
MBE, 19(5): 4526–4546. 

DOI: 10.3934/mbe.2022209 

Received: 04 December 2021 

Revised: 23 January 2022 

Accepted: 15 February 2022 

Published: 04 March 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

Prediction of slope stability using Tree Augmented Naive-Bayes 

classifier: modeling and performance evaluation 

Feezan Ahmad1, Xiao-Wei Tang1,*, Jiang-Nan Qiu2,*, Piotr Wróblewski3,4, Mahmood Ahmad5,6 
and Irfan Jamil7 

1 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 
116024, China 

2 Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China 
3 Faculty of Engineering, University of Technology and Economics H. Chodkowska in Warsaw, 

Jutrzenki 135, 02-231 Warsaw, Poland 
4 Faculty of Mechatronics, Armament and Aerospace of the Military University of Technology, 

Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland 
5 Department of Civil Engineering, Faculty of Engineering, International Islamic University 

Malaysia, Jalan Gombak, Selangor 50728, Malaysia 
6 Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu 

Campus), Bannu 28100, Pakistan 
7 Department of Civil Engineering, University of Engineering and Technology Peshawar, Peshawar 

25120, Pakistan 

* Correspondence: Email: tangxw@dlut.edu.cn, qiujn@dlut.edu.cn. 

Abstract: Predicting slope stability is critical for identifying terrain that is prone to landslides and 
mitigating the damage caused by landslides. The relationships between factors that determine slope 
instability are complicated and multi-factorial, so it is sometimes difficult to mathematically 
characterize slope stability. In this paper, new Tree Augmented Naive-Bayes (TAN) model was 
developed to predict slope stability subjected to circular failures based on six input factors: cohesion, 
internal friction angle, pore pressure ratio, slope angle, unit weight, and slope angle. A total 87 slope 
stability case records obtained from published literature was used to train and test the proposed TAN 
model. According to the results of the performance indices—accuracy, precision, recall, F-score and 
Matthews correlation coefficient, the established TAN model was proven to be better at predicting 
slope stability with acceptable accuracy than other formerly developed empirical models in the 
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literature. Furthermore, the slope height was revealed as the most sensitive factor in a sensitivity analysis. 

Keywords: machine learning algorithm; Tree Augmented Naive-Bayes; sensitivity analysis; slope 
stability prediction 
 

1. Introduction  

Slope collapses are complicated natural disasters with devastating consequences [1]. Every year, 
such hazards cause significant damage to public and private property, traffic disruptions, and lives 
lost [2–4]. As a result, slope stability analyses are essential to prevent and mitigate damages, and better 
tools for slope assessment are desperately needed in the field of civil engineering. The results of the 
analysis can be used to identify collapse-prone areas. Based on this data, government agencies can 
gain a better understanding of slope failure occurrences, and the task of providing financial resources 
to build retaining structures and developing evacuation plans can be completed more efficiently [2]. 

The accurate prediction of a rock or soil slope’s stability is a difficult problem, owing to the 
slope’s dependency on multiple parameters and the difficulty in determining these values [5]. The term 
factor of safety (FoS), is commonly used to describe the stability of slopes. FoS is calculated by 
dividing the resisting forces to the driving forces. The FoS is more than one when the resisting forces 
of a slope are greater than the driving forces; when the resisting forces are less than the driving forces, 
the FoS is less than one and the slope is unstable. 

Slope stability analysis and prediction approaches have been the focus of many researchers. These 
efforts have led to development of a number of different and sophisticated formulations for 
determining FoS and also slope design approaches such as limit equilibrium methods (LEM) [6–9] 
continuum mechanics-based numerical techniques [10–12], methods based on probabilistic 
methodologies, such as variational and combination methods [13] and numerical approaches have been 
widely used as traditional methods for studying slope stability in geotechnical problems. Due of its 
computational time, LEM simulations may become inadequate. In recent years, however, a number of 
studies have been conducted to create a number of computational intelligence systems for slope 
stability analysis. 

Data mining approaches have recently proved successful in paving the way for many promising 
opportunities in slope stability [14–18] and other fields of civil engineering [19–29]. Table 1 lists some 
representative references for data mining applications for slope stability prediction. The majority of 
these studies investigated slopes subjected to circular-type failure and stability of these slopes based 
on geotechnical, geometrical and pore-water pressure parameters. In these studies, data mining 
approaches based on historical data have been used for two purposes: 1) prediction of slope FoS: the 
output of these models is the FoS, and 2) prediction of SS status: the output of proposed models shows 
the slope’s stability or instability. However soft computing techniques have proved successful in 
predicting SS; the fact that most of these techniques are black boxes. The novelty of this article is the 
development of a transparent and understandable model for predicting SS in slopes that have 
experienced circular mode failure. The TAN-based model overcomes the shortcomings of other soft 
computing techniques by producing transparent and structural model showing the relationship between 
input and output parameters. 

