.54×10-1 1.00×10-1 0* 0* 2.65 4.12×10-13

Best 8.49×10-1 4.44×10-2 0* 0* 1.57 5.00×10-15

Std 4.30×10-2 3.49×10-2 0* 0* 1.04 4.65×10-13

Time/s 1.22×10-1* 2.42×10-1 2.36×10-1 2.46×10-1 2.77×10-1 1.70×10-1 

f7 

Mean 1.96 1.04 2.96×10-15 2.25×10-23* 2.75 1.83×10-1 

Best 1.00 7.00×10-1 1.22×10-16 1.86×10-25* 1.80 9.99×10-2 

Std 4.18×10-1 2.40×10-1 2.99×10-15 2.90×10-23* 4.88×10-1 3.79×10-2 

Time/s 9.56×10-2* 1.94×10-1 1.91×10-1 2.00×10-1 2.46×10-1 1.51×10-1 

f8 

Mean 2.46 7.58×10-6 8.23×10-15 8.88×10-16* 5.84 9.80×10-14

Best 9.31×10-1 7.50×10-7 8.88×10-16* 8.88×10-16* 4.45 7.55×10-14

Std 7.42×10-1 1.01×10-5 1.23×10-14 0* 8.80×10-1 1.49×10-14

Time/s 1.08×10-1* 2.04×10-1 1.98×10-1 2.10×10-1 2.62×10-1 1.52×10-1 

f9 

Mean 1.51 5.48×10-2 6.72×10-5* 7.24×10-4 1.22 1.72×10-2 

Best 5.85×10-1 1.73×10-2 1.32×10-7* 7.12×10-6 3.09×10-2 8.50×10-4 

Std 6.72×10-1 1.91×10-2 6.83×10-5* 1.55×10-3 1.23 1.55×10-2 

Time/s 1.59×10-1* 3.16×10-1 3.18×10-1 3.27×10-1 3.06×10-1 2.09×10-1 

f10 

Mean 2.77×102 5.65×101 2.79×101 2.64×101* 5.39×103 2.69×101 

Best 2.49×101* 3.96×10-2 2.74×101 2.62×101 5.89×102 2.57×101 

Std 4.33×102 4.31×101 2.05×10-1 1.33×10-1* 5.25×103 7.83×10-1 

Time/s 1.24×10-1* 2.47×10-1 2.47×10-1 2.60×10-1 2.81×10-1 1.78×10-1 

Note: the mark “*” at the top right of the data indicates the best result obtained by all algorithms. 
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5.3. Experimental results and analysis 

To objectively test the optimization performance of the algorithm of DCORSSA-PSO, the same 
initial population is selected for all algorithms, and the average fitness value, optimal fitness value, 
standard deviation of fitness value, and the average running time of each algorithm for 30 times 
independently are counted to evaluate the algorithm comprehensively. The comparison results of each 
algorithm are shown in Table 3. 

From the experimental results of 30 independent runs in Table 3, it can be seen that the 
optimization performance of each algorithm in the standard test functions is different. The optimal 
value and average value can measure the accuracy of the optimization algorithm. In multimodal 
functions f5 and f6, DCORSSA-PSO and DCORSSA can search the theory optimal value 0, showing 
excellent optimization ability. In the test functions f1~f3, f7, the DCORSSA-PSO algorithm is superior 
to other algorithms in terms of both the average value and the optimal value. In the test functions f8 
and f10, DCORSSA-PSO is superior to other algorithms in terms of the average value. In the unimodal 
test function f1, DCORSSA-PSO is more than 10 orders of magnitude higher than other algorithms in 
the accuracy of the optimal value. Compared with SSA, the convergence accuracy of DCORSSA and 
DCORSSA-PSO is also greatly improved, which indicates that adding different optimization strategies 
is very helpful to improve the optimization of SSA. At the same time, in the ill-conditioned function 
f9, the optimization accuracy of DCORSSA-PSO reaches 7.12 × 10-6; although its accuracy is improved 
compared with SSA, it is worse than DCORSSA. In the ill-conditioned function f10, although the 
DCORSSA-PSO algorithm improves the mean optimization accuracy compared with the SSA 
algorithm, the optimal value search is still insufficient compared with the SSA algorithm. In unimodal 
function f4, DCORSSA-PSO inferiors to DCOSSA in terms of average value and optimal value. These 
cases which DCORSSA-PSO does not get the best performance indicate that the DCORSSA-PSO 
algorithm is still insufficient in search of some functions. 

