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Abstract: For tasks intractable for a single agent, agents must cooperate to accomplish complex
goals. A good example is coalitional games, where a group of individuals forms coalitions to pro-
duce jointly and share surpluses. In such coalitional negotiation games, how to strategically negotiate
to reach agreements on gain allocation is however a key challenge, when the agents are independent
and selfish. This work therefore employs deep reinforcement learning (DRL) to build autonomous
agent called DALSL that can deal with arbitrary coalitional games without human input. Furthermore,
DALSL agent is equipped with the ability to exchange information between them through emergent
communication. We have proved that the agent can successfully form a team, distribute the team’s
benefits fairly, and can effectively use the language channel to exchange specific information, thereby
promoting the establishment of small coalition and shortening the negotiation process. The experi-
mental results shows that the DALSL agent obtains higher payoff when negotiating with handcrafted
agents and other RL-based agents; moreover, it outperforms other competitors with a larger margin
when the language channel is allowed.

Keywords: multi-agent systems; cooperative games; reinforcement learning; deep learning;
emergent communication

1. Introduction

The research of single agent learning has made significant progress in various domains, including
AlphaGo [1] for Go, Libratus [2] for Texas Hold’em, Watson [3] for medical diagnosis. However, in
today’s society, more and more tasks require teamwork to complete successfully and effectively, for
example, scoring in a football match, search and rescue, and the parliamentary government system of
the EU council [4]. Cooperation is thus an indispensable condition for the successful completion of
these tasks. On the other side, participants may have different abilities and influence over outcomes,
leading to their different interests and a competitive relationship between them when they are selfish
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and try to maximize their payoff.
One such example is the weighted voting games (WVGs) — a typical problem in cooperative game

theory. It reflects the minimum resources needed to complete a task given each agent has some re-
sources. Agents that are selfish need to form coalitions with other participants and reach agreement on
how to share the gains among coalition members, based on the the amount of resources they can con-
tribute. As a powerful mechanism, negotiation is often used to facilitate conflict-resolving and achieve
consensus between parties of different interests. This problem can therefore be abstracted into a ne-
gotiation problem about team formation, which is the research object of cooperative game theory [5].
Such games are called coalitional negotiation games, and can be naturally modeled by a multi-agent
system.

With the development of cooperative game theory, researchers formally quantified actual voting
power as the power index. The power index is a function that maps the weighted voting game to the
corresponding weight of the players, which reflects the influence of the players on the coalition results
[6]. Among them, the Shapley-Shubik power index [7] based on game theory and the Banzhaf index [8]
based on probability theory are the earliest influential measurement tools with foundational significance
in the field of voting power measurement. Especially the Shapley-Shubik power index, which is a very
important and famous kind of power index. The benefit distribution of coalition members based on
Shapley value reflects the contribution of coalition members to the coalition, avoids the equalitarianism
in distribution, and is more reasonable and fair.

The success of social tasks such as negotiations requires abilities in many aspects [9–11]. During
negotiation, the influence of communication [12] on cooperation and negotiation results is the same as
or even greater than that of the proposal. Whether the agents can communicate during the negotiation,
and how the communication between the agents will affect the negotiation process and results, is what
we study in this work. In the weighted voting game, the formation of coalitions and the distribution
of benefits require coordination among multiple agents, which provides a good environment for us to
study the communication between multiple agents.

In the research of multi-agent cooperation, Foerster et al. firstly introduced communication learning
into deep multi-agent reinforcement learning [13]. The reinforced inter-agent learning (RIAL) and dif-
ferentiable inter-agent learning (DIAL) algorithms they proposed are an extension of the single-agent
strategy evolution method deep Q network (DQN) on the multi-agent problem. The DIAL algorithm is
an improved version of the RIAL algorithm. Although DIAL can solve the problem of multi-agent col-
laboration, its algorithm’s unidirectional loop structure in communication architecture makes it poor
in dealing with rapidly changing environments. CommNet is one of the earliest solutions proposed
in the research of multi-agent cooperation problem. Instead of assigning a different neural network
to each agent to make decisions, CommNet uses the same network to solve the actions of all agents.
However, CommNet can only be used to deal with the same kind of agents, because it takes the form of
average value in formula recursion and assumes that all agents have the same weight. Bidirectionally-
coordinated nets (BiCNet) combines the advantages of CommNet and DIAL [14], uses Bi-Directional
RNN, and uses the deep deterministic policy gradient (DDPG) algorithm as the agent’s action strategy.
BiCNet is not only able to handle a variety of agent collaboration problems, but also has improved per-
formance in rapidly changing environments. However, it is only a small-scale improvement compared
to DIAL.