A critical review of existing literature suggests that TAN algorithm implementation in the analysis 
of geotechnical engineering is scarcely explored. Unlike other soft computing technologies, the TAN 
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algorithm can produce a model that is simple to understand and interpret. The main contributions of 
this paper are as follows: 1) a new TAN model is developed to predict the slope stability subjected to 
circular slope failures; 2) most probable explanation slope sites of unstable is presented; 3) to test the 
performance of the models proposed, it is applied to field data given in open source literatures; 4) 
sensitivity analysis is presented owing to know the most sensitive factor; 5) data discretization was 
conducted to reduce and elucidate the data set, develop the model quickly and easily, and acquire easily 
interpretable outputs in this study; 6) The difference in the class ratio between the sample and the 
population i.e., sampling bias in the training and test datasets is almost negligible. 

The structure of the paper is as follows: in Section 2, the materials and methods are presented. 
The construction process of the proposed prediction model is described in Section 3. Section 4 presents 
results and discussion. Finally, the concluding remarks are presented. 

Table 1. Previous references on the prediction of slope stability using soft computing 
methods. 

Reference ANN SVM/ARVM GP/GA NB RF GBM DT LR Auxiliary method

Lu and Rosenbaum [1] ●         

Yang et al. [30]   ●       

Sakellariou and 

Ferentinou [5] 
●         

Wang et al. [31] ●         

Samui [32]  ●        

Zhao [33]  ●        

Choobbasti et al. [34]  ●         

Ahangar-Asr et al. [35]    ●      LSM 

Das et al. [36]  ●         

Li, Zhao, and Ru [37]   ●       MCS 

Dong and Li [38]  ● ●  ● ●     

Manouchehrian et al. [39]   ●       

Zhang et al. [40]   ●        

Liu et al. [41]  ●         

Xue et al. [42]   ●       PSO 

Feng et al. [43]    ●      

Qi and Tang [44]  ● ●   ● ● ● ● FA 

Sari et al. [45]   ●        

Gao et al. [46]  ●        ICA 

Yuan and Moayedi [47]  ●        PSO, GA 

Sari [48]         ●  

Zhou et al. [49]  ● ●   ● ●    

*Note: ANN: artificial neural network; SVM: support vector machine; ARVM: adaptive relevance vector machine; GP: 

genetic programming; GA: genetic algorithm; NB: naive bayes; RF: random forest; GBM: gradient boosting machine; DT: 

decision tree; LR: logistic regression; LSM: least square method; MCS: Monte Carlo simulation; PSO: particle swarm 

optimization; FA: firefly algorithm; ICA: imperialist competitive algorithm. 
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2. Methodology 

2.1. Tree Augmented Naive-Bayes (TAN) 

The TAN classifier was presented as an extension of the Naive Bayes classifier. TAN allows the 
independence assumption by permitting arcs between variables. The impact of variable Xi on the class 
variable is likewise determined by the value of Xj, as indicated by an arc from variable Xi to variable 
Xj. An example of a TAN is shown in Figure 1. This approach is based on a Chow and Liu algorithm [50] 
that was proposed earlier. The method is divided into the following five steps. 

1) Given the class variable C, compute the conditional mutual information. 𝐼൫𝑋௜; 𝑋௝|𝐶൯, between each 

pair of variables, i ≠ j. 𝐼൫𝑋௜; 𝑋௝|𝐶൯ is defined as follows: 

𝐼൫𝑋௜; 𝑋௝|𝐶൯ ൌ ∑ 𝑃൫𝑋௜ ൌ 𝑥௜, 𝑋௝ ൌ 𝑥௝, 𝐶 ൌ 𝑐௟൯ ൈ 𝑙𝑜𝑔
௉൫௑೔ୀ௫೔,௑ೕୀ௫ೕ|஼ୀ௖೗൯

௉ሺ௑೔ୀ௫೔|஼ୀ௖೗ሻ௉൫௑ೕୀ௫ೕ|஼ୀ௖೗൯
௫೔,௫ೕ,௖೗ ,     (1) 

2) When the value of C is known, this function approximates the information provided by Xj about Xi 
(and vice versa). 