The standard deviation can measure the optimization stability of the optimization algorithm. 
Except for f4 and f9, the standard deviation of the DCORSSA-PSO algorithm calculated 30 times 
independently is always less than that of other algorithms, which shows that the improved DCORSSA-
PSO algorithm can ensure the optimization stability of the algorithm when dealing with unimodal, 
multimodal, even ill-conditioned functions. 

In terms of average running time, the SSA algorithm has a shorter running time than PSO 
algorithm and GWO algorithm, which shows that the improved DCOSSA, DCORSSA and 
DCORSSA-PSO have inherent advantages in operation speed. The average running time of 
DCORSSA-PSO algorithm is slightly longer than that of the DCOSSA, which does not cause a 
significant increase in running time, indicating that the addition of random factor and PSO’s social 
learning strategy have little impact on the time complexity of the algorithm. The average running time 
of DCORSSA-PSO algorithm and DCORSSA is longer than that of the SSA algorithm, mainly due to 
the addition of dimension-by-dimension centroid opposition-based learning strategy. 

The Wilcoxon signed-rank test [35] with a significance level of 0.05 was used to judge the 
statistical difference between the improved algorithm DCORSSA-PSO and the comparative algorithms 
such as SSA. The statistical results are shown in Table 4, in which: “+” indicates that the test result of 
DCORSSA-PSO is superior to the corresponding comparison algorithm. “=” indicates that the 
performance of the DCORSSA-PSO test result is similar to the corresponding comparison algorithm, 
and there is no statistically significant difference. “-” indicates that the DCORSSA-PSO test result is 
inferior to that of the corresponding comparison algorithm. 
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Table 4. Wilcoxon signed-rank test of DCORSSA-PSO and other algorithms. 

Comparison group +/=/- Comparison group +/=/- 

DCORSSA-PSO VS SSA 9/1/0 DCORSSA-PSO VS PSO 10/0/0 

DCORSSA-PSO VS DCOSSA  9/0/1 DCORSSA-PSO VS GWO  10/0/0 

DCORSSA-PSO VS DCORSSA  7/2/1 ---  

According to the Wilcoxon signed-rank test results described in Table 4, it can be learned that 
DCORSSA-PSO wins in 45(= 9 + 9 + 7 + 10 + 10) cases, loses in 2 cases and shows a tie in the other cases 
in the total 50 (=5*10) cases. In general, the DCORSSA-PSO algorithm is better than other algorithms 
such as SSA algorithm in most functions, which proves the effectiveness of the proposed improved method. 

In addition, in order to further evaluate the statistical comparison of the optimization performance 
of each algorithm, Friedman test [36] is used to study the difference between each algorithm as is 
shown in Table 5. The average ranking value (ARV) represents the average ranking value of the 
Friedman test of an algorithm that runs 30 times of all test functions independently. The smaller the 
ARV, the higher the optimization performance of the algorithm. 

Table 5. Friedman test of DCORSSA-PSO and other algorithms. 

Algorithm SSA DCOSSA DCORSSA DCORSSA-PSO PSO GWO 
ARV 4.8533 3.5700 2.2567 1.4300 5.8700 3.0200 
rank 5 4 2 1 6 3 

From Table 5, we can clearly see the statistical results of the Friedman test. The ARV of 
DCORSSA-PSO integrating the three learning strategies is 1.4300, and the rank is No.1, which 
indicates that DCORSSA-PSO is significantly better than other comparison algorithms in solving these 
test functions. In addition, the rank of DCORSSA and DCOSSA combining the other strategies are 
No.2 and No.4 respectively, indicating that the above-mentioned optimization strategies are of great 
help in improving the optimization accuracy of the SSA algorithm. 

