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Abstract: Compared with the land power grid, power capacity of ship power system is small，its 

power load has randomness. Ship power load forecasting is of great significance for the stability and 

safety of ship power system. Support vector machine (SVM) load forecasting algorithm is a common 

method of ship power load forecasting. In this paper, water flow velocity, wind speed and ship speed 

are used as the features of SVM to train the load forecasting algorithm, which strengthens the 

correlation between features and predicted values. At the same time, regularization parameter C and 

standardization parameter σ of SVM has a great influence on the prediction accuracy. Therefore, the 

improved particle swarm optimization algorithm is used to optimize these two parameters in real time 

to form a new improved particle swarm optimization support vector machine algorithm (IPSO-SVM), 

which reduces the load forecasting error, improves the prediction accuracy of ship power load, and 

improves the performance of ship energy management system. 

Keywords: ship power system; load forecasting; support vector machine; improved particle swarm 

optimization support vector machine 

 

1. Introduction  

With the advancement of intelligent ships, the degree of ship automation is getting higher and 

higher. The propulsion mode of ships is changed from main engine propulsion to electric propulsion. 

The stability of ship power system is related to the safety of ships. Ship power system has small 

capacity, complex working conditions and strong randomness of load, so the prediction of ship power 
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load will be related to the management strategy of ship power system energy tube system and the 

stability of ship power system, which is of great significance to the safety of ship power system. 

Load prediction algorithms in land power grid are relatively mature, including regression 

analysis [1–3], grey model [4–6], fuzzy prediction [7–9], autoregressive integral moving average 

model [10,11] and other traditional prediction methods. There is also random forest [12,13], support 

vector machine [14,15], expert system [16,17], artificial neural network prediction method [18–20] and 

other machine learning methods. Support vector machine load prediction algorithm with  its small 

number of sample data can solve the obvious advantages of high dimensional ship power system 

application is relatively mature. Compared with the land power system, the ship power system has the 

characteristics of equal capacity and load, complex working conditions and strong randomness of load, 

but the load of the ship power system has the same periodicity and continuity as the land power system. 

These factors will affect the existence and feasibility of the solution of the adjustable parameters of 

the prediction model [21], as well as the global existence and local convergence of the solution [22–23]. 

This paper studies the load prediction algorithm of support vector machine and the parameters such as 

temperature, water flow velocity, relative wind speed and ship speed are innovatively used as the 

training characteristic values of support vector machines, which strengthens the correlation between 

input characteristics and output load forecast value and reduces the prediction error. At the same time, 

aiming at the problem that it is difficult to select parameters when using support vector machine to 

forecast the load, particle swarm optimization algorithm is introduced to optimize parameters, which 

enhances the accuracy of ship power load forecasting algorithm. 

2. Support vector machine load forecasting algorithm 

2.1. Basic theory of support vector machine 

As a machine learning language based on statistical learning theory, support vector machine has 

strong advantages in solving problems such as small samples, nonlinearity and high dimensions [24]. 

Since the core content of support vector machine was proposed in 1992, it was initially widely used in 

pattern recognition to make decision rules with good generalization performance. Later, with the 

development of support vector machines and Vapnik introduced the insensitive loss function 𝜀, the 

support vector machine algorithm is extended to some nonlinear regression problems. The basic idea 

of SVM is to define an optimal linear hyperplane and transform the algorithm for finding the 

hyperplane into an optimization problem [25]. According to the principle of structural risk 

minimization, the actual risk is minimized, and the value of h of empirical risk and VC dimension are 

minimized [26]. 

2.2. Support vector machine regression algorithm 

Select training sample S as the training sample set for support vector machine regression 

prediction [27]: 

    𝑆 = {(𝑥1, 𝑦1), … , (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑙 , 𝑦𝑙)} ∈ 𝑅
𝑛 × 𝑅                     (1) 

In Eq (1), S represents the training sample set of the system; 𝑥𝑖 ∈ 𝑅
𝑛 represents the sample input 

information of the ship's historical power load, 𝑦𝑖 ∈ 𝑅 represents the output of the corresponding 

input, and 𝑙 is the total number of training samples in the training data set. Establish the mapping set 
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f：𝑅𝑛 → 𝑅 from the input space 𝑅𝑛 to the output R, which satisfies f(x) = y, then the regression 

function is shown in Eq (2): 

𝑦 = 𝑓(𝑥) = 𝜔 ∙ 𝜑(𝑥) + 𝑏                              (2) 

In Eq (2), 𝜔 represents the weight vector, b represents the bias of regression, 𝜑(𝑥) represents 

the mapping function of samples from low-dimensional to high-dimensional space. According to the 

theory of modern statistics, the regression prediction error of support vector machine is mainly caused 

by empirical risk and ∥ ω ∥2. The total error can be expressed as the equation shown in Eq (3): 

𝑅(𝜔) =
1

2
∥ 𝜔 ∥2+∑ 𝑒(𝑓(𝑥𝑖) − 𝑦𝑖)

𝑙
𝑖=1                          (3) 

In Eq (3), e () is called loss function, which can be specifically expressed as Eq (4): 