3) Use the variables as nodes in a complete undirected graph. Assign a weight 𝐼൫𝑋௜; 𝑋௝|𝐶൯ to each arc 

connecting Xi and Xj. 
4) Create the maximum weighted spanning tree. 
5) To convert an undirected tree into a directed tree, select a root variable and determine the direction 
of all arcs to be outward from it. 
6) Connect the classification node C to each Xi using an arc. 

The aforementioned technique, produces TANs that optimize the network’s log likelihood given 
the training data and has a time complexity of O(n2.N), where n is the number of variables and N is the 
number of data points [51]. With the same computational complexity and robustness, experimental 
data demonstrated that TANs outperformed Naive Bayes [51]. 

 

Figure 1. A simple TAN structure. 
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A sufficient threshold probability for classification must be chosen. Because there are only two 
classes in this study, a 0.5 threshold is typically used [52]. For example, “Stable” slopes, are defined 
as P(Stable|X) > 0.5. 

2.2. Database description 

Slope stability study results suggest that six parameters, {γ, c, ϕ, β, H and ru}, influence 
circular failure of a slope. They are in line with the parameters that are usually found in the 
literature [18,40,41,46,49]. Other indicators are theoretically possible, but collecting these would be a 
significant challenge before they could be used in practice. Slope height (H) and slope angle (β) are 
geometric properties of a slope that are frequently used to determine slope failure conditions. The slope 
stability rapidly reduces as the slope height rises. The slope stability decreases as the slope angle 
increases. Water infiltration reduces the shear strength of the rock and soil owing to softening. Slope 
stability suffers as a result of all of these changes. The investigations in this research were performed 
on a dataset encompassing 87 case studies that were investigated for circular critical failure 
mechanisms and were acquired from various literatures [5,31,39,53]. The input parameters are H, γ, c, 
ϕ, β and ru, whereas the output parameter is SS status. SS in the database was classified as stable or 
unstable based on whether or not considerable soil movement was observed on the slope surface. If 
there is no considerable movement of the soil in the slope surface that affects safety, the slope status 
is considered stable. Otherwise, a slope’s status is unstable. 42 of the 87 database cases are stable, 
while the rest are unstable. The SS is coded as 0 for unstable slopes and 1 for stable slopes in this study. 

ANN, ELM, and SVM algorithms were used in much previous research to predict specific FoS 
values [5,41,54,55], the FoS cannot always reflect the actual condition of the slopes, i.e., when the FoS 
exceeds one, the actual condition of the slopes is sometimes considered “unstable” (see for example 
Case Nos. 7, 17, 19 in Table A1 shown in Appendix). Therefore, rather than predicting specific FoS 
values, in the present study, the dataset was used to establish a relation among these six factors as input 
and the actual slope condition as output. 

Figure 2 depicts the cumulative percentage and frequency distributions for all of the input and 
output parameters of the mentioned database utilized in the modeling of SS of circular mode failure. 
The data points of every input parameter are distributed over its range. Table 2 shows minimum (Min) 
and maximum (Max) values, mean, and standard deviation (SD) of all six input parameters. It’s worth 
noting that each parameter’s min and max values establish the ranges in which predictions can be made. 

Table 2. Descriptive statistics of the data set. 

Parameter Min Max Mean SD 
γ 12 31.3 31.342 4.178 
c 0 150 25.080 25.347 
ϕ 0 45 27.975 9.983 
β 9.792 53 34.628 9.792 
H 3.6 511 104.017 132.879 
ru 0 0.5 0.219 0.164 
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Figure 2. Histograms of the input and output parameters considered in this study. 
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2.3. Correlation analysis 

To check the suitability of the TANs applied in this study, correlation coefficients (ρ) are 
determined to verify the strength of the relationship between the various factors (see Table 3). Given 
a pair of random variables (m,n) the formula for ρ is: 

𝜌ሺ𝑚, 𝑛ሻ ൌ ௖௢௩ሺ௠,௡ሻ

ఙ೘ఙ೙
,                               (2) 

where cov is the covariance, σm is the standard deviation of m and σn is the standard deviation of n. 
Values of |ρ| > 0.8 testify a strong correlation between m and n, values between 0.3 and 0.8 a moderate 
correlation, whereas values of |ρ| < 0.30 testify a weak correlation [56]. According to Song et al. [57], 
a correlation is considered “strong” if |ρ| > 0.8. According to Table 3, H, α, c, ϕ, β, γ, and ru are 
correlated in order of moderate to weakest. So, none of the parameters was deleted for developing the 
slope stability predicting model. From Table 3, the maximum absolute value of correlation coefficient 
is found to be 0.639 and no “strong” correlation exists between the different pairs of factors. 