Figure 2 shows the average convergence curve of each algorithm in 10 standard test functions. 
To better observe the optimization effect of the algorithm, the logarithm based on 10 is taken for the 
optimization fitness values of f1~f10. 

 

(a) Performance comparison on the f1 function. 

 

(b) Performance comparison on the f2 function. 
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(c) Performance comparison on the f3 function. 

 
(d) Performance comparison on the f4 function. 

 
(e) Performance comparison on the f5 function. 

 
(f) Performance comparison on the f6 function. 

 
(g) Performance comparison on the f7 function. 

 
(h) Performance comparison on the f8 function. 

 
(i) Performance comparison on the f9 function. 

 
(j) Performance comparison on the f10 function. 

Figure 2. Average convergence curve of the standard test functions. 

In Figure 2, it can be seen that the optimization speed and accuracy of DCOSSA added with the 
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dimension-by-dimension centroid opposition-based learning strategy are greatly improved compared 
with SSA, which shows that the dimension-by-dimension centroid opposition-based learning strategy 
is of great benefit to improve the population diversity and the ability to jump out of the local solutions. 
Compared with DCOSSA and the other three algorithms, DCORSSA-PSO which adds a random factor 
and integrates the social learning strategy of PSO, declines rapidly in the middle of the iteration, and 
its optimization speed is significantly ahead. Especially in the middle and early iterations of the 
function, the DCORSSA-PSO algorithm can almost quickly search for the optimal value, and 
continues to show high search activity in the later iterations. Even in multimodal functions f5 and f6, 
the curves are interrupted because the DCORSSA-PSO algorithm searches the theoretical optimal 
value 0 (the independent variable of lg cannot be 0). 

All the above show that the DCORSSA-PSO algorithm is effective in dealing with unimodal, 
multimodal, and ill-conditioned test functions, and it has better optimization accuracy and speed, which 
is very helpful to solve the problems to be optimized in engineering practice. 

6. System reliability optimization model 

Nowadays, more and more engineering problems are adopting optimization methods to get 
optimal performance [37], while system reliability optimization is one of the most useful engineering 
fields. System reliability optimization refers to finding an optimal design under certain resource 
constraints to obtain the highest reliability of the system or minimizing the investment while meeting 
specific reliability index requirements, thus obtaining the maximum economic benefits. At present, 
practice shows that the optimal redundancy allocation design is one of the most usually used methods 
to reduce system failure probability and improve system reliability. Redundancy design means that 
when a part of the system fails, the redundant part is activated through the monitoring and switching 
mechanism to complete the same function instead of the failed part, to reduce the failure probability 
of the system. 

Many scholars have used intelligent optimization algorithms to solve reliability optimization 
problems. In literature [38], an enhanced nest cuckoo optimization algorithm was used to study the 
system reliability redundancy allocation with a cold-standby strategy. Literature [39] carried out 
reliability optimization of a fuzzy multi-objective system based on genetic algorithm and cluster 
analysis. Literature [40] proposed a new particle swarm optimization algorithm based on fuzzy 
adaptive inertia weight to solve the reliability redundancy allocation problem. 

6.1. T-S fault tree construction 

Fault tree analysis is one of the commonly used reliability analysis methods, which is oriented by 
system failure and unit failure. A fault tree is composed of events and gates. It is named fault tree 
because its fault logic relationship is graphically represented like a tree with the top event as root, event 
logic causality represented by the gate as a branch, and bottom event as a leaf. T-S model [41] was 
proposed by Takagi and Sugeno in 1985. Through if-then rules, a series of local linear subsystems and 
membership functions were used to accurately describe nonlinear systems. Song et al. [42] constructed 
T-S gates to describe event relations based on the T-S model, proposing the T-S fault tree analysis 
method. Yao et al. [43] proposed a new reliability optimization method based on the T-S fault tree and 
EPSO (Extended PSO). 
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Hypothetically, a mechanical system consists of two subsystems, each of which can improve the 
system reliability by adding a redundant design. In this paper, the T-S fault tree analysis method is used 
to construct the reliability allocation optimization model of the system, and the DCORSSA-PSO 
algorithm is used to optimize its reliability allocation. The T-S fault tree of the mechanical system is 
shown in Figure 3. 