However, in the research with the background of game, the environment considered by some work
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only involves two agents [15,16]. They regard the problem as a kind of communication rather than the
formation of team, thus avoiding the formation of coalition. The work of Matthews et al. proposed a
Bayesian reinforcement learning framework to solve the problem of alliance formation [17]. However,
the computational cost of Bayesian computation is very high. Bachrach et al. used multi-agent rein-
forcement learning to study the problem of team formation in negotiation, and it can be applied to any
negotiation protocol in a complex environment [18]. However, they did not consider the communica-
tion between agents in negotiation. The research results of Crandall et al. show that the use of ”cheap
talk” can help agents cooperate [19]. However, in their study, cheap talk is carefully designed, and the
speech acts of agents are pre-defined. Cao et al. studied the communication between agents on the
non-cooperative game model in classic game theory [20]. Their work is based on the offer / counter-
offer bargaining games, and according to the concept of cheap talk, they set up a language channel in
the game, so that the agent can transmit any character string of arbitrary symbols without a priori basis.
However, their research is based on non-cooperative game, and did not investigate whether cheap talk
can be generated from the interaction of self-interest agents.

In this paper, deep reinforcement learning (RL) algorithm is used to construct a DALSL (short for
Deep Attention LSTM SARSA(λ)) agent to negotiate with others to form coalitions. During the game,
the agent negotiates with the payoff obtained in the game as the supervision signal for the success of
the task. In addition, we designed specific language channels and language symbols that agents can use
to study the influence of communication on agent negotiation. The results show that DALSL agents
are better at negotiating than other agents. Moreover, when the game can use the language channel,
communication can effectively promote the negotiation, and have a certain impact on the negotiation
process and results. DALSL agents can effectively use the language channel, learn better strategies,
and reach more favorable agreements in the game.

2. Preliminaries

2.1. Cooperative game

According to Nash’s definition of cooperative games, each player can form a small group with other
players according to his own interests and cooperate with each other to seek a larger total payment.
These small groups are called coalitions, and the coalition composed of all the players is called the
grand coalition. Let the set of participants in the game is N = {1, 2, ..., n}, |N| = n (only considering the
limited number of participants), then for any S ⊆ N, we call S a coalition of N [21]. When S = N, it
is called a grand coalition. For a given finite set of participants N, the characteristic function form of
the cooperative game is an ordered pair (N, v), where the characteristic function v is the mapping from
2N = {S |S ⊆ N} to the set of real numbers R, that is, (N, v) : 2N 7→ R, and v(ϕ) = 0. v(S ) is called the
characteristic function of coalition S , which represents the benefits that participants in the coalition can
obtain from mutual cooperation. Therefore, the characteristic function of the cooperative game means
that for each coalition S , v(S ) is specified to describe the total amount of transferable utility that the
coalition S can obtain without the need for the participants outside of S .

WVG is a typical model of cooperative game. In the WVG, we are given a set of participants
N = {1, 2, ..., n}, each participant i ∈ N corresponding a weight wi. When the sum of the weights of the
coalition S exceeds the given threshold Q, the members of the coalition can obtain payoff. And the
coalition S is called the winning coalition, otherwise, it is called the losing coalition. Therefore, the
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characteristic function of the weighted voting game is as follows:

v(S ) =
{

1,
∑

i∈S wi ≥ Q
0,

∑
i∈S wi < Q

(2.1)

In a weighted voting game, most of the time, each voter’s influence on the voting result does not
directly depend on his weight, and it is the influence of each voter on the game result that should be
the most important measure of his power. Therefore, we need to find a fair and reasonable quantitative
indicator to measure the power of voters. Shapley-Shubik power index proposed by Shapley is a very
important kind of power index. It is well known that the order of the voters will have an important
impact on the results of the voting. The Shapley-Shubik power index is defined as follows: assuming
that the voting is in a certain order, if a voter’s approval can make the coalition form a winning coalition,
then the probability of the voter’s occurrence in the above situation is calculated. The formula for
calculating the Shapley value of the ith voter is as follows:

ϕi(N, v) =
1
|N |!