Table 3. Correlation coefficients between various factors. 

Parameter γ c ϕ β H ru 
γ 1 
C 0.359 1 
ϕ 0.512 0.298 1 
Β 0.496 0.429 0.639 1 
H 0.638 0.257 0.382 0.416 1 
ru 0.059 -0.10 0.066 -0.00 -0.05 1 

2.4. Data discretization 

Data discretization is a method of converting continuous data into discrete data with a set of 
intervals. Several reasons are there to discretize data, the most significant of which are as follows [19]: 
i) simplifying the dataset; ii) make modeling simple and quick; iii) getting outputs that are simple to 
understand and iv) only discrete data can be employed in the statistical method. When no prior 
knowledge from domain experts is available, discretization methods are employed to discretize 
continuous variables. In the literature, there are various discretization methods. Among them are: equal 
frequency discretization [58], information-preserving discretization [59], error-based discretization [60], 
entropy-based discretization [61], and the one-rule discretization [62]. The six parameters employed 
are continuous. All six parameters in this study are continuous, and the data was partitioned into 
intervals with nearly the same number of cases using the equal frequency binning algorithm from the 
Waikato Environment for Knowledge Analysis (WEKA) software package. Table 4 shows the state 
intervals as well as their definitions. 
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Table 4. Intervals of input parameter values and their related states. 

Parameter Intervals/States 
γ (12,18.92)/Low (18.92,22.2) Medium (22.2,31.3)/High 
c (0,11.985)/Low (11.985,29.7)/Medium (29.7,150)/High 
ϕ (0,25.5/Low (25.5,34)/Medium (34,45)/High 
β (9.792,29.6)/Low (29.6,40.5)/Medium (40.5,53)/High 
H (3.6,20.5)/Low (20.5,89.25)/Medium (89.25,511)/High 
ru 0/Dry (0,0.5)/Wet - 
SS 0/Failed 1/Stable - 

2.5. Model evaluation criteria 

To evaluate and compare the proposed model’s performance to that of existing models in the 
literature, a number of measures were used: accuracy (Acc), precision (Prec), recall (Rec), F-score, 
and Matthews correlation coefficient (Mcc). The percentage of successfully identified samples to the 
total number of samples is called Acc. The Prec assesses the accuracy of predictions for a particular 
class (stable or unstable), whereas the Rec measures the accuracy of predictions only taking into 
account predicted values. The correlation coefficient between predicted and actual is measured by Mcc. 
The weighted harmonic mean of precision and recall is the F-score. All of the measures used are based 
on the confusion matrix. 

Table 5. Confusion matrix for slope stability classification. 

Actual condition 
Predicted condition 
Stable (1) Unstable (0) 

Stable (1) True Positive (TP) False Negative (FN) 
Unstable (0) False Positive (FP) True Negative (TN) 

The confusion matrix is shown in Table 5, where true positive (TP) refers the number of correctly 
predicted stable slopes and true negative (TN) defines the number of correctly predicted unstable 
slopes. False positive (FP) reflects the number of unstable slopes that were wrongly predicted, whereas 
false negative (FN) represents the number of stable slopes that were incorrectly predicted. The 
mathematical equations of the performance metrics are given below respectively. 

𝐴𝑐𝑐 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே
,                            (3) 

𝑃𝑟𝑒𝑐 ൌ ்௉

்௉ାி௉
 𝑜𝑟  ்ே

்ேାிே
,                          (4) 

𝑅𝑒𝑐 ൌ ்௉

்௉ାிே
 𝑜𝑟  ்ே

்ேାி௉
,                          (5) 

𝐹 െ 𝑠𝑐𝑜𝑟𝑒 ൌ ଶൈ௉௥௘௖ൈோ௘௖

௉௥௘௖ାோ௘௖
,                           (6) 

𝑀𝑐𝑐 ൌ ்௉ൈ்ேିிேൈி௉

ඥሺ்௉ାி௉ሻሺ்ேାி௉ሻሺ்ேାிேሻሺ்௉ାிேሻ
.                   (7) 

Figure 3 depicts the overall flowchart of the TAN prediction model development procedure based 
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on the preceding description. 

 

S. No.  γ (KN/m3)  … Slope stability 

1  14  …  0 

2  27  …  1 

…  …  …  … 

86*  20  …  0 

87  27.3  …  1 

Note:  0:  Unstable;  1:  Stable;  (*)  represents  the  test 

dataset. 

 

Figure 3. Flow methodology for slope stability prediction using TAN classifier. 