x1 x2 x3

y3( T ) 

y1 y2

x4 x5

G1 G2

G3

S S

S

 

Figure 3. T-S fault tree of a mechanical system. 

In Figure 3, x1~x5 are the bottom events, y1~y2 are the intermediate events, and y3 is the top event. 
G1~G3 are T-S gates. Fuzzy numbers 0, 0.5 and 1 represent the three states of normal, semi failure, and 
complete failure of each part, respectively. The fault states of each part are independent of each other. 
According to expert experience and historical data, the rule tables of the T-S gate are defined as shown 
in Tables 6–8. 

Table 6. Rule table of T-S gate 1. 

rules x1 x2 x3 
y1 

rules x1 x2 x3 
y1 

0 0.5 1 0 0.5 1 

1 0 0 0 1 0 0 15 0.5 0.5 1 0 0 1 

2 0 0 0.5 0.2 0.5 0.3 16 0.5 1 0 0 0 1 

3 0 0 1 0 0 1 17 0.5 1 0.5 0 0 1 

4 0 0.5 0 0.3 0.5 0.2 18 0.5 1 1 0 0 1 

5 0 0.5 0.5 0.2 0.3 0.5 19 1 0 0 0 0 1 

6 0 0.5 1 0 0 1 20 1 0 0.5 0 0 1 

7 0 1 0 0 0 1 21 1 0 1 0 0 1 

8 0 1 0.5 0 0 1 22 1 0.5 0 0 0 1 

9 0 1 1 0 0 1 23 1 0.5 0.5 0 0 1 

10 0.5 0 0 0.2 0.5 0.3 24 1 0.5 1 0 0 1 

11 0.5 0 0.5 0.1 0.4 0.5 25 1 1 0 0 0 1 

12 0.5 0 1 0 0 1 26 1 1 0.5 0 0 1 

13 0.5 0.5 0 0.1 0.5 0.4 27 1 1 1 0 0 1 

14 0.5 0.5 0.5 0.1 0.4 0.5 - - - - - - - 
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Table 7. Rule table of T-S gate 2. 

rules x4 x5 
y2 

rules x4 x5 
y2 

0 0.5 1 0 0.5 1 

1 0 0 1 0 0 6 0.5 1 0 0 1 

2 0 0.5 0.4 0.4 0.2 7 1 0 0.1 0.2 0.7 

3 0 1 0.1 0.1 0.8 8 1 0.5 0 0 1 

4 0.5 0 0.8 0.1 0.1 9 1 1 0 0 1 

5 0.5 0.5 0.1 0.5 0.4 - - - - - - 

Table 8. Rule table of T-S gate 3. 

rules y1 y2 
y3 

rules y1 y2 
y3 

0 0.5 1 0 0.5 1 

1 0 0 1 0 0 6 0.5 1 0 0 1 

2 0 0.5 0.4 0.5 0.1 7 1 0 0.1 0.2 0.7 

3 0 1 0.1 0.1 0.8 8 1 0.5 0 0 1 

4 0.5 0 0.8 0.1 0.1 9 1 1 0 0 1 

5 0.5 0.5 0.1 0.5 0.4 - - - - - - 

Taking Table 6 as an example, each row in rules1~27 represents a G1 gate rule. For example, 
in rule1, the fault states of bottom events x1, x2, and x3 are 0, 0, and 0 respectively, then the 
occurrence probability of fault state 0 of y1 is P1(y1 = 0) = 1, the occurrence probability of fault 
state 0.5 of y1 is P1(y1 = 0.5) = 0, the occurrence probability of fault state 1 of y1 is P1(y1 = 1) = 0. 
Under the same rule, the sum of the occurrence possibilities of each fault state of the superior event 
y1 is 1, that is, P1(y1 = 0) + P1(y1 = 0.5) + P1(y1 = 1) = 1. 

