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Abstract: In this paper, we develop a stochastic susceptible-infective-susceptible (SIS) model, in
which the transmission coefficient is a function of air quality index (AQI). By using Markov semigroup
theory, the existence of kernel operator is obtained. Then, the sufficient conditions that guarantee the
stationary distribution and extinction are given by Foguel alternative, Khasminskľ function and Itô
formula. Next, a positivity-preserving numerical method is used to approximate the stochastic SIS
model, meanwhile for all p > 0, we show that the algorithm has the pth-moment convergence rate.
Finally, numerical simulations are carried out to illustrate the corresponding theoretical results.
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1. Introduction

Nowadays, hundreds of millions of residents have shrouded in the heavy smog especially in winter
[1]. Numerous epidemiological studies have shown associations of particulate air pollution with risk
for various adverse health outcomes, in which the most affected pathologies are chronic obstructive
pulmonary disease, lung cancer, influenza and respiratory infectious diseases (e.g., measles) [2–7].
Therefore, it is of great significance to study the respiratory infectious disease affected by air pollution
through mathematical means.

Actually, for the respiratory infectious disease, the susceptible-infective(SI) and SIS models are
usually used to describe this epidemic dynamic. For instance, Wang et al. [8] discussed the persis-
tence and periodic orbits for a SIS model in a polluted environment. Liu et al. [9] analyzed dynamics
behavior of an SI epidemic model. Note that these studies did not consider the influence of random
environmental factors. In fact, AQI depends on pollutants emissions, weather conditions, wind speed
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and air temperature, which are generated randomly. Therefore, it is more reasonable to use stochastic
differential equation to establish an infectious disease model with air pollution.

Considering random air pollution, there have been many studies on epidemic models. For instance,
He et al. [10] studied the dynamics of infectious respiratory disease spread by developed a stochastic
SIS model. Zhao et al. [11] discussed the existence of a positive stochastic periodic solution of a SI
epidemic model by constructing a nonnegative function. He et al. [12] analyzed dynamics behavior
of a stochastic SIS model by applying Itô formula. However, it is worth pointing out that stationary
distribution of epidemic models with stochastic air pollution has not been investigated until now.

In addition, it is almost impossible to know the analytical solution of stochastic SIS epidemic model.
In view of this, in order to quickly predict the number of infected people at a certain time t, it is
important to seek an effective numerical algorithm. It is well known that classical Euler-Maruyama
(EM) algorithm is widely used to approximate stochastic differential equation (SDE) because of its fast
calculation speed and simple format. However, if EM method is used to approximate stochastic SIS
model, it will produce negative values [13], which is meaningless. Hence, there is the challenging work
to establish positive preserving numerical algorithm for stochastic SIS model which the transmission
coefficient is a function of AQI by using EM scheme.

In this paper, we study dynamics and approximation of positive solution of the stochastic SIS model.
Our main contributions of the work are as follows:

• We develop a stochastic SIS model with air pollution which the transmission coefficient is a
function of AQI. It extends the work of [12].
• We identify the conditions that guarantee the extinction and the stationary distribution by Foguel

alternative, Khasminskľ function and Itô formula.
• We establish the positive preserving numerical algorithm for stochastic SIS model which the

transmission coefficient is a function of AQI through the logarithmic transformed EM method
and prove the positive preserving algorithm has first-order convergence rate. It extends the work
of [14–16] which can only achieve convergence rate of 1/2.

The rest of the paper is so organized as. In Section 2, preliminaries and introduction of a stochastic
SIS model affected by air pollutants. The existence of kernel operator and the sufficient conditions
that guarantee the stationary distribution and the extinction are obtained in Section 3. In Section 4, to
approximate the solution a positivity-preserving numerical method is introduced. Section 5 verifies the
theoretical results by numerical simulations. In Section 6, we conclude the paper.

2. Model and preliminaries

In this section, we obtain a stochastic SIS model affected by air pollutants and some preliminary
knowledge is given for future needs.