3. Development of proposed model 

The TAN algorithm was employed in this paper to develop a Bayesian belief network as presented 
in Figure 4. The TAN algorithm is used to create a network with 7 nodes and numerous lines. The lines 
linking the nodes represent the relationships between the variables, and the nodes represent the 
variables. Figure 4 depicts the hierarchical interactions of influencing and being affected by others 
among various slope stability parameters. The interaction of variables like “slope geometry”, 
“geomaterial shear strength”, and “water condition” results in slope stability, all of which are fully 
captured by the Bayesian belief network structure. In a Bayesian belief network, the interactional 
hierarchical relationship of variables can fully encompass the actual situation of slope stability. 

 

Figure 4. TAN structure of slope stability. 

Unit weight

Cohesion

Internal friction angleSlope angle

Slope height

Pore pressure ratioSlope stability
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Once a Bayesian belief network topology has been established, parameter learning is carried out 
to obtain the conditional probability distribution of nodes in Netica. Finally, as illustrated in Figure 5, 
the Bayesian belief network model for the SS causation analysis can be established. 

 

Figure 5. TAN model graphical result. 

4. Results and discussion 

4.1. TAN model’s performance 

The TAN model in Section 2.1 was built using historical data from 74 slope stability cases 
(unstable slope instances (38) and stable slope instances (36)). The sampling bias in the training dataset 
due to the class ratio of 38:36 for the 74 dataset is 1.05. Table 6 illustrates the training performance 
results, such as Acc, Prec, Rec, F-score, and Mcc. The accuracy of the 36 stable slope instances is 0.889 
(called Rec, which is TP / (TP + FN)). The accuracy is 0.816 for the 38 unstable slope instances (called 
Rec, which is TN / (TN + FP)). The overall Acc is around 85.1 percent, and the Mcc is 0.705, both of 
which are excellent for practical engineering. 

Table 6. Confusion matrix and associated TAN classifier training performance. 

Actual Predicted Prec Rec F-score
Stable Unstable

Stable 32 4 0.821 0.889 0.853 
Unstable 7 31 0.886 0.816 0.849 

*Note: Mcc = 0.705, Acc = 85.1%. 

Unit weight

Low
Medium
High

35.0
32.5
32.5

Cohesion

Low
Medium
High

33.8
31.7
34.5

Internal friction angle

Low
Medium
High

35.9
28.3
35.8

Slope angle

Low
Medium
High

26.9
40.5
32.6

Slope height

Low
Medium
High

34.6
32.8
32.6

Pore pressure ratio

Dry
Wet

31.3
68.7

Slope stability

Stable
Unstable

48.7
51.3
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4.2. Validation of model 

In this section, the model’s performances are validated using testing dataset that have not been 
used during the process of model’s construction. The significance of validation is to find the 
capabilities of developed model to be generalized for the conditions that have not been attended during 
training phase. As mentioned before, the testing dataset consist of 13 slope cases, which are shown in 
Table 7. It is worthwhile to mention here that the sampling bias in the testing dataset due to the class 
ratio (i.e., unstable: stable) of 7:6 for the 13 dataset is 1.16. For these 13 cases, the input parameters 
were fed into developed TAN-based models and the predicted values for SS were obtained. The method 
of SS prediction for the first case of testing dataset has been schematically indicated in Figure 6. A 
comparison of predicted and real values of SS for the testing dataset has been given in Table 7. This 
model has only one unsuccessful prediction case and its overall accuracy is equal to 92.3%. From 
practical point of view, these results show that the developed TAN classification model is useful and 
efficient. Finally, to assess the accuracy of developed TAN classification model, it was compared with 
recently developed soft computing/data mining models in the literature. Table 8 shows the results of 
this comparison. The confusion matrices were developed using Table 5, and the Prec, Rec, F-score, 
Mcc, and Acc were determined using Eqs (3)–(7) in Table 8. As can be seen, the prediction accuracy 
of proposed TAN classification model is as good as those of other reported techniques. The 
fundamental advantage of the proposed model is that it may be considered as a “white box” that clearly 
demonstrates the link between input and output parameters. As a result, users (geotechnical engineers) 
may use these models to analyze and predict slope stability quickly. 

Table 7. Results of test dataset. 