∑
S⊆N\{i}

|S |!(|N| − |S | − 1)![v(S ∪ {i}) − v(S )] (2.2)

From a mathematical point of view, the Shapley-Shubik power index calculates the average marginal
contribution of each voter in an orderly arrangement.

2.2. Multi-agent reinforcement learning

The standard theory of RL is defined by a markov decision process (MDP). By introducing the
concept of reward and action into Markov Process, Markov Process can be extended to MDP. In MDP,
the immediate reward obtained at the future depends not only on the current state but also on the action
that leads to the future state. An MDP can usually be represented by a five-tuple (S , A, P,R, γ), where
S represents a set of state space of an environment. A represents the set of actions the agent can choose
from. P is a transition probability function P(st+1|st, at),specifying the probability that the environment
will transition to state st+1 ∈ S if the agent takes action a ∈ A in state s ∈ S . R represents the reward
function where rt+1 = R(st, st+1) is a reward received for taking action at at state st and transfer to the
next state st+1. γ represents the cumulative reward discount coefficient. In MDP, the agent chooses an
action at according to the policy π(at|st) at state st. The environment receives the action, produces a
reward rt+1 and transfers to the next state st+1 according to the transition probability P(st+1|st, at). The
objective of RL is to find theoptimal policy π∗ for the agent that maximizes the cumulative reward,

However, the agent in MDP needs to have the ability to fully perceive the external environment,
that is, the agent needs to obtain global information about the external environment. In the real world,
agents usually cannot get the information of the external environment immediately, which makes the
agent only make decisions when part of the environment is observable, that is, the agent can only
obtain part of the observation information from the external environment, but not the whole observation
information. Based on this, partially observable markov decision process (POMDP) is proposed.

POMDP can usually be represented by an octuple (n, S , A,Ω, P,O,R, γ), where n represents the
number of agents, S represents the state space, A = [A1, A2 · · · , An represents the set of actions of
agents. Ω = [O1,O2 · · · ,On represents observations available to agents. P is the probability distri-
bution of the agent’s alternative actions at a certain moment. O is the observation function, which
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Algorithm 1 SARSA
1: Initialize Q(s, a) arbitrarily
2: Repeat (for each episode):
3: Initialize s
4: Choose a from s using policy derived from Q
5: Repeat (for each step of episode):
6: Take action a, observe r,s

′

7: Choose a
′

from s
′

using policy derived from Q
8: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)]
9: s← s

′

;a← a
′

10: until s is terminal

describes the probability distribution of observation information that the agent may obtain under the
given action and result state. Ri : S × A1 × · · · × An → S ′ represents the reward that the agent can get
from the environment after deciding on an action. γ represents the cumulative reward discount coef-
ficient. Markov games also have Markov properties, the next state and reward are only related to the
current state and the current joint action. In multi-agent reinforcement learning (MARL), each agent
independently learns the optimal behavior strategy πi : S → Ai according to its goal – maximizing its
own long-term discounted return.

SARSA (State action reward state action) is a traditional RL method, representing the current state
s, action a, reward r and the next step s′ and a′ respectively. We not only need to know the current s, a,
r, but also the next step s′ and a′. The action decision of SARSA is based on the Q table, which makes
decisions based on the Q value in the Q table. The pseudo code of the SARSA algorithm is shown
in Algorithm 1, where α is the learning rate. The SARSA(λ) is an improved version of SARSA. The
main difference between the two is that after each take action gets the reward, SARSA only updates
the previous step Q(s, a), and SARSA(λ) updates the step before the reward. The closer the step to the
reward, the more important the step is (the attenuation is controlled by the parameter λ).

2.3. Attentional mechanism

When humans look at the big picture, they usually notice the most attractive part at first glance. The
attention mechanism is a bionic of the human visual attention mechanism, and its essence is a resource
allocation mechanism [22]. The physiological principle of the attention mechanism is that the human
eye only needs to scan the global image quickly to find the target area that needs attention in the image
and allocate more attention to the target area, so as to obtain more detailed information and suppress
other invalid information.