(𝑓(𝑥𝑖) − 𝑦𝑖) = {
0, |𝑓(𝑥𝑖) − 𝑦𝑖| < 𝜀

|𝑓(𝑥𝑖) − 𝑦𝑖| − 𝜀, 𝑜𝑡ℎ𝑒𝑟
                       (4) 

In this equation, 𝜀  is called insensitive function. When using support vector machine for 

regression prediction, if you want to improve its prediction accuracy, you only need to minimize the 

value of R(ω) within the range of constraints. According to the structural risk minimization criterion, 

the risk minimization of support vector machine load forecasting algorithm can be expressed as: 

𝑚𝑖𝑛[𝑅(𝜔)] = 𝑚𝑖𝑛 [
1

2
∥ 𝜔 ∥2+∑ 𝑒(𝑓(𝑥𝑖) − 𝑦𝑖)

𝑙
𝑖=1 ]                    (5) 

when fitting the regression model, in order to enhance the accuracy of the regression model, it is 

necessary to consider the possible errors in the calculation process of the model. To realize the 

expression of prediction model error by introducing two relaxation factors ξ𝑖, ξ𝑖
∗
 , then the loss 

function of Eq (5) can be expressed as Eq (6): 

𝑚𝑖𝑛[
1

2
∥ 𝜔 ∥2+ 𝐶∑𝑒(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

] 

𝑠. 𝑡. {

𝑦𝑖 −𝜔 ∙ 𝜑(𝑥) − 𝑏 ≥ 𝑒 + 𝜉𝑖
𝜔 ∙ 𝜑(𝑥) + 𝑏 − 𝑦𝑖 ≥ 𝑒 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

                            (6) 

In Eq (6), the first half represents the generalization ability of the model, and the latter half is used 

to reduce the error in the training process. C (c > 0) is the penalty parameter of regression error, which 

is called regularization parameter. The minimum solution problem shown is a typical optimization 

problem with inequality constraints. When solving the minimum value, we can consider transforming 

it into a dual problem by introducing Lagrange function. By introducing Lagrange multiplier 𝛼𝑖 , 𝛼𝑖
∗, 

Lagrange equation as shown in Eq (7) can be established: 
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𝐿(𝜔, 𝜉, 𝜉∗, 𝛼𝑖, 𝛼𝑖
∗, 𝜆𝑖) =

1

2
∥ 𝜔 ∥2+ 𝐶∑(𝜉 + 𝜉∗)

𝑙

𝑖=1

−∑𝛼𝑖((𝑒 + 𝜉𝑖) − 𝑦𝑖 + 𝑓(𝑥𝑖))

𝑙

𝑖=1

 

−∑ 𝛼𝑖
∗((𝑒 + 𝜉𝑖

∗) − 𝑦𝑖 − 𝑓(𝑥𝑖))
𝑙
𝑖=1 −∑ (𝜆𝑖 ∙ 𝜉𝑖 + 𝜆𝑖

∗ ∙ 𝜉𝑖
∗)𝑙

𝑖=1                (7) 

In Eq (7)，𝛼𝑖, 𝛼𝑖
∗, 𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑙. 

According to the optimal condition of Lagrange equation, there is 
𝜕𝐿

𝜕ω
= 0,

𝜕𝐿

𝜕𝑏
= 0,

𝜕𝐿

𝜕ξ𝑖
= 0,

𝜕𝐿

𝜕ξ𝑖
∗ =

0, expand and simplify the equation to obtain a set of equations shown in Eq (8): 

{
 
 

 
 
𝜕𝐿

𝜕𝜔
= 𝜔 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑙
𝑖=1 𝑥𝑖 = 0

𝜕𝐿

𝜕𝑏
= ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑙
𝑖=1 = 0

𝜕𝐿

𝜕𝜉𝑖
=𝐶−𝛼𝑖−𝜆𝑖=0

𝜕𝐿

𝜕𝜉𝑖
∗=𝐶−𝛼𝑖

∗−𝜆𝑖
∗=0

, 𝑖 = 1,… , 𝑙                     (8) 

By introducing Eq (8) into Eq (7), the dual problem of the optimization problem of Eq (9) can be 

obtained: 

𝐿𝑚𝑎𝑥 = −
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖,𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗) < 𝑥𝑖, 𝑥𝑗 > 

+∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝑦𝑖 −∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝜀 

𝑠. 𝑡.  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 = 0                               (9) 

In this equation，0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶. 

By solving the quadratic programming problem of Eq (9), we can obtain the further expression 

of the regression function f(x), which can be divided into two categories: linear optimization and 

nonlinear optimization [28]. 

When the training sample is a linear model: 

𝐿𝑚𝑎𝑥 = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖,𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗)𝑥𝑖𝑥𝑗 +∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖=1

𝑦𝑖 −∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝜀 

𝑠. 𝑡.  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 = 0                             (10) 

By further solving Eq (10), we can get: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑥𝑖∈𝑁𝑠𝑣
𝑥𝑖𝑥𝑗 + 𝑏                          (11) 

𝑁𝑠𝑣 is the set of support vectors in the regression model. 