2.1. Preliminaries

Since the proof of result is based on the theory of integral Markov semigroups, we need some
auxiliary definitions and results concerning Markov semigroups (see, [17–19]). For the convenience
of the reader, these definitions and results are presented. Let Σ = B(X) be the σ-algebra of Borel
subset ofX and m the σ-finite measure on (X,Σ), then the triple (X,Σ,m) be a σ-finite measure space.
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Denote by D the subset of the space L1 = L1(X,Σ,m) which contains all densities, i.e.,

D = { f ∈ L1 : f ≥ 0, ∥ f ∥ = 1},

where ∥ · ∥ represent the norm in L1. A linear mapping P : L1 → L1 is called a Markov operator if
P(D) ∈ D.

Assume that k : X ×X→ [0,∞) is a measurable function such that∫
X

k(x, y)m(dx) = 1 (2.1)

for almost all y ∈ X, and

P f (x) =
∫
X

k(x, y) f (y)m(dy)

is an integral Markov operator. The function k is called a kernel operator of the Markov operator P.
A family {P(t)}t≥0 of Markov operator is called a Markov semigroup, if {P(t)}t≥0 satisfies

(a) P(0) = Id,
(b) P(t + s) = P(t)P(s) for s, t ≥ 0,
(c) The function t 7→ P(t) f is continuous for every f ∈ L1.

A Markov semigroup {P(t)}t≥0 is called integral, if for each t > 0, the operator P(t) ia an integral
Markov operator, i.e., there exists a measurable function k : (0,∞) ×X ×X→ [0,∞) such that

P(t) f (x) =
∫
X

k(t, x, y) f (y)m(dy)

for every density f .
We need also two definitions concerning the asymptotic behavior of a Markov semigroup. A den-

sity f∗ is called invariant if P(t) f∗ = f∗ for each t > 0. The Markov semigroup {P(t)}t≥0 is called
asymptotically stable if there is an invariant density f∗ such that

lim
t→∞
∥P(t) f − f∗∥ = 0 for f ∈ D.

A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for every f ∈ D

lim
t→∞

∫
A

P(t) f (x)m(dx) = 0.

The following Lemma summarizes result of asymptotic stability and sweeping.

Lemma 2.1. Let X be a metric space and Σ be the σ-algebra of Borel sets [17]. Let {P(t)}t≥0 be an
integral Markov semigroup with a continuous kernel k(t, x, y) for t > 0, which satisfies Eq (2.1) for any
y ∈ X. We assume that for every f ∈ D we have∫ ∞

0
P(t) f (x)dt > 0 a.e.,

then the semigroup {P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact sets.
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The property that a Markov semigroup {P(t)}t≥0 is asymptotically stable or sweeping from a suffi-
ciently large family of sets(e.g. from all compact sets) is called the Foguel alternative.

Throughout this paper we use the following notation. | · | is Euclidean norm on R. ∅ denote the
empty set. Given a, b ∈ R, a∨b and a∧b denote the maximum of a and b and the minimum of a and b,
respectively. For any ∆ ∈ (0, 1] and T ∈ (0,∞), ⌊T/∆⌋ represents the integer part of T/∆. C stands for
the generic positive real constants whose value may change between occurrences and is independent
of ∆ and positive integer T .

2.2. Model derivation

According to the mechanism of respiratory infectious diseases, He et al. [12] proposed the following
model: 

dS (t)
dt
= γI(t) − βF(t)S (t)I(t),

dF(t)
dt
= c − θF(t),

dI(t)
dt
= βF(t)S (t)I(t) − γI(t),

(2.2)

with initial values S 0, F0 and I0, where S (t), I(t) and F(t) represent the number of susceptible humans,
the number of infected humans and AQI at time t, respectively. c, θ and γ denote the inflow rate of
pollutants into the air, the clearance rate of pollutants and the recovery rate for infected individuals,
respectively. βF(t) is the infection rate. S (t)+ I(t) = N and N is the total number of people. c, θ, γ and
β are non-negative numbers.