In recent years, the self-attention mechanism has received a lot of research and application in the
field of computer vision [23, 24]. Unlike the standard attention mechanism, it focuses attention on
itself, extracts more feature information from the input, and using the “dynamic” attention mechanism
to generate different connection weights, so as to capture the relationship itself. This paper uses the
self-attention mechanism to improve the efficiency and accuracy of model processing. Please refer to
Chapter 4 for details.
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3. Coalitional negotiation game

To reflect negotiation dynamics of various cooperative tasks in practice, this work propose a coali-
tional negotiation game. This game is based on the scenarios of weighted voting game. Following the
protocol widely-used in the negotiation domain [25–27], each round of coalitional negotiation game is
divided into two stages: proposal and response stage.

In the proposal stage, the player randomly selected by the system first proposes the coalition pro-
posal with the payoff distribution between those potential members. The proposed coalition scheme
must include the proposer and the total weight of the coalition members exceeds the threshold Q. In
addition to the coalition proposal, players are allowed to send a language message, which we will
explain later. Note that all information in the game like weights, exchanged proposals and language
messages of all players, the thresholds, weights, and proposer numbers are made public.

The second stage is the response stage. After receiving the proposal, each member of the coalition
can choose to agree or disagree according to his consideration on the situation. Only when all coali-
tion members reach agreement, the proposal can be approved, and the total payoff will be distributed
according to the payoff distribution scheme, and the game is over. Otherwise, the proposal is rejected,
and no payoff is given. The game will continue until any agreement is settled or the maximum round
is reached.

Sharing the information and goals between each other through communication is essential to suc-
cessfully complete the negotiation. In order to study communication on negotiation, two information
channels can be used by players. One is the traditional proposal channel, which is used to directly
transmit the potential coalition and distribution of payoff. To be exact, the chosen player i(i ∈ S )
proposes a coalition S (S ∈ N), and w(S ) =

∑
i∈S wi ≥ Q. The payoff distribution scheme p⃗ satisfies:

p⃗ ∈ Rn
+, supp(p⃗) = S , and

∑
i∈S pi = r. The benefit r obtained by agent i in the negotiation is related to

its own income pi in the payoff distribution scheme p⃗, the discount factor γ and the rounds m used to
reach the negotiation, ri = pi × γ

m.
Another one for communicating information is the language channel. Players in the game can use

the language channel to transmit character string to communicate in the form of cheap talk [28]. Cheap
talk has two key attributes, one is that it is non-binding, and the other is its unverifiable nature, which
means that the information sent and received through the language channel will not be enforced and
may be a lie. In the negotiation game we specify that the number of symbols that can be used by the
agent in the language channel is 5 (characters 0 to 4), and the length of the language message that
the agent can generate is 3. Such a setting not only ensures that agents can communicate with enough
language symbols, but also avoids the problem that too many characters may make it difficult for agents
to learn and use. The process of negotiation between agents is shown in Figure 1.

The experiments are conducted in an online negotiation environment ONECG [29], which supports
well the underlying coalitional negotiation games. The visual interface of the ONECG environment
is shown in Figure 2. In the negotiation environment, we can easily configure the coalition game
specifications, and quickly develop a new agent for negotiation through well-defined APIs. Moreover,
when negotiating, agents can not only exchange offers, but also communicate in natural language.
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Figure 1. An overview of the negotiation course. In the first stage of the game, an agent
starts to make proposals. Its proposal consists of two parts: payoff distribution represented
by blue and language information represented by yellow. All players can receive proposals.
If a player’s income is 0 in the payoff distribution, the proposed coalition of the agent does
not include that player. If all the players in the coalition accept the offer, the agreement is
reached and the negotiation at this stage ends. Otherwise, negotiations will continue (within
the prescribed round of consultations). Note that players who are not included in the offer
coalition will only see the offer message and will not have the right to vote.

4. Agent architecture and learning

We propose a DALSL method for constructing coalitional negotiation game agents, and employ
MARL method to train it. Each agent uses SARSA(λ) [30] to learn a strategy independently. The
neural network — long short term memory network (LSTM) is used to learn Q function in SARSA(λ)
to reduce the difficult state space to a manageable number of features and increase the agent’s ability
to deal with long-term memory, because the negotiation information of the previous round is also very
important for the future moves, and deep learning has shown impressive performance in a number of
tasks [31–33]. At the same time, we have added attention mechanism for the agent to further improve
the negotiating ability of the agent. The weights of the network are optimized by Adam optimizer with
default parameters. The algorithm structure is shown in Figure 3.