When the regression model is nonlinear: 

When solving the regression problem of nonlinear model, we usually use a nonlinear mapping to 
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map the original training samples to the high-dimensional space, and realize the linear regression of 

training samples in the high-dimensional space. In the above process, the inner product 

operation < 𝜑(𝑥), 𝜑(𝑦) > is used in the high-dimensional space because the samples in the low-

dimensional space are mapped to the high-dimensional space, then Eq (10) can be specifically 

expressed as follows when the regression model is nonlinear: 

𝐿𝑚𝑎𝑥 = −
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖,𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖, 𝑥𝑗) 

+∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝑦𝑖 −∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

𝜀 

𝑠. 𝑡.  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 = 0                              (12) 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥)𝜑(𝑦) represents the kernel function. Then the regression model: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑥𝑖∈𝑁𝑠𝑣
𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏                        (13) 

2.3. Least squares support vector machine load forecasting model 

Least squares support vector machine (LSSVM) is a new algorithm based on support vector 

machine. The analysis shows that the process of solving SVM model is actually to solve a quadratic 

programming problem with inequality constraints. In LSSVM algorithm, the square error term is 

selected as the optimization index, and the inequality constraint in SVM algorithm is replaced by 

equality constraint, so as to convert the quadratic programming problem of SVM into the solution of 

linear model [29]. 

The basic idea of LSSVM regression is the same as that of nonlinear SVM, which maps samples 

into high-dimensional space through a nonlinear mapping, and performs linear regression on samples 

in high-dimensional space. Its basic expression is the same as that of SVM: 

𝑦 = 𝑓(𝑥) = 𝜔 ∙ 𝜑(𝑥) + 𝑏                              (14) 

Then the optimization problem of LSSVM can be expressed as Eq (15): 

minJ(𝜔, 𝑏, 𝑒) =
1

2
∥ ω ∥2+

1

2
𝐶∑𝑒𝑖

2

𝑙

𝑖=1

 

𝑠. 𝑡.  ω𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 = 𝑦𝑖 , 𝑖 = 1,… , 𝑙                        (15) 

In this equation: 𝑒𝑖 ∈ 𝑅
𝑙×1 is the regression error, R is the error vector composed of errors 𝑒𝑖. 

And C represents the regularization parameter, which is used to control the penalty degree of error in 

the regression process. 

Similarly, Lagrange multipliers 𝜆 are introduced into Eq (15), Eq (15) can be expressed as: 

𝐿(ω, b, e, 𝜆) = 𝐽(𝜔, 𝑏, 𝑒) − ∑ 𝜆𝑖
𝑙
𝑖=1 (ω𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖)                 (16) 
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For solving the minimum problem in the specified scope with constraints, the KKT condition can 

be used to obtain: 

{
 
 

 
 
𝜕𝐽

𝜕𝜔
= ∑ 𝜆𝑖𝜑(𝑥𝑖)

𝑙
𝑖=1 = 0

𝜕𝐽

𝜕𝑏
= ∑ 𝜆𝑖

𝑙
𝑖=1 = 0

𝜕𝐽

𝜕𝑒𝑖
=𝜆𝑖−𝐶𝑒𝑖=0

𝜕𝐽

𝜕𝜆𝑖
=𝜔𝑇𝜑(𝑥𝑖)+𝑏+𝑒𝑖−𝑦𝑖=0

, 𝑖 = 1,… , 𝑙                            (17) 

Eliminate ω and e in the equation, after solving the Eq (17), we can get: 

⌈𝑏
𝐶
⌉ = [0

𝐸

𝐸

𝐾+
𝐼

𝑌

]
−1

[0
𝑌
]                                  (18) 

In this equation, E = [1,1, … ,1]𝑇，𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) represents the kernel function under 

suitable conditions, I stands for identity matrix, Y=[𝑦1, 𝑦2, … , 𝑦𝑙]
𝑇 ,  then the prediction model of 

LSSVM can be expressed as: 

𝑦 = ∑ 𝜆𝑖𝐾(𝑥𝑖 , 𝑥𝑗)
𝑙
𝑖,𝑗=1 + 𝑏                               (19) 

𝜆𝑖  and 𝑏  can be solved by linear equations, 𝐾(𝑥𝑖 , 𝑥𝑗)  represents the kernel function mapping 

samples from low-dimensional space to high-dimensional space. The commonly used kernel functions 

generally include linear kernel function, RBF kernel function, polynomial kernel function, etc. 

Gaussian radial basis kernel function (RBF) is widely used in SVM regression estimation because of 

its simple expression, radial symmetry and good analytical properties [30,31]. In this paper, RBF is 

selected as the kernel function: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp [−
||𝑥𝑖−𝑥𝑗||

2

2𝜎2
]                              (20) 

In this this equation, 𝑥𝑖 represents the input vector, 𝑥𝑗 represents the center of the j-th Gaussian 

basis function, 𝜎 represents the standardized parameters that determine the width of the center point 

surrounded by the Gaussian function. ||𝑥𝑖 − 𝑥𝑗|| represents the norm of the vector (𝑥𝑖 − 𝑥𝑗), which 

can specifically represent the distance between the vector 𝑥𝑖 and the vector 𝑥𝑗. 

3. Improved particle swarm optimization support vector machine algorithm 

When using LSSVM for load forecasting, the value of C and 𝜎 will have a great impact on the 

accuracy of prediction. In order to improve the prediction accuracy of load data regression model, 

particle swarm optimization algorithm is introduced to optimize the parameters of LSSVM load 

prediction algorithm, so as to form a new improved particle swarm optimization support vector 

machine algorithm, which enhances the accuracy of prediction model [32]. 