6.2. System reliability optimization model 

According to the T-S fault tree and the corresponding rule gate of the system, a system reliability 
optimization model is constructed with the lowest system fault probability as the objective function 
and the overall cost of the system as the constraint. Among them, the system cost is the sum of the 
expenses of each component unit, its connectors, and switching equipment. The unit cost increases 
nonlinearly with the improvement of its reliability. The objective function and cost constraint 
expression are as follows: 
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where P(T = Tq) is the fault probability of top event T when its fault state is Tq; Pl(T = 0.5) and Pl(T = 1) 



5286 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5269–5292. 

respectively represent the probability when the fault state of top event T is 0.5 and 1 in the rule l; lP0 is the 
execution degree of T-S rule; )( ia

ixP  is the failure probability of bottom event xi when its failure state is 
ia

ix ; ni is the redundancy number of the element; μ is the fault-free operation time, taken μ = 1000 h; C0 is 
the constraint value of system cost, taken C0 = 175. αi and βi can be seen in Table 9. 

Table 9. Constraint parameter values of αi and βi. 

i 1 2 3 4 5 

105αi 2.540×10-5 2.483 × 10-5 6.420 × 10-5 7.160 × 10-5 2.417 × 10-5 

βi 1.500 1.500 1.500 1.500 1.500 

6.3. Fitness function 

The penalty function is one of the main constraint optimization methods available at present, 
whose core idea is to transform the original constrained optimization problem into an unconstrained 
problem by constructing auxiliary functions. In this paper, the cost constraint in the system reliability 
optimization model is transformed into an unconstrained optimization problem by introducing a 
penalty function. That is, a penalty factor is added to the fitness value of the salps that does not satisfy 
the cost constraints, so that the infeasible solution can be eliminated in the process of evolution. In this 
paper, the maximum probability value of system fault N (N = 1) is used as the penalty factor, and the 
failure probability fitness function is constructed as follows: 
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6.4. Results comparison and analysis 

The DCORSSA-PSO algorithm is compared with SSA, PSO, and GWO algorithms. Set the 
maximum number of iterations of the above five algorithms T = 500. And the reliability optimization 
results of the algorithms are shown in Table 10. 

Table 10. Optimization results of four algorithms. 

Optimized 

parameters 

SSA DCORSSA-PSO PSO GWO 

P(xi) ni P(xi) ni P(xi) ni P(xi) ni 

x1 1.28 × 10-1 3 1.09 × 10-1 3 1.58 × 10-1 3 1.37 × 10-1 3 

x2 9.22 × 10-2 3 1.08 × 10-1 3 1.58 × 10-1 3 1.68 × 10-1 3 

x3 1.38 × 10-1 3 9.00 × 10-2 3 1.07 × 10-1 3 1.88 × 10-1 3 

x4 1.26 × 10-1 3 1.41 × 10-1 3 1.70 × 10-1 3 1.57 × 10-1 3 

x5 1.16 × 10-1 3 9.66 × 10-2 3 1.11 × 10-1 3 1.59 × 10-1 3 

P 5.03 × 10-3 3.71 × 10-3* 8.03 × 10-3 1.22 × 10-2 

C 175.00 175.00 115.76 105.89* 

Time/s 4.91 × 10-1* 6.05 × 10-1 8.17 × 10-1 5.09 × 10-1 
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According to the optimization results in Table 10, when taking the minimum failure probability 
of the system as the objective function, the system failure probability optimized by the DCORSSA-
PSO algorithm is lower than that of other algorithms including SSA, PSO, GWO, which proves the 
feasibility and superiority of the improved algorithm. In terms of running time, SSA has the shortest 
one, while DCORSSA-PSO has the longest one. This indicates that the multi-strategy improvement of 
DCORSSA-PSO spend more time, but the running time of DCORSSA-PSO is less than one second 
which can fulfill the needs of practical engineering. 