In the process of interacting with the environment, the SARSA(λ) algorithm will obtain the state s
at the current moment, the action a, the reward r, the state s

′

and the action a
′

in the next step t + 1.
The model will use a trajectory matrix E to record each step of each round, and store these parameters
et = (s, a, r, s

′

, a
′

). As an upgraded version of the SARSA algorithm, the SARSA(λ) algorithm can
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Figure 2. Screenshot of coalitional negotiation dynamics.

learn how to obtain a higher reward value more efficiently , because the SARSA algorithm only updates
the step before the reward value, while the SARSA(λ) algorithm updates the step before the reward
value. The value of λ ranges from 0 to 1. If the value of λ is 0, SARSA(λ) is equivalent to SARSA, and
only the last step experienced before obtaining the reward value is updated; if the value of λ is 1, the
SARSA(λ) algorithm updates all experiences before the reward value is obtained Steps. The trajectory
matrix E is used to store the steps taken to obtain rewards, so when the new round starts, E needs to be
cleared.

SARSA(λ) uses the ϵ-greedy strategy when choosing actions. The ϵ-greedy strategy is a combina-
tion of random and greedy, which balances exploration and utilization. ϵ-greedy strategy specifically
refers to the fact that when the agent chooses an action at time t, it does not completely follow the
greedy strategy to execute it, but has the probability of ϵ to randomly select the action, and the proba-
bility of 1-ϵ selects the action according to the greedy strategy.

The algorithm pseudo code of the DALSL model is shown in Algorithm 2. Two networks are set
up in the model, one is the current network Q, the other is the target network Q̄, the two networks have
the same structure. After the target network is introduced, the target Q value remains unchanged for a
period of time, thus reducing the correlation between the current Q value and the target Q value to a
certain extent, so as to improve the stability of the algorithm. In SARSA(λ), the update of the Q value
relies on the target Q value calculated using the reward value and the Q table. Therefore, the model
uses the target Q value as a label and defines the loss function of the network so that the current Q
value approaches the target Q value. The loss function is the mean square error of the current network
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(a) Overall structure diagram.

(b) The structure of network in Figure (a).

Figure 3. Algorithm structure.
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Algorithm 2 DALSL
Initialize replay memory D
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̄ with weights θ̄ = θ

1: For episode = 1, M do
2: E(s, a) = 0, for all s ∈ S , a ∈ A(s)
3: Initialize environment state s1

4: For t = 1, T do
5: Compute LSTM output ϕt = ϕ(st)
6: With probability ξ select a random action at

7: Otherwise choose at from ϕt using policy derived from Q
8: Execute action at and observe reward rt , state st+1

9: Store transition (st, at, rt, st+1, at+1) in D and E
10: Get all transitions (s, a, r, s

′

, a
′

) from D
11: Encode s, s

′

into ϕ, ϕs′ with LSTM ϕ
12: Set y = r + γQ̄(ϕs′ , a

′

; θ̄)(1 − d)
13: Set E(s, a) = λE(s, a)
14: Perform a gradient descent step on E(s, a)[(y − Q(ϕs, a; θ))2] with respect to the network

parameters θ
15: End for
16: Reset D, Q̄ = Q
17: End for

Q and the target network Q̄:

L(θ) = Es,a,r,s′ ,a′E(s, a)[Q(s, a|θ) − y]2 (4.1)

where, y = r + γQ̄(s
′

, a
′

|θ̄). θ is the current network parameter, Q(s, a|θ) represents the output of
the current network, used to evaluate the value function of the current state action pair. θ̄is the target
network parameter, Q̄(s

′

, a
′

|θ̄) represents the output of the target network, which is used to calculate
the target Q value. The parameter update of the target network Q̄(s

′

, a
′

|θ̄) lags behind θ.
The initial input required for model training is the basic configuration parameters of WVGs, includ-

ing the weight −→w = {w1,w2, ...,wn} ∈ R
n of the agents and the threshold Q needed to reach the coalition.