3.1. Particle swarm optimization algorithm 

Particle swarm optimization (PSO) is a swarm intelligence algorithm that simulates the predation 

behavior of birds [33]. The algorithm searches the solution space of the problem by simulating the 
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foraging behavior of birds. Each particle in this algorithm has the function of information sharing, and 

the particle can change its position according to the fitness value in the environment. The position of 

each particle in the search space represents a feasible solution of the problem. Each particle moves in 

the search space at a certain speed, which represents the solution seeking process. The fitness value of 

the objective function of the problem is often used to judge the quality of the particle position. The 

population obtains the best particle position in the search space through multiple iterations, which 

represents the process of obtaining the optimal solution of the problem. 

Firstly, some particles are randomly generated in a space, and the scale of the example group (i.e.， 

the number of particles) and the search dimension are set. If the total number of particles is n and the 

dimension is Q [34], each particle can be expressed as 𝑥𝑖=(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑄), the corresponding 

speed can be expressed as 𝑣𝑖=(𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … , 𝑣𝑖𝑄), where 𝑖 ∈ 1,2, … , 𝑛. Each particle needs to pay 

attention to the historical optimal solution 𝑝𝑖=(𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … , 𝑝𝑖𝑄) searched by its individual iterative 

process and the the global optimal solution 𝑝𝑔=(𝑝𝑔1, 𝑝𝑔2, 𝑝𝑔3, … , 𝑝𝑔𝑄) searched by all particles 

in the population. 

In the iterative updating process of particles, the Eq (21) needs to be used to update the particle 

velocity and position in the population by PSO [35]: 

{
𝑣𝑖𝑑

𝑘+1 = 𝜔𝑣𝑖𝑑
𝑘 + 𝑐1𝜉(𝑝𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘) + 𝑐2𝜂(𝑝𝑔𝑑

𝑘 − 𝑥𝑖𝑑
𝑘)

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝛾𝑣𝑖𝑑
𝑘+1

                (21) 

In this equation: 𝑣𝑖𝑑
𝑘 and 𝑣𝑖𝑑

𝑘+1 represent the velocity of particles at time k and time k+1. 

Similarly, 𝑥𝑖𝑑
𝑘  and 𝑥𝑖𝑑

𝑘+1  represent the position of particles at that two moments. 𝜔  is inertia 

weight, c1 and c2 are learning factors, 𝜉  and 𝜂  represent random numbers evenly distributed 

between [0,1]. γ is the constraint factor when updating the position of particles, which is generally set 

to 1. 

It can be seen from Eq (21) that the speed of particles in the search space is affected by three 

factors: the first part is that 𝑣𝑖𝑑
𝑘 is the speed of particles in the previous iteration, represents the flight 

inertia of particles, and has the ability to balance local search and global search. When 𝑣𝑖𝑑
𝑘 is small, 

the global search ability of particles is weak, but the local search ability is strong. When 𝑣𝑖𝑑
𝑘 is large, 

the local search ability of particles is weak, but the global search ability is strong; The second part is 

the thinking and learning of the particle on its own flight experience, that is, the current search tendency 

of the particle is changed by the attraction of the historical optimal solution 𝑝𝑖𝑑
𝑘 to the particle in the 

flight process, in which the learning factor 𝑐1 is used to adjust the moving step of the particle to the 

historical optimal solution 𝑝𝑖𝑑
𝑘. The random adjustment of the value of 𝜉 can reduce the situation 

that particles fall into local optimization and improve the global search ability of particles; The third 

part is the "social cognitive ability" of particles, that is, the process of particles learning the flight 

experience of the whole population. This process is directly related to the global optimal solution 𝑝𝑔𝑑
𝑘 

of the population. The learning factor 𝑐2 is used to control the step size of particles flying to the global 

optimal solution 𝑝𝑔𝑑
𝑘. Affected by the random adjustment of the value of 𝜂, particles can achieve 

mutual cooperation and information sharing. Under the joint action of these three factors, particles 

constantly adjust their position and flight speed through their own flight experience and population 

information sharing mechanism, and finally reach the optimal particle position to obtain the optimal 

solution of the problem to be solved [36]. 

When 𝜔 = 0, there is no memory term in the velocity formula. The velocity formula becomes: 

𝑣𝑖𝑑
𝑘+1 = 0 + 𝑐1𝜉(𝑝𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘) + 𝑐2𝜂(𝑝𝑔𝑑

𝑘 − 𝑥𝑖𝑑
𝑘)                 (22) 
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Particles do not have inertial motion, and they do not have the ability to expand space. Particles may 

not be able to search a certain area in space. In the whole optimization process, the particle group shows 

too much local search, and does not show the ability of particle to search the whole search space [37]. 

When 𝑐1 = 0, the individual cognition term in the velocity formula does not exist, the particle 

loses the ability of self-evaluation and judgment, and retains the ability of ‘social cognition’ of the best 

position in the particle group history. 