Because the inflow rate of pollutants c including the emission of automobile exhaust, industrial
exhaust and so on is affected by random noise. Hence, we now perturb the inflow rate of pollutants c.
In this case, c changes to a random variable and then we replace c by c + σB(t), where B(t) is a white
noise. In addition, the infectious disease model with birth rate and natural mortality is more realistic.
Therefore, based on Eq (2.2), we can get the following model:

dS (t) = [µN − βF(t)S (t)I(t) + γI(t) − µS (t)]dt,

dF(t) = [c − θF(t)]dt + σdB(t),
dI(t) = [βF(t)S (t)I(t) − γI(t) − µI(t)]dt.

(2.3)

where B(t) is a standard Brownian motion defined on a complete probability space (Ω,F ,P) with a
filtration {F0}t≥0 satisfying the usual conditions(i.e., it is right continuous and F0 contains all P-null
sets). µ and σ denote the per capita death rate and the noise intensity. µ and σ are non-negative
numbers. The meaning of other symbol is similar to that in Eq (2.2). Since the second equation of
model (2.3) does not appear S (t) and I(t), through the same method as literature [12] the stochastic SIS
model affected by air pollutants can be represented as follow:dS (t) = [µN + γI(t) − βm(t)S (t)I(t) − µS (t)]dt − σn(t)S (t)I(t)dB(t),

dI(t) = [βm(t)S (t)I(t) − γI(t) − µI(t)]dt + σn(t)S (t)I(t)dB(t)
(2.4)

where m(t) = c
θ
+ (F0 −

c
θ
)e−θt, n(t) = β

θ
(1 − e−θt). Combining with S (t) + I(t) = N, it is immediate to

get an equation about I(t):

dI(t) = [βm(t)(N − I(t)) − γ − µ]I(t)dt + σn(t)(N − I(t))I(t)dB(t). (2.5)
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3. Dynamic behavior

In this section, the existence and uniqueness of the positive solution of Eq (2.5) is proved. Then, we
have obtained the sufficient conditions that guarantee the existence of stationary distribution and the
extinction of the disease.

3.1. Existence and uniqueness of positive solution

In order to make Eq (2.5) meaningful, we need to show not only that it has a unique global solution
but also that the solution will remain within (0,N) whenever it starts from (0,N). To guarantee these
properties, it is therefore necessary to establish the following theorem.

Theorem 3.1. For any given initial value I0 ∈ (0,N), there exists a unique global positive solution
I(t) ∈ (0,N) for all t ≥ 0 with probability one, namely,

P{I(t) ∈ (0,N) ∀t ≥ 0} = 1.

Proof. By the same method as literature [12], we can complete the proof. □

Denote
R+ = {x ∈ R : x > 0}. (3.1)

Since the existence of positive solution of Eq (2.5) has been obtained by Theorem 3.1, we letX = R+.
Moreover, it is easy to check that the region Γ∗ = {(S (t), I(t)) ∈ R+ × R+ : 0 < S (t) + I(t) < N} is a
positively invariant set of Eq (2.4). Hence, we always assume that (S 0, I0) ∈ Γ∗.

3.2. Disease extinction

For Eq (2.5), we get the condition which lead to the extinction of the disease under the stochastic
disturbance. Denote

Rs
0 =

βcN
θ(λ + µ)

−
σ2β2N2

2θ2(λ + µ)
, (3.2)

which can be seen as a threshold of the extinction (i.e., disease-free) or persistence (i.e., endemic) of
disease for Eq (2.5).

Theorem 3.2. If Rs
0 < 1 and δ2 < cθ

βN , then for any initial value I(0) ∈ (0,N) the solution I(t) of Eq
(2.5) has the following property:

P{lim
t→∞

I(t) = 0} = 1. (3.3)

That is, the disease will die out with probability one.

Proof. By Itô formula, it is easy to get that

lim sup
t→∞

ln I(t)
t
= lim sup

t→∞
[
ln I(0)

t
+

∫ t

0
( f1(I(s)) + f2(I(s), s))ds

t
+

∫ t

0
f3(I(s), s)dB(s)

t
], (3.4)

where

f1(x) = −
σ2β2

2θ2
(N − x)2 +

βc
θ

(N − x) − λ − µ,
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f2(I, t) = [β(F0 −
c
θ

)(N − I) +
σ2β2

θ2
(N − I)2 −

σ2β2

2θ2
(N − I)2e−θt]e−θt, (3.5)

f3(I, t) = σn(t)(N − I).