No. γ/kNm-3 c/kPa ϕ/° β/° H/m ru FoS Actual slope stability 

Predicted with 

TAN 

(P(Stable)) 

1 21.43 0 20 20 61 0.5 1.03 Unstable Unstable (1.11%) 

2 27 32 33 42.4 289 0.25 1.3 Stable Stable (77.6%) 

3 18.8 25.1 10 25 50 0.2 1.18 Unstable Unstable (26.8%) 

4 14 12 26 30 88 0 1.02 Unstable Unstable (5.16%) 

5 20 10.1 29 34 6 0.3 1.34 Stable Stable (87.8%) 

6 27 35 35 42 359 0.25 1.27 Stable Stable (77.6%) 

7 14.8 0 17 20 50 0 1.13 Unstable Unstable (32.1%) 

8 19.6 12 20 22 12.2 0.405 1.35 Unstable Stable (51.9%) 

9 27.3 31.5 29.7 41 135 0.25 1.245 Stable Stable (75.7%) 

10 20 20 36 45 50 0.25 0.96 Unstable Unstable (2.65%) 

11 28.4 29.4 35 35 100 0 1.78 Stable Stable (96.6%) 

12 24 0 40 33 8 0.3 1.58 Stable Stable (96.4%) 

13 20 0 36 45 50 0.5 0.67 Unstable Unstable (1.48%) 
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Unit weight

Low
Medium
High

   0
 100

   0

Cohesion

Low
Medium
High

 100
   0
   0

Internal friction angle

Low
Medium
High

 100
   0
   0

Slope angle

Low
Medium
High

 100
   0
   0

Slope height

Low
Medium
High

   0
 100

   0

Pore pressure ratio

Dry
Wet

   0
 100

Slope stability

Stable
Unstable

1.11
98.9

 

Figure 6. A schematic example of SS prediction. 

Table 8. Comparative performance evaluation of the test set. 

Model Actual 
Predicted 

Acc (%) Mcc Prec Rec F-score Reference 
Stable Unstable 

SVM 
Stable 21 1 

73.1 0.541 
0.618 0.955 0.750 

Zhou et al. [49] 

Unstable 13 17 0.944 0.567 0.708 

ANN  
Stable 21 1 

82.7 0.684 
0.724 0.955 0.824 

Unstable 8 22 0.957 0.733 0.830 

RF 
Stable 21 1 

80.8 0.655 
0.700 0.955 0.808 

Unstable 9 21 0.955 0.700 0.808 

GBM 
Stable 21 1 

86.5 0.746 
0.778 0.955 0.857 

Unstable 6 24 0.960 0.800 0.873 

NB 
Stable 7 1 

84.6 0.675 
0.875 0.875 0.875 

Feng et al. [43] 
Unstable 1 4 0.800 0.800 0.800 

RF 
Stable 8 1 

83.3 0.671 
0.800 0.889 0.842 

Lin et al. [63] 

Unstable 2 7 0.875 0.778 0.824 

SVM 
Stable 4 5 

66.7 0.372 
0.800 0.444 0.571 

Unstable 1 8 0.615 0.889 0.727 

NB 
Stable 3 6 

55.6 0.124 
0.600 0.333 0.429 

Unstable 2 7 0.538 0.778 0.636 

GSA  
Stable 8 1 

88.9 0.778 
0.889 0.889 0.889 

Unstable 1 8 0.889 0.889 0.889 

TAN 
Stable 6 0 

92.3 0.857 
0.857 1.000 0.923 

Present study 
Unstable 1 6 1.000 0.857 0.923 

*Note GSA: Gravitational search algorithm; TAN: tree augmented naive bayes; Mcc: Matthews correlation coefficient. 

4.3. Causal inference 

System fault diagnostics is also another useful application of the Bayesian belief network. The 
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bidirectional reasoning technology of the Bayesian belief network can quantify not only the probability 
of a system failure under combined fault conditions, as well as the posterior probabilities of different 
components under the system fault condition, allowing users to quickly ascertain the most likely 
combination that caused system failure. Computational analysis becomes more intuitive and adaptable 
as a result of this. Consider the “unstable” state in “slope stability” as an example of causal inference. 
Because the evidence variable is “unstable” in this example, the status probability is 100%. As seen in 
Figure 7, using Netica’s automated updating feature, the probability of “cohesion” state “low” 
increases significantly from 33.8 to 40.6% after inputting the data. In addition, the probability of “low” 
in “internal friction angle” increases from 35.9 to 47.2%, reaching the maximum probability. In the 
absence of additional evidence, this shows that “low” grades of cohesion and internal friction angle 
are the most likely cause of “unstable” state in slope stability. 

 

Figure 7. The posterior probability when the evidence variable in slope stability is “unstable”. 