𝑣𝑖𝑑
𝑘+1 = 𝜔𝑣𝑖𝑑

𝑘 + 0 + 𝑐2𝜂(𝑝𝑔𝑑
𝑘 − 𝑥𝑖𝑑

𝑘)                        (23) 

Particles move rapidly in the search space, and through information exchange and mutual learning 

between particles, particles can enter the new search space for optimization, and the algorithm quickly 

enters the convergence state. However, when calculating some complex problems, the optimization 

performance is not good, and the calculation result may be a local optimal value in the space rather 

than the global optimal value [38]. 

When 𝑐2 = 0, that is, the group cognitive item in the velocity formula does not exist, the particles 

cannot communicate and learn, and there is no information transmission between the entire population. 

In the entire search space, the particles are independent individuals. 

𝑣𝑖𝑑
𝑘+1 = 𝜔𝑣𝑖𝑑

𝑘 + 𝑐1𝜉(𝑝𝑖𝑑
𝑘 − 𝑥𝑖𝑑

𝑘) + 0                       (24) 

Equivalent to a certain number of particles in the search space for blind search, each particle 

immediately search results are the extreme value of each particle, so often cannot get satisfactory 

results [39]. 

When 𝑐1 = 0, 𝑐2 = 0, there is neither individual cognition nor group cognition in the velocity 

formula, only the memory part of the particle itself. 

𝑣𝑖𝑑
𝑘+1 = 𝜔𝑣𝑖𝑑

𝑘 + 0 + 0                            (25) 

The basic particle swarm optimization process is as follows: 

Step1: Initialization: randomly generate the position and velocity of particles in the D dimension 

of the problem space. 

Step2: Evaluate particles: evaluate the applicable value of q-dimensional optimization function 

for each particle. 

Step3: Update the optimal position: 1) Compare the current fitness value of the particle with its 

individual history optimal value. If it is better than 𝑝𝑖, its 𝑝𝑖 is updated to the current particle position. 

2) Comparing the current fitness value of particles with the global optimal value of population. If it is 

better than 𝑝𝑔, the global optimal solution position is updated to the current particle position. 

Step4: Update particles: Update particle velocity and position according to Eq (21). 

Step5: Stop condition: Loop back to Step 2 until the termination condition is satisfied, which is 

usually to meet the maximum iteration algebra. 

Corresponding to the above algorithm flow, the basic framework of particle swarm algorithm is 

shown in Figure 1. 
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Figure 1. The basic framework of particle swarm algorithm. 

During the operation of particle swarm optimization algorithm, the parameters affect the change 

of particle velocity and the update of particle position, and finally affect the result of particle 

optimization. The performance of particle swarm optimization algorithm mainly depends on the two 

key parts of local search and global search. When solving the actual optimization problem, it is 

necessary to balance global search and local search, and take into account the local search in the global 

search. In order to better solve this problem [40], the inertia weight 𝜔 is introduced into the flight 

inertia part 𝑣𝑖𝑑
𝑘 that affects the particle's flight speed to balance the local search and global search. 

The larger the value of 𝜔, the more particles inherit the previous speed and the faster the particle 

moves, which is conducive to avoiding falling into a local state during optimization and the global 

optimization of the algorithm. On the contrary, the smaller the value of 𝜔, the weaker the ability of 

particles to explore space, and the particles are easy to carry out rapid optimization in a local area of 

space, which is not conducive to the global optimization of particles. If the inertia weight 𝜔 is not a 

constant but a dynamic decreasing law in the process of particle iteration, the inertia weight 𝜔 of the 

particle in the search space is large in the early stage of the algorithm, and the particle can carry out 

rapid exploratory optimization in the whole search space, so that the particle approaches the area 

around the global optimal position in a short time; In the later stage of the algorithm, the inertia weight 

𝜔  of the particles is small so that the particles focus on the area around the optimal position for 

centralized mining optimization. 

In this paper, a commonly used concave function decreasing strategy is taken as shown in Eq (26) 

to make the inertia weight 𝜔 keep large enough at the beginning of particle optimization so that the 

particles can quickly approach the optimal solution. In the later stage of the algorithm, the inertia 
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weight 𝜔 is constantly reduced, so that the algorithm can be more stable and the optimization effect 

is better. 

𝜔 = 𝑚𝑖𝑛𝜔 × (
𝑚𝑎𝑥𝜔

𝑚𝑖𝑛𝜔
)

1

1+10∗
𝐶𝑢𝑟𝐶𝑜𝑢𝑛𝑡
𝐿𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡                            (26) 

In this formula:  𝑚𝑖𝑛𝜔  and 𝑚𝑎𝑥𝜔  represent the maximum and minimum values of 𝜔 

respectively. CurCount represents the current iteration number of the particle. LoopCount represents 

the total iteration number of the particle. 

3.2. Improve particle swarm optimization algorithm 

In order to avoid particle swarm optimization falling into local optimization, the average particle 

distance and fitness variance are used as evaluation indexes to reinitialize particles [41–43]. During 

particle swarm initialization, the density of particles in the space is judged by the average particle 

spacing. If the average particle spacing is less than the set value, it means that the particle distribution 

is too dense and not evenly distributed in the space. 

In the later stage of particle swarm optimization, the particle converges to a certain optimal 

solution, and the average particle spacing of the particle is small. The fitness variance is used to 

evaluate whether the particle converges to the nonlocal optimal solution. When the average particle 

spacing of the particle is small and the fitness variance is small, the particle loses its activity 

prematurely and falls into the local optimal solution. At this point, reinitialize the particles and make 

the particles search again. 