In the model, the action set of the proposed agent consists of two parts. The first part is the payoff dis-
tribution action set. The action set of the payoff distribution part is n-tuple −→p = {p1, p2, ..., pn}, where
−→p ∈ N0 and

∑
i∈S pi = r. According to the game setting, the coalition S is composed of agents

whose payoff in the payoff distribution is not zero, that is to say, S = {i|pi > 0}. The second part is
the language message action, which is a sequence of prescribed language symbols (y1, y2, y3), where
yi ∈ {0, 1, 2, 3, 4}.

The input s obtained by LSTM at each time step t can be divided into two parts, one is the payoff
distribution sp of the agent, and the other is the language messages sl of the language channel. First,
we use the embedding table to convert the two inputs into dense vectors. Although both inputs are
numbers, the meaning of payoff distribution and language messages is not the same, so the two inputs
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correspond to two embedding tables respectively. The LSTM is then used to encode each input se-
quence, and each input sequence still corresponds to an LSTM followed by the attention mechanism,
and the result is two fixed-size vectors. Therefore, the output of the LSTM network is the input of the
attention mechanism. This article uses the following formula to calculate the attention mechanism:

x
′

= so f tmax(
xQxT

K
√

dk
)xV (4.2)

As shown in Figure 3(b), the structure of the attention mechanism is divided into three branches from
top to bottom, which are the three features xQ, xK and xV obtained after convolution operation. Then
transpose the obtained xQ, use the dot product operation and xK to calculate the similarity to get the
weights, and then use the softmax function to normalize the weights to make the weights of important
elements more prominent. The weight and the corresponding key value xV are dot-producted to get
the output of the final attention mechanism x

′

. The factor
√

dk in formula (4.2) is the dimension of the
column vectors in the input xQ and xK , which mainly plays a role of adjustment to avoid the problem
of excessive dot product results. If the dot product result is too large, the Softmax function may
enter a non-gradient area. Finally, connect the obtained two vectors and pass through the multi-layer
perceptron to get the action state value of the agent at the timestep t for the agent to select the action.

Each DALSL agent is independent, and trained to obtain a higher reward value as the only goal.
Each agent learns to map the observation results of the environmental state to action decisions. Agents
use RL method to update their strategies by interacting with other agents in the environment, and
eventually learn an appropriate behavior strategy.

5. Experiment

5.1. Experimental setup

Our experiment was based on a WVG, with three agents participating in each game. In the experi-
ment, the maximum negotiation round of each negotiation is up to 20, and the discount factor is 0.98
(often used in negotiation to reflect the value of time by reduction of the utility over time) [26]. Ex-
periment configurations are based on a Gaussion distribution over underlying weighted voting games.
Each sample generated by this distribution is indicated by the weight vector −→w and the threshold Q.
The sampled set are divided them into training set and testing set. In each group of experiments, we
train the agent for 100,000 games, and then evaluate the agent on the test set.

Because designing an agent for every coalitional negotiation game is difficult and time-consuming,
We have designed two types of three general negotiation agents as benchmarks. One is based on RL
types of agents, proposed by Yoram Bachrach et al. [18]. It is the first time that a deep RL agent is used
to solve the team formation negotiation problem in cooperative game theory. We implemented it and
named it Bachrach agent. This agent focuses on solving the team formation problem in the negotiation
and ignores the communication problem in the negotiation. We improves the Bachrach agent so that it
can use the language channel and use the specified language symbols in the negotiation. The improved
agent is named Bachrach+ agent.

The other two agents are of handcraft type. We use two baselines to design handcrafted agents,
one is the weighted-proportional agent and the other is the Shapley-proportional agent. For a given
game (−→w ,Q, r), two handcrafted agents randomly select a compliant coalition S . The main difference

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4592–4609.



4603

Table 1. Average payoff statement of each agent in the negotiation.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
DALSL agent 31.01 31.57 35.1 34.71
Bachrach+ agent 26.75 – – 28.39
Shapley-proportional agent – 25.69 – 26.69
weighted-proportional agent – – 20.79 21.81

between the two handcrafted agents is the payoff distribution in the proposed strategy. The payoff
distribution of the coalition members of the weight-proportional agent is pi = (wi/

∑
j∈S w j)× r (where

wi is the weight of the agent i), and the payoff distribution of the coalition members of the Shapley-
proportional agent is pi = (ϕi/