4.4. Most probable explanation  

The TAN model can be used to find the most probable explanations from sets of multiple causes 
(node states) that are likely to lead to a conclusion; Netica can be used to find the set that is most likely 
to lead to the result, and the set with the maximum likelihood will be the most probable explanation. 
Figure 8 depicts the most probable explanation cause (node state) set of “unstable” slope is {pore 
pressure ratio (ru): wet, slope height (H): low, internal friction angle (ϕ): low, slope angle (β): medium, 
cohesion (c): medium}. 
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Figure 8. The MPE when the slope stability state is “unstable”. 

4.5. Sensitivity analysis 

To examine the impact of each factor on the slope stability, a sensitivity analysis was performed 
on six input factors. Mutual information between nodes can reveal whether or not they are 
interconnected and, if so, how close they are [64]. According to the sensitivity analysis, a basic event 
with a reasonably large contribution to the probability of a resulting event makes it easier to reduce the 
probability of these basic events by taking into account effective measures, thereby lowering the 
probability of a resulting event. For sensitivity analysis, the target node “slope stability” is selected, 
and the results are displayed in Table 9. Table 9 shows that node “slope height” has the highest mutual 
info (= 0.10294), that implying the greatest impact on “slope stability”, followed by “cohesion” and 
“unit weight”, which have mutual info = 0.08706 and 0.06945, respectively. 

Table 9. Sensitivity analysis of “slope stability”. 

Node H c γ ϕ β ru 
Mutual info 0.10294 0.08706 0.06945 0.06403 0.00589 0.00262 
Percent 10.3 8.71 6.95 6.41 0.589 0.263 
Variance of beliefs 0.0341049 0.0293855 0.0235044 0.0217402 0.0020344 0.0009074

5. Conclusions 

In this study, TAN model was trained and tested using a circular mode failure slope stability 
database acquired from the literature to predict slope stability based on the input variables such as γ, c, 
ϕ, β, H and ru. The following are the major findings of this study: 
1) The results obtained from TAN modeling suggest that the TAN model has an appropriate capability 
to accurate prediction of the SS for circular slip failure. The TAN-based model also gives improved 
performance than other models (i.e., SVM, RF, NB) proposed in literature. 
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2) Results of sensitivity conclude that the slope height (mutual info = 0.10294) is the main important 
parameter when the TAN-based model is selected for prediction of SS for circular mode failure for 
this dataset.  
3) The “most probable explanation” set of “unstable” slope is {unit weight (γ): medium, pore pressure 
ratio (ru): wet, slope height (H): low, internal friction angle (ϕ): low, slope angle (β): medium, cohesion 
(c): medium}. This is quite compatible with engineering judgment and well matched. 

Follow-up research will look at the rationality of the TAN model as well as other parameters such 
as rainwater infiltration that could lead to slope instability, in order to develop a more accurate and 
comprehensive model. Since the TAN model is a probabilistic model, it requires more detailed and 
extensive basic data to improve its reliability. Furthermore, because the influencing slope stability 
parameters in reality are greater than that considered in this study, and as the TAN model is also 
appropriate for the development of a larger and more complex slope stability analysis model, the model 
can be expanded to a more sophisticated model that takes into account more parameters such as applied 
seismic acceleration, depth of rock, soil type, and rainfall characteristics. 
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Appendix 

Table A1. Dataset used to construct and validate the model. 

No. γ/kNm-3 c/kPa ϕ/° β/° H/m ru FoS SS 

1 14 11.97 26 30 88 0.45 0.625 0 
2 27 37.5 35 37.8 320 0.25 1.24 1 
3 12 0 30 35 4 0 1.46 1 
4 22.4 10 35 45 10 0.4 0.9 0 
5 21 35 28 40 12 0.5 1.43 1 
6* 20 10.1 29 34 6 0.3 1.34 1 
7 27 40 35 47.1 292 0.25 1.15 0 
8* 28.4 29.4 35 35 100 0 1.78 1 
9* 27.3 31.5 29.7 41 135 0.25 1.245 1 
10 22 20 22 20 180 0.1 0.99 0 
11 22.4 10 35 30 10 0 2 1 
12 27.3 10 39 41 511 0.25 1.434 1 
13 19 30 35 35 11 0.2 2 1 
14 27.3 10 39 40 470 0.25 1.418 1 
15* 14 12 26 30 88 0 1.02 0 
16 19.1 10.1 10 25 50 0.4 0.65 0 
17 18.7 26.4 15 35 8.2 0 1.11 0 