3.2.1. Average particle distance 

During the particle initialization of particle swarm optimization, the distribution of particles in 

space is random, which indicates that most particles may concentrate near a certain value and affect 

the final optimization result. In order to make the particles search the global space and prevent the 

particles from falling into the local optimal solution in the early stage, the concept of particle average 

particle distance is introduced in the process of parameter optimization with particle swarm 

optimization, which guides the distribution of the initial population of particles in the space of particle 

distribution. Its basic definition is shown in Eq (27): 

𝐷(𝑡) =
1

|𝑛||𝐿|
∑ √∑ (𝑝𝑖𝑗 − 𝑝�̅�)

2𝑄
𝑗=1

𝑛
𝑖=1                          (27) 

In this formula: n is the number of particles of the particle swarm; L is the diagonal value of the 

search space during the particle search process, which can be expressed in the program as:  𝐿 =

√(200 − 0.1)2 + (20 − 0.1)2; Q is the dimension of the particle; 𝑝𝑖𝑗 represents the coordinate value 

of the j-th dimension of the i-th particle; 𝑝�̅� represents the average of all particles in the j-th dimension. 

The average particle distance represents the distribution of particles in the search space. The smaller 

the value of 𝐷(𝑡), the more dense the particles are; On the contrary, it indicates that the particles are 

more dispersed. Through the average particle distance, the particles can more fully optimize the 

parameters in the search space. 
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3.2.2. Fitness variance 

In the process of particle iteration, the particles will approach towards the global optimal solution. 

At the initial stage of particle operation, the convergence speed of particles is fast. When the particles 

encounter the local extreme point, the particles may approach the local extreme point, resulting in the 

rapid decline of particle speed. Particle swarm optimization loses the ability of iterative evolution, and 

the algorithm falls into the local optimal solution and cannot jump out. Therefore, fitness variance is 

added to evaluate the concentration degree of particle fitness and judge the current state of particle 

population. If the number of current iterations is k, the fitness value of the i-th particle in this generation 

population can be represented by 𝑓𝑘
𝑖
（𝑖 ∈ 1,2, … , 𝑛）, 𝑓 ̿ is the current average fitness value of the 

population, which can be expressed as: 

𝑓̿ =
1

𝑛
∑ 𝑓𝑘𝑖
𝑛
𝑖=1                                    (28) 

𝜎2𝑘 is the fitness variance of the k-th generation of the population, then 𝜎2𝑘 can be defined as: 

𝜎2𝑘 = ∑ (𝑓𝑘𝑖
𝑛
𝑖=1 − 𝑓̿)2                                (29) 

Let the population fitness variance after introducing the normalization factor be 𝜎2,which is used 

to characterize the convergence degree of particles, then 𝜎2 can be defined as: 

𝜎2 = ∑ (
𝑓𝑘𝑖−�̿�

𝑓
)
2

𝑛
𝑖=1                                  (30) 

In this equation: f represents the normalized scaling factor, which is used to limit the size of 

variance, and is defined as: 

𝑓 = {
max|𝑓𝑖 − 𝑓̿| , max|𝑓𝑖 − 𝑓̿| > 1

1, other
                          (31) 

Let the population reach the global extreme point 𝑝𝑔𝑑 in the t-th generation, that is 

lim
t→∞

𝑝𝑔(𝑡) = 𝑝𝑔𝑑                                  (32) 

Obviously, if the global extremum is 𝑝𝑔𝑑, when the particle is in 𝑐2𝜂(𝑝𝑔𝑑
𝑘 − 𝑥𝑖𝑑

𝑘), that is, the 

third part of the particle flight speed update formula——the process of the particle learning the flight 

experience of the whole population, the particle will keep moving closer to 𝑝𝑔𝑑, and its individual 

extreme value p will be updated continuously. If the particle does not find a better position than 𝑝𝑔𝑑, 

the individual extreme value of the particle itself will be equal to 𝑝𝑔𝑑, that is 

lim
t→∞

𝑝𝑖(𝑡) = 𝑝𝑔𝑑                                  (33) 

The above formula shows that for any particle in the particle swarm, its final convergence position 

will be the optimal extreme value found by the whole particle swarm, and all particles will gather to 

this position. 

Let the population reach the global optimum at t-th generation, that is, 𝑝𝑔𝑑 is the global optimum, 

and each particle converges to 𝑝𝑔𝑑 under the influence of "social cognitive ability", that is, the global 
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optimum. At this time, the fitness value of the particle is 

𝑓𝑘𝑖 = 𝑓(𝑝𝑔𝑑)                                   (34) 

Therefore, the average fitness of particles is 

𝑓̿𝑘 = 𝑓(𝑝𝑔𝑑)                                   (35) 

At this time: 

𝜎2 → 𝑚𝑖𝑛                                    (36) 

 

Figure 2. Improving the process of PSO optimization algorithm. 