∑
j∈S ϕ j) × r (where ϕi is the Shapley value of agent i). In addition

to payoff distribution, the proposed strategy also includes language messages, but handcrafted agents
cannot freely negotiate with language characters using language channels like RL-based agents, and
can only use predefined languages. Therefore, we set the language strategy of the handcrafted agent to a
fixed language message. For the acceptance strategy, we compare the payoff offered to the handcrafted
agent in the proposal with the payoff pi that the handcrafted agent would expect to get in the team.
gi = ri − pi represent the difference between the quotation received by the handcrafted agent and the
payoff it expects to obtain. A positive value of gi means that the handcrafted agent is getting more
payoff than they expected, and a negative value of gi means that the handcrafted agent is getting less
payoff than they expected. The probability of a handcrafted agent accepting an offer is σ(c·gi), whereσ
represents the logical function σ(x) = 1

1+e−x , where c is a constant that controls the range of gi between
-1 and 1. Therefore, when the quotation obtained by the handcrafted agent is equal to its expected
value, the handcrafted agent will have a half probability of accepting the quotation.

5.2. Comparison with other agents

Experimental results will be reported in this section. The first three groups of experiments all used
two DALSL agents to negotiate with other types of agents. Experiment 1 is for DALSL agent to nego-
tiate with Bachrach+ agent, Experiment 2 is for DALSL agent to negotiate with Shapley-proportional
agent, and Experiment 3 is for DALSL agent to negotiate with weighted-proportional agent. In ad-
dition, this section sets up Experiment 4 to conduct an agent random negotiation experiment, that is,
randomly select three of the four agents to negotiate to evaluate the negotiation ability of DALSL agents
as a whole. The experimental results are shown in Table 1. The average payoff obtained by the DALSL
agent is 15.93% higher than the Bachrach+ agent, 22.89% higher than the Shapley-proportional agent,
and 68.83% higher than the weighted-proportional agent. We carried out the Mann-Whitney U test on
the experimental results, and the test results showed that the difference was significant at the p < 0.005
level. It can be seen that the DALSL agent has gained a clear advantage in the negotiation.

The proposal of the weighted-proportional agent is more likely to be accepted, but the payoff is
less. In the game where the weight −→w = (1, 1, 2) and the threshold Q = 3, the proposal proposed
by the weighted-proportional agent may be (20, 20, 50), (33, 0, 66), (0, 33, 66). The proposal proposed
by the Shapley-proportional agent may be (16, 16, 67), (0, 20, 80), (20, 0, 80). It can be found that
when the weighting-proportional agent i’s weight is wi = 2, its proposal is easier to accept because it
“sacrifices” its own payoff. When the weighting-proportional agent i’s weight is wi = 1, its proposal
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Figure 4. The rounds of agreements reached between RL-based agents.

may be rejected because its own income is slightly higher. The DALSL agent accepts the proposal of
the weighted-proportional agent when it “sacrifices” its own payoff, and rejects the proposal when it is
not enough. This leads to the high acceptance rate of the weighted-proportion agent’s proposal but the
low payoff.

In addition, we examine the flexibility of the DALSL agent. We used the weighted-proportional
agent (shapley-proportional agent) to train the DALSL agent, but used shapley-proportional agent
(weighted-proportional agent) in the evaluation process. This obstacle significantly reduces the av-
erage payoff obtained by the DALSL agent in negotiations. However, even in this case, the average
payoff obtained by the DALSL agent is still 23.68% higher than the handcrafted agents (p < 0.005).

DALSL agent may be sensitive to the initial parameter configuration or the value of hyperparameters
during learning. Therefore, we selected robust parameters for the DALSL agent after conducting
multiple experiments. Even when the interference learning rate and hidden layer size reach ± 20%, the
DALSL agent performs better than handcrafted agents in the same statistical sense.

The experimental results show that the DALSL agent can not only reach a reasonable negotiation
agreement, but also superior to some other agents. Although the performance of the DALSL agent may
be inferior to more carefully designed handcrafted agents, the DALSL agent has good generalization,
and the generated strategies also have a certain degree of flexibility. Moreover, our method provides a
way to construct automated and intelligent agents.

5.3. The impact of communication on negotiations

This section uses the DALSL agent to negotiate with the three baseline agents in the case of pro-
hibiting the use of language channels, and contrasts with the content of the previous section to study
the influence of communication on the negotiation process and results.
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5.3.1. Negotiation between RL-based agents

Compared with the experiment that can use the language channel, the payoff obtained by the
DALSL agent decreased by 10.55%, and the Bachrach agent decreased by 8.69%. Although the payoff
received by the DALSL agent has fallen more, it is still 13.59% higher than the Bachrach agent.