Continued on next page
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No. γ/kNm-3 c/kPa ϕ/° β/° H/m ru FoS SS 
18 20 0 36 45 50 0.25 0.79 0 
19 22 20 22 20 180 0 1.12 0 
20* 19.6 12 20 22 12.2 0.405 1.35 0 
21 16 70 20 40 115 0 1.11 0 
22 19 11.7 28 35 21 0.11 1.09 0 
23 21 45 25 49 12 0.3 1.53 1 
24 20 20 36 45 50 0.5 0.83 0 
25 18.8 30 20 30 50 0.1 1.46 1 
26* 14.8 0 17 20 50 0 1.13 0 
27* 27 35 35 42 359 0.25 1.27 1 
28 20 0 24.5 20 8 0.35 1.37 1 
29 18 24 30.2 45 20 0.12 1.12 0 
30 25 46 36 44.5 299 0.25 1.55 1 
31* 27 32 33 42.4 289 0.25 1.3 1 
32 22 0 36 45 50 0 0.89 0 
33 18.8 20 10 25 50 0.3 0.97 0 
34 18.8 25.1 20 30 50 0.2 1.21 0 
35 27.3 10 39 40 480 0.25 1.45 1 
36 27.3 16.8 28 50 90.5 0.25 1.252 1 
37 20 40.1 30 30 15 0.3 1.84 1 
38 18.8 14.4 25 20 30.6 0 1.88 1 
39 21.5 6.9 30 31 76.8 0.38 1.01 0 
40 14 11.97 26 30 88 0 1.02 0 
41 26 150 45 50 200 0 1.2 1 
42 25 46 35 46 432 0.25 1.23 1 
43 18.5 12 0 30 6 0 0.78 0 
44 18 45 25 25 14 0.3 2.09 1 
45 22.4 100 45 45 15 0.25 1.8 1 
46 20.6 16.2 26.5 30 40 0 1.25 0 
47 25 46 35 50 284 0.25 1.34 1 
48 18.8 20 20 30 50 0.3 1 0 
49 21 20 40 40 12 0 1.84 1 
50* 18.8 25.1 10 25 50 0.2 1.18 0 
51 23.47 0 32 37 214 0 1.08 0 
52* 21.43 0 20 20 61 0.5 1.03 0 
53 18.5 25 0 30 6 0 1.09 0 
54 31.3 68 37 49 200.5 0.25 1.2 0 
55 28.4 39.2 38 35 100 0 1.99 1 
56 18.8 14.4 25 20 30.6 0.45 1.11 0 
57 27.3 14 31 41 110 0.25 1.249 1 
58 31.3 68 37 46 366 0.25 1.2 0 
59 20 40.1 40 40 10 0.2 2.31 1 

Continued on next page



4546 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4526-4546. 

No. γ/kNm-3 c/kPa ϕ/° β/° H/m ru FoS SS 
60 21.8 8.6 32 28 12.8 0.49 1.03 0 
61 18.8 30 10 25 50 0.1 1.4 1 
62 18.84 0 20 20 7.62 0.45 1.05 0 
63 18.8 10.4 21.3 34 37 0.3 1.29 0 
64 20.4 24.9 13 22 10.6 0.35 1.4 1 
65 27 32 33 42.6 301 0.25 1.16 0 
66 22 0 40 33 8 0.35 1.45 1 
67 21.4 10 30.34 30 20 0 1.7 1 
68* 20 0 36 45 50 0.5 0.67 0 
69 16.5 11.6 0 30 3.6 0 1 0 
70 18.8 57.5 20 20 30.6 0 2.04 1 
71 12 0 30 45 8 0 0.8 0 
72 18 5 30 20 8 0.3 2.05 1 
73 18.84 14.36 25 20 30.5 0.45 1.11 0 
74 19.1 10.1 20 30 50 0.4 0.65 0 
75 25 46 35 47 443 0.25 1.28 1 
76 18.8 24.8 21.3 29.2 37 0.5 1.07 0 
77 22 20 36 45 50 0 1.02 0 
78 25 120 45 53 120 0 1.3 1 
79 23 0 20 20 100 0.3 1.2 0 
80 20.4 33.5 11 16 45.8 0.2 1.28 0 
81 25 46 35 44 435 0.25 1.37 1 
82 18.8 15.3 30 25 10.6 0.38 1.63 1 
83 21 30 35 40 12 0.4 1.49 1 
84* 24 0 40 33 8 0.3 1.58 1 
85 14 12 26 30 88 0.45 0.63 0 
86* 20 20 36 45 50 0.25 0.96 0 
87 27.3 26 31 50 92 0.25 1.246 1 

*Note 0: Unstable; 1: Stable; (*) represents the test dataset. 
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