For the function f1(I(s)), when

σ2β2

θ2
N −
βc
θ
< 0, i.e. σ2 <

cθ
βN
,

it is immediate to get that

f1(I) = −
σ2β2

2θ2
(N2 + I2) + (

σ2β2

θ2
N −
βc
θ

)I +
βc
θ

N − (λ + µ)

< −
σ2β2

2θ2
N2 +

βc
θ

N − (λ + µ)

=(λ + µ)(
βcN
θ(λ + µ)

−
σ2β2N2

2θ2(λ + µ)
− 1)

=(λ + µ)(Rs
0 − 1).

(3.6)

From Eq (3.5), it follows that

lim sup
t→∞

1
t

∫ t

0
f2(I(s), s)ds = lim sup

t→∞

1
t

∫ t

0
β(F0 −

c
θ

)(N − I(s))e−θsds + lim sup
t→∞

1
t

∫ t

0

σ2β2

θ2
(N − I(s))2e−θsds

− lim sup
t→∞

1
t

∫ t

0

σ2β2

2θ2
(N − I(s))2e−2θsds.

(3.7)

With the help of the L’Hospital law, it is immediate to get that

lim sup
t→∞

1
t

∫ t

0
|β(F0 −

c
θ

)(N − I(s))e−θs|ds ≤ lim sup
t→∞

|β(F0 −
c
θ

)Ne−θt| = 0

Hence, it follows that

lim sup
t→∞

1
t

∫ t

0
β(F0 −

c
θ

)(N − I(s))e−θsds = 0. (3.8)

Similarly, we can get

lim sup
t→∞

1
t

∫ t

0

σ2β2

θ2
(N − I(s))2e−θsds = lim sup

t→∞

1
t

∫ t

0

σ2β2

2θ2
(N − I(s))2e−2θsds = 0. (3.9)

Bring Eqs (3.8)–(3.9) into Eq (3.7), it is easy to get that

lim sup
t→∞

1
t

∫ t

0
f2(I(s), s)ds = 0. (3.10)

Through the large number theorem for martingales, it is easy to get

lim sup
t→∞

1
t

∫ t

0
f3(I(s), s)ds = 0. (3.11)

Bring Eqs (3.6), (3.10) and (3.11) into Eq (3.4), it follows that lim sup
t→∞

ln I(t)
t = 0. Therefore, based

on the analyses above we conclude that I(t) tends to zero exponentially almost surely. This completes
the proof. □
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3.3. Stationary distribution

For any A ∈ Σ, the transition probability function is denoted by P(t, x0, A) for the diffusion process
I(t), i.e.,

P(t, x0, A) = Prob{I(t) ∈ A}

with the initial value I(0) = x, where I(t) be a solution of Eq (2.5) such that the distribution of I(0) is
absolutely continuous and has the density v(x). Then I(t) has also the density U(t, x), where U(0, x) =
v(x), and U(t, x) satisfies the following Fokker-Planck equation (see [19, 20])

∂U
∂t
=

1
2
σ2n2(t)

∂2(x2(N − x)2U)
∂x2 −

∂( f U)
∂x
, (3.12)

where
f (x) = (βm(t)(N − x) − γ − µ)x.

Now we introduce a Markov semigroup associated with Eq (3.12). Let P(t)v(x) = U(t, x) for
v(x) ∈ D. Since the operator P(t) is a contraction on D, it can be extended to a contraction on L1.
Hence, the operator {P(t)}t≥0 generates a Markov semigroup. Denote A the infinitesimal generator of
semigroup {P(t)}t≥0, i.e.,

Av =
1
2
σ2n2(t)

∂2(x2(N − x)2v)
∂x2 −

∂( f v)
∂x
.