To sum up, in the process of particle iteration, the fitness of particles will get closer and closer, 

and the value of 𝜎2 will become smaller and smaller, which reflects the continuous aggregation of 

particles. In order to make each particle traverse the search space as much as possible and continuously 

update the global optimal solution of the population, a threshold is set in the algorithm. When the 

average particle distance 𝐷(𝑡) of the population and the fitness variance 𝜎2 are both less than the 

given threshold, it indicates that the particle has fallen into the global extreme point, the particle flight 

speed calculated from Eq (21) is very small, which makes the particle difficult to change the position 

significantly. At this time, v𝑚𝑎𝑥 is forced to update the flight velocity of particles in the algorithm, 

and the n particles in the population are mutated by v𝑚𝑎𝑥, so that particles are separated from the 

global extremum point in different directions with v𝑚𝑎𝑥, and are redistributed in all positions of the 

search space. Since the particles have memory function, the optimal position found by the particles so 
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far is still stored in memory, and then the particles will search the solution space for a new round. In 

the search process, 𝐷(𝑡)  and 𝜎2  begin to decrease again. When they are reduced to the given 

threshold, the algorithm will enter the mutation stage again. The whole evolutionary process of 

particles is to continuously search and mutate until the end of iterations to find the best position. The 

specific algorithm flow is shown in Figure 2. 

4. Case simulation and analysis 

4.1. Instance object and data processing 

Table 1. Typical load data. 

Date Time 
Average air 

temperature 

(°C) 

Flow 

velocity 

(m/s) 

Relative 

wind speed 

(m/s) 

Average 

speed 

(kn) 

Load  

power 

(kw) 

2.14 0 7.2 0.73 2.21 8.56 802 

2.14 2 7.1 0.75 2.23 8.51 821 

… … … … … … … 

2.14 23 7.6 0.82 2.45 7.84 865 

2.15 0 7.5 0.74 2.25 8.25 793 

… … … … … … … 

3.27 15 13.3 0.58 1.25 8.62 856 

… … … … … … … 

3.27 23 9.3 0.63 0.95 8.15 816 

In this paper, the 42-day load forecasting data of a 60 m Zhenyang steam ferry is selected to form 

the training data set of its load forecasting model. In the data set, weather information and load 

information on the day of ship operation are included. Weather information specifically includes 

relative flow velocity and relative wind velocity; The load information is collected every hour for the 

ship’s load power information during the daily operation time. Select the data of a certain day as an 

example to display the load data, as shown in Table 1. 

In the typical load data shown in Table 1, such as 2.14, the average temperature at time 0 is 7.2 °C, 

the flow velocity is 0.73 m/s, the relative wind speed is 2.21 m/s, the average sailing speed is 8.56 kn, 

and the total load is 802 kw. Among them, the load power of two propulsion motors is about 600kw, 

and the other loads such as ship lighting, control and pump are 202 kw in total. At time 23, the total 

demand power of the two propulsion motors is 625 kw, and the total demand power of the other ship 

lighting, control and other pump loads is 196 kw. 

Due to the differences in units of different data types, in order to avoid the adverse impact of a 

certain data on the load forecasting results due to its magnitude, it is necessary to normalize the data. 

The data in Table 1 mainly includes temperature, flow velocity, relative wind speed, average speed and 

load data. Among them, the flow velocity data are already between 0 and 1, there is no need to 

normalize them. So it is only need to normalize the parameters affecting the ship's power load such as 

average temperature, relative wind speed, average sailing speed and load value [44]. 
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1) Normalization of parameters affecting ship power load 

Typical normalization of data： 

𝑇𝑖𝑗
′ =

𝑇𝑖𝑗−𝑇𝑗𝑚𝑖𝑛

𝑇𝑗𝑚𝑎𝑥−𝑇𝑗𝑚𝑖𝑛
                                  (37) 

In this equation：𝑇𝑖𝑗
′  represents normalized data; 𝑇𝑖𝑗  represents the original data;  𝑇𝑗𝑚𝑖𝑛 

represents the lowest value of any day in the collected data; 𝑇𝑗𝑚𝑎𝑥 represents the highest value at any 

time in the collected data, 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚. 

2) Normalization of load value 

When normalizing the load data, the logarithmic processing method is adopted [45]: 

𝑥𝑖𝑗
′ = lg(𝑥𝑖𝑗)                                   (38) 

In this equation：𝑥𝑖𝑗
′ is the normalized load value; 𝑥𝑖𝑗 represents the original data at time i on 

day j, 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚. 

After collecting and processing the historical load data of ships, the load forecasting model of 

ships can be fitted and regressed. In the establishment of load forecasting model, considering the 

continuity and periodicity of load, the input training characteristics of load are summarized.  

Therefore, the selected input characteristics include the following : the average temperature, flow 

velocity, relative wind speed, average speed, load value at the same time of the previous day, the load 

value at the first two moments of the current forecast time of the forecast day, the load value at the first 

moment of the current forecast time of the forecast day, the average temperature, flow velocity, relative 

wind speed and average speed at the first moment of the forecast day. A total of 11 data are used as the 

input characteristics of training, and the output is the load value at the forecast time in the forecast day. 

4.2. Simulation and analysis of LSSVM algorithm 

When LSSVM is used for load forecasting, since the RBF kernel function has radial symmetry 

and good smoothness, and its expression is simple, especially in the case of multivariable input, it can 

also realize the mapping of input vector to high-dimensional space through nonlinear transformation 

and deal with the prediction problem of nonlinear relationship between input and output. Therefore, 

RBF is selected as the kernel function in the forecasting process [46], and two parameter values that 

the penalty parameter C and the standardized parameter 𝜎 of the kernel function need to be selected 

to carry out the regression of load data. 