In addition, in order to more intuitively show the reliability optimization process of the four 
algorithms, the iterative curve is shown in Figure 4. 

 

Figure 4. Optimization comparison curves. 

To test the stableness of the DCORSSA-PSO algorithm, let all the algorithms run 30 times at the 
same initial condition. Table 11 shows the statistical results of failure probability. 

Table 11. Statistical results of five algorithms. 

Measure SSA DCORSSA-PSO PSO GWO 

Mean 6.956 × 10-3 3.746 × 10-3* 5.196 × 10-3 8.304 × 10-3 

Best 3.710 × 10-3 3.709 × 10-3* 4.387 × 10-3 4.404 × 10-3 

Std 3.703 × 10-3 3.886 × 10-5* 8.625 × 10-4 2.518 × 10-3 

Time/s 5.466 × 10-1* 6.795 × 10-1 8.975 × 10-1 5.617 × 10-1 

From Table 11, we can find that in a statistical sense, DCORSSA-PSO compared with SSA, PSO 
and GWO still get the best result of failure probability including mean value, best value and standard 
deviation except for running time. The average failure probability obtained by DCORSSA-PSO 
algorithm relatively reduced by 46.14% compared to SSA, which shows that DCORSSA-PSO greatly 
improves the optimization performance of SSA by integrating the multi-strategy improvement. 

In this paper, a box plot is used to analyze the data distribution of the system failure 
probability. The box plot consists of five parts: upper limit, upper quartile, median, lower quartile 
and lower limit. The upper limit is connected to the upper quartile with a dashed line, and same to 
the lower limit and the lower quartile. The center mark indicates the median. Figure 5 shows the 
boxplot of different algorithms. 

P
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Figure 5. Boxplot of the different algorithms. 

In the statistical result of Figure 5, y-axis P means the failure probability, and it can be found that 
DCORSSA-PSO has the lowest median of P value, which means that the reliability calculated by 
DCORSSA-PSO is the highest. In addition, the box obtained by DCORSSA-PSO is very compact, that 
is, the range of the box formed between the upper quartile and the lower quartile is the smallest, 
indicating that DCORSSA-PSO has less volatility compared to the datasets of other algorithms. 
Therefore, DCORSSA-PSO outperforms other algorithms. On the other hand, outliers (+) appear in 
the failure probability optimized by SSA, DCORSSA-PSO and PSO, indicating that further research 
in performance improvement is needed for DCORSSA-PSO. 

7. Conclusions and future works 

This paper proposes a DCORSSA-PSO algorithm that hybridizes dimension-by-dimension 
centroid opposition-based learning strategy, random factor and PSO’s social learning strategy based 
on standard SSA. The improved algorithm mainly improves the standard SSA algorithm in three parts: 
a) a dimension-by-dimension centroid opposition-based learning strategy is added to the food source 
update, which can expand the population search range, strengthen the dimension evolution information, 
and enhance the ability to jump out of the local solutions; b) random factor is added in the update 
equation of followers to enhance the diversity of population distribution; c) drawing on the experience 
of PSO’s social learning strategy, in the update equation of followers, the food source is added to 
directly guide the followers to improve the convergence speed of the algorithm. The comparison results 
in the synthesis of ten standard test functions and the reliability optimization example show that the 
DCORSSA-PSO algorithm is superior to other algorithms in optimization, which proves that the above 
improvement strategy has good feasibility and superiority to improve the optimization performance of 
the SSA algorithm. As a future plan, the method of increasing the diversity of the population will be 
introduced into the research of DCORSSA-PSO such as the levy-flight theory, chaos mapping. At the 
same time, DCORSSA-PSO can be employed to optimize pattern classification, fuzzy control, 
machine learning, etc. 

P
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