The adjoint operator ofA is as follows:

A∗v =
1
2
σ2n2(t)x2(N − x)2 ∂

2v
∂x2 +

∂( f v)
∂x
.

For the convenience of discussing the main results of this section, Some useful lemmas are given.

Lemma 3.1. For every point x0 ∈ (0,N) and t > 0, the transition probability function P(t, x0, A) has a
continuous density k(t, x, x0) ∈ C∞(R+,R+,R+).

Proof. Let
b(ϕ) = σn(t)(N − ϕ)ϕ,

where ϕ ∈ (0,N). Since for any ϕ ∈ (0,N) we have b(ϕ) > 0, b(ϕ) span the space (0,N). Based
on Hörmander theorem(See Theorem 8 in [19]), the transition probability function P(t, x0, A) has a
continuous density k(t, x, x0) ∈ C∞(R+,R+,R+). □

According to Lemma 3.1, it follows that for any f ∈ D,

P(t) f (x) =
∫ N

0
k(t, x, u) f (u)du.

Hence, the semigroup {P(t)}t≥0 is an integral Markov semigroup. Next, we rewrite Eq (2.5) of Itô
type as Stratonovitch type:

İ(t) = f̂ (I(t))dt + σn(t)(N − I(t))I(t) ◦ dB(t),
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where

f̂ (x) = [βm(t)(N − x) − γ − µ]x −
1
2
σ2n2(t)(N − x)(N − 2x)x.

Now we briefly describe the method based on support theorems [21–23] which allows us to check
where the kernel k is positive. Fixing a point x0 ∈ R+ and a function φ ∈ L2([0,T ];R), consider the
following system of integral equations:

xφ(t) = x0 +

∫ t

0
[ f̂ (xφ(s)) + σn(s)φ(N − xφ(s))xφ(s)]ds. (3.13)

Let Dx0,φ be the Frechét derivative of the function h 7→ xφ+h(t) from L2([0,T ];R) to R. If for some
φ ∈ L2([0,T ];R) the Frechét derivative Dx0,φ has rank 1, then k(t, x, x0) > 0 for x = xφ(T ). The
derivative Dx0,φ can be found by means of the perturbation method for ordinary differential equations.
Let Γ(t) = f̂ ′(xφ(t)) + b′(xφ(t))φ. For 0 ≤ t0 ≤ t ≤ T , let Q(t, t0) is the matrix function such that
Q(t0, t0) = 1, ∂Q(t,t0)

∂t = Γ(t)Q(t, t0). Then,

Dx0,φh =
∫ T

0
Q(T, s)b(s)h(s)ds.

Lemma 3.2. For each x0 ∈ R+, and for every x ∈ R+, there exists T > 0 such that k(t, x, x0) > 0.

Proof. We first verify that the rank of Dx0,φ is 1. Let ϵ ∈ (0,T ) and h(t) = 1[T−ϵ,T ](t)
n(t)xφ(t)(N−xφ(t))

, t ∈ [0,T ], where
1[T−ϵ,T ](t) is the characteristic function of interval [T − ϵ,T ]. Since Q(T, s) = 1−Γ(T )(T − s)+o(T − s),
it is easy to get that

Dx0,φh = −ϵσ +
1
2
ϵ2Γ(T )σ + o(ϵ2).

Since Γ(T ) , 0, Dx0,φ has rank 1.
Next we show that for any two points x0 ∈ R+ and x ∈ R+, there exist a control function φ and T > 0

such that xφ(0) = x0, xφ(T ) = x. The Eq (3.13) can be replaced by the following equation:

ẋφ(t) = f̂ (xφ(t)) − σn(t)φ(N − xφ(t))xφ(t).

By the same discussion as in reference [24], it is easy to find a control function φ and T > 0 such
that xφ(0) = x0, xφ(T ) = x1. This claims k(t, x, x0) > 0. □

Lemma 2.1 and Lemma 3.2 yield that the Markov semigroup {P(t)}t≥0 is asymptotically stable or is
sweeping. Next, the sufficient condition that guarantee Markov semigroup {P(t)}t≥0 is asymptotically
stable will be given by using Foguel alternative.