In this LSSVM training, C = 50, σ = 3 are selected, and the load data of dates 2.14 to 3.26 in Table 1 

are selected as the training data set to predict the load data of dates 3.27. The results after operation 

are shown in Figure 3. In order to evaluate the prediction error of the prediction curve, the prediction 

error curve and the average relative error value are selected as the evaluation indexes, and the obtained 

curve is shown in Figure 4.  

It can be seen from Figures 3 and 4 that the maximum error can reach 8%, the minimum error is 

around 2%, and the average relative error is about 3.2% when LSSVM is used for prediction. 
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Figure 3. LSSVM load forecasting curve. 

 

Figure 4. Error curve. 

4.3. Simulation and analysis of PSO-SVM algorithm 

The particle dimension is set to be 2D, the total number of particles is 50, the number of iterations 

is 10, the value range of ω is [0.4, 0.9], the value range of parameter C is [0.1, 200], and the value 

range of σ is [0.1, 20]. Taking the error as the evaluation index of fitness and running the LSSVM 

regression model optimized by particle swarm optimization, the function curve in Figures 5 and 6 can 

be obtained. 
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Figure 5. PSO-SVM load forecasting curve. 

 

Figure 6. Load forecasting error curve. 

It can be seen from Figures 5 and 6 that the regression model obtained by using PSO algorithm 

to optimize the two parameters of LSSVM is more accurate. It can be seen from the error curve in 

Figure 6 that although the maximum error of prediction increases, the minimum error of prediction 

can reach around 0. The average relative error also shows that the improved SVM algorithm based on 

PSO can obtain better prediction results. In addition, when the prediction model is established, online 

performance and offline performance indicators are added as the evaluation basis for optimization, and 

the expression is shown in Eq (39): 

{
𝑂𝑛𝐿𝑖𝑛𝑒(1, 𝑘) =

𝑠𝑢𝑚(𝑀𝑒𝑎𝑛𝐴𝑑𝑎𝑝𝑡(1,1:𝑘))

𝑘

𝑂𝑓𝑓𝐿𝑖𝑛𝑒(1, 𝑘) = max(𝑀𝑒𝑎𝑛𝐴𝑑𝑎𝑝𝑡(1,1: 𝑘))
                   (39) 

In this equation：𝑘 = 1,2, … , 𝐿𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡. 𝑀𝑒𝑎𝑛𝐴𝑑𝑎𝑝𝑡(1,1: 𝑘) represents the average fitness 

value of each generation of particles from the first generation to the k-th generation. 
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At the beginning of optimization, the prediction error increases, the maximum average error of 

iteration can reach 2.87%, and the maximum average error of single iteration can reach 2.89%. 

Through continuous iteration, it can be seen that the error after iteration is getting smaller and smaller, 

and the average error is getting smaller and smaller, indicating that the optimization results are 

constantly optimizing. 

4.4. Simulation and analysis of IPSO-SVM algorithm 

 

Figure 7. Load forecasting curve. 

 

Figure 8. Load forecasting error. 

IPSO-SVM can not only make the space optimization of particles sufficient, but also avoid 

particles falling into local optimal solution. The simulation diagram of load forecasting is shown in 

Figures 7 and 8. 
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a) Online performance curve.                b) Offline performance curve. 

Figure 9. Online and offline performance. 

From the Figures 7–9, it can be seen that the accuracy of prediction has been further improved by 

adding the average particle distance and fitness variance to the particle swarm algorithm. At this time, 

the maximum error of prediction is about 8%, the minimum error is about 0, and the average relative 

error is reduced by about 0.013%. In the prediction iteration, the maximum average error of single 

iteration can reach 2.79%, and the maximum average error of iteration can reach 2.81%. In this paper, 

the two-dimensional optimization of two parameters is mainly realized, and the optimization range is 

small, and the effect is not obvious. It can be imagined that when the parameter dimension becomes 

larger and the optimization range becomes wider, the parameter optimization method will have more 

advantages. At the same time, it can be seen that after parameter optimization, the load prediction 

accuracy of IPSO-SVM is more accurate and the prediction error is smaller. 

5. Conclusions 

Load forecasting of ship power system is an important component of energy management of ship 

power system, which is related to the stability, security and economy of ship power system. In order 

to further reduce the error of load forecasting, the support vector machine model and method for ship 

power load forecasting are designed. The parameters such as temperature, flow velocity, relative wind 

speed and speed are innovatively used as the training eigenvalues of support vector machine, which 

strengthens the correlation between input characteristics and predicted output load and improves the 

prediction accuracy. Aiming at the problem that the regularization parameter C and the standardized 

parameter σ of the support vector machine are difficult to select, the particle swarm optimization 

algorithm is introduced to optimize. At the same time, the average particle distance and the fitness 

variance are used as the evaluation indexes. When the initial selection of particles is unreasonable and 

falls into local optimum, the particles are re-initialized to optimize to avoid particle swarm optimization 

falling into local optimum, and the accuracy of IPSO-SVM load forecasting is further improved. 
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