The payoff obtained by the agent is not only related to the agreed payoff distribution, but also related
to the discount factor and the rounds used to reach the agreement. As shown in Figure 4, when the
language channel can be used, the number of rounds for the agent to reach the negotiation agreement
is significantly less.

Continue to analyze and find that the number of rounds is directly related to the coalition reached.
In negotiations that can use language channels, the proportion of small coalitions reached as high as
89.50%, while in negotiations that cannot use language channels, the proportion of small alliances
reached is only 65.75%. For an individual, since the number of agents distributing payoff in the small
coalition is less than that in the ground coalition, there is a greater probability of obtaining higher
payoff and also a greater risk of being excluded from the winning coalition.

There are two reasons for the above results. First, the coalition only needs the consent of the
members who are included in the coalition,while the agents who are excluded from the coalition do
not have the right to vote. Therefore, the achievement of a small coalition requires fewer members
to agree. Second, in one stage of the game, agents generally earn more in the small coalition than in
the ground coalition because the number of agents in the small coalition is less than the number in the
ground coalition.

5.3.2. Negotiation between DALSL agents and handcrafted agent

(a) Shapley-proportional agent (b) Weight-proportional agent

Figure 5. Scatter plot of payoff distribution reached between DALSL agents and handcrafted
agents.
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The average payoff obtained by agents in the negotiation of prohibiting the use of language channels,
the payoff obtained by DALSL agents decreased by 10.52%, handcrafted agents decreased by 8.15%,
while the payoff obtained by DALSL agents was still 39.93% higher than that of handcrafted agents

In the agreement reached, 500 samples were randomly sampled to count the payoff distribution.
The results are shown in Figure 5. The reason for random sampling is to avoid too many selected data,
which may cause confusion in the image and make it difficult to observe the results. The coordinate
axis in Figure 5 represents the payoff obtained by negotiation participants. The circular points indicate
that the negotiation is allowed to use language channels, and the triangular points indicate that the
negotiation prohibits the use of language channels. The size of the dot shape indicates the number
of times the agreement has been reached. Most of the circular points are located on the coordinate
axis,which means that in negotiations with language channels, the winning coalitions are more likely
to be minor coalitions. This result is consistent with the results obtained from the negotiation of three
RL-based agents.

Compared with the negotiation that cannot use the language channel, in the negotiation that can
use the language channel, the probability that the winning coalition is a small coalition composed of
two DALSL agents has increased significantly by 12.36%. In contrast, the probability that the winning
coalition is a small coalition composed of handcrafted agents and DALSL agents dropped by 10.17%.
Due to the use of language channels in negotiations, small coalitions are easier to be formed, and at the
same time, two handcrafted agents are more likely to be excluded from the winning coalition by the
DALSL agent. This also leads to less payoff for handcrafted agents.

Even in a game where only two DALSL agents can use the language channel, the DALSL agent
can still use the language channel to form a more favorable small coalition. At the same time, lan-
guage channel makes DALSL agents form a more stable cooperative relationship, and promotes the
cooperation between DALSL agents.

6. Conclusions

The contributions of this paper are three-fold: First, we propose a autonomous negotiation agent —
DALSL based on deep RL to perform formation task, which can outperform some handcrafted agents
and RL-based agents. Secondly, DALSL agent is completely empirically driven and can be well gener-
alized without the need for manual adjustment and manual data. Finally, the use of language channels
enables DALSL agents to achieve better performance in negotiations. In the negotiation, the use of
language channels enables RL-based agents to exchange certain information, promote the achieve-
ment of small coalitions, and shorten the negotiation process. Moreover, communication promotes
the cooperation between the DALSL agents, and makes DALSL agent form a more stable cooperative
relationship.

The success of DALSL agent opens several new research avenues, among which we consider the
following as most promising. First, it is of interest to study how team formation affects the emergent
language used during negotiation process. Then, in addition to agent-agent negotiation, human-agent
negotiation is also an important form and has a wide range of applications in our lives. Therefore
extending current work to build a reinforcement learning agent capable of dealing with human partners
using natural language is believed to further improve the value of the proposed method.
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