Theorem 3.3. Let (S (t), I(t)) be a solution of the Eq (2.4) for any given initial value (S (0), I(0)) ∈ Γ∗.
If

Rs
0 > 1 and σ2 <

2µθ2

γI∗β2N2 min{S ∗2, I∗2} −
2βmax(I∗, S ∗)|F0 −

c
µ
|θ2

NI∗β2 (3.14)

hold, then the semigroup {P(t)}t≥0 is asymptotically stable, where S ∗(t) = βc
θ(µ+γ) , I∗(t) = N − βc

θ(µ+γ) .
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Proof. According to Lemma 3.1, it follows that {P(t)}t≥0 is an integral Markov semigroup with a con-
tinuous kernel k(t, x, x0). Then from Lemma 3.2 for every f ∈ D, it is immediate to get that∫ ∞

0
P(t) f dt > 0.

By virtue of Lemma 2.1, it follows that the semigroup {P(t)}t≥0 is asymptotically stable or sweeping
with respect to compact sets. In order to exclude the sweeping case, we shall construct a non-negative
C2-function V and a closed set O ∈ Σ such that

sup
(S ,I)∈R2

+\O
A∗V < 0.

Such function is called Khasminskiľ function. In fact, it is easy to get that Eq (2.4) has an endemic
equilibrium E∗ = (S ∗, I∗) = ( βc

θ(µ+γ) ,N −
βc
θ(µ+γ) ). Then we know

µN + γI∗ −
c
θ
βS ∗I∗ − µS ∗ = 0,

c
θ
βS ∗I∗ − γI∗ − µI∗ = 0.

Let
V =

1
2

(S − S ∗ + I − I∗)2 + λ(I − I∗ − I∗ ln
I
I∗

) = V1 + λV2.

where λ = 2θµ
cβ . Then,

A∗V1 = (S − S ∗ + I − I∗)(µN − µI − µS )
= (S − S ∗ + I − I∗)(µS ∗ + µI∗ − µI − µS )
= −µ(S − S ∗)2 − µ(I − I∗)2 − 2µ(S − S ∗)(I − I∗),

A∗V2 = (I − I∗)(βm(t)S − γ − µ) +
1
2
σ2n2(t)S 2I∗

= (I − I∗)(βm(t)S − β
c
θ

S ∗) +
1
2
σ2n2(t)S 2I∗

≤ β
c
θ

(S − S ∗)(I − I∗) + βN max(I∗, S ∗)|F0 −
c
µ
| +

1
2
σ2n2(t)S 2I∗,

A∗V =A∗V1 +A
∗V2

= − µ[(S − S ∗)2 + (I − I∗)2] − 2µ(S − S ∗)(I − I∗)

+ λβ
c
θ

(S − S ∗)(I − I∗) + λβN max(I∗, S ∗)|F0 −
c
µ
| +
λ

2
σ2n2(t)S 2I∗

≤ − µ[(S − S ∗)2 + (I − I∗)2] + λβN max(I∗, S ∗)|F0 −
c
µ
| +
λβ2

2θ2
σ2N2I∗

:= − b1(S − S ∗)2 − b1(I − I∗)2 + b3.

Conditions Eq (3.14) implies that the ball

b1(S − S ∗)2 + b1(I − I∗)2 = b3.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4481–4505.



4490

lies entirely in the positive zone of R2
+. Hence there exists a closed set O ∈ Σ which contains the

ellipsoid and C > 0 such that
sup

(S ,I)∈R2
+\O
A∗V ≤ −C < 0.

The proof is hence completed. □

4. Numerical approximation of positive solution

Since it is impossible to know the explicit solution of Eq (2.5), constructing appropriate numerical
methods to approximate Eq (2.5) and even preserve properties of Eq (2.5) is important and necessary.
In this section, to approximate Eq (2.5) a positivity-preserving numerical method is introduced.

4.1. The logarithmic EM method

In order to obtain a positive numerical solution, we first make a transformation

y(t) = ln(I(t)) − ln(N − I(t)) = ln
I(t)

N − I(t)
. (4.1)

According to Eq (2.5), applying Itô formula to y(t) yields

dy(t) = F(y(t))dt + σNn(t)dB(t), (4.2)

with y0 = ln(I0) − ln(N − I0), where

F(y(t)) = βm(t)N − (γ + µ)(1 + ey(t)) +
N
2

(
2Ney(t)

1 + ey(t) − N)σ2n2(t). (4.3)

Now, we apply the EM scheme to Eq (4.2) then obtain

X(tk+1) = X(tk) + F(X(tk))∆ + σNn(tk)∆B(tk), (4.4)

for any ∆ ∈ (0, 1] and k ≥ 0, where ∆B(tk) = B(tk+1) − B(tk) and tk = k∆. Transforming back, i.e.,

I(tk+1) = N −
N

1 + eX(tk) =
NeX(tk)

1 + eX(tk) ,

gives a strictly positive approximation of Eq (2.5). The forthcoming results concern exponential prop-
erty of I(t) and X(t), t ∈ [0,T ], which will be used in convergence analysis of the numerical scheme.

Theorem 4.1. For any p ≥ 0

( sup
t∈[0,T ]

E[I−p(t)]) ∨ ( sup
t∈[0,T ]

E[(N − I(t))−p]) ≤ Kp,

where
Kp = (I−p

0 ∨ (N − I0)−p)e[γ+µ+βN 2c+θF0
θ +

p+1
2 ( βσN

θ )2]pT .
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Proof. Define a continuous function V : (0,N)→ R+ by

V = I−p.

By the Itô formula, it is easy to get that

dV =p[γ + µ − βm(t)(N − I) +
p + 1

2
(σn(t)(N − I(t)))2]I−pdt + JdB(t)

≤p[γ + µ + βN
2c + θF0

θ
+

p + 1
2

(
βσN
θ

)2]I−pdt + JdB(t),
(4.5)

where J = −pσn(t)(N − I)I−p. we choose m0 > 0 sufficiently large such that 1/m0 < I0 < N − 1/m0.
For each integer m ≥ m0, define a stopping time

τm = inf{t ∈ [0,T ] : I(t) < (1/m,N − (1/m))}.

Integrating both sides of Eq (4.5) and then taking expectation, it is immediate to get that

EI−p(t ∧ τm) =I−p
0 + E

∫ t∧τm

0
p[γ + µ − βm(s)(N − I(s)) +

p + 1
2

(σn(s)(N − I(s)))2]I−p(s)ds

≤I−p
0 + p[γ + µ + βN

2c + θF0

θ
+

p + 1
2

(
βσN
θ

)2]E
∫ t

0
I−p(s ∧ τm)ds.

(4.6)

With the help of the Gronwall inequality, it follows that

EI−p(t ∧ τm) ≤ I−p
0 e[γ+µ+βN 2c+θF0

θ +
p+1

2 ( βσN
θ )2]pT . (4.7)

Then, letting m→ ∞ and using the Fatou lemma yield

sup
t∈[0,T ]

E[I−p(t)] ≤ Kp. (4.8)

According to calculations similar to those for obtaining Eqs (4.6)–(4.8), it is easy to get that

sup
t∈[0,T ]

E[(N − I(t))−p] ≤ Kp.

Therefore the desired conclusion holds. □

Remark 4.2. As for moment boundedness, Theorem 4.1 proves the boundedness of inverse moments
and we can obtain the boundedness of positive moments by using Theorem 3.2.

Now, we will concern exponential integrability property of analysis solution y(t), t ∈ [0,T ] through
using Theorem 4.1.

Theorem 4.3. For any p ∈ R, Eq (4.2) has the following exponential integrability property

sup
t∈[0,T ]

E[epy(t)] ≤ N |p|K|p|,

where Kp is given by Theorem 4.1.
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Proof. Through Eq (4.1) and Theorem 4.1, for any p ≥ 0, it is easy to get that

sup
t∈[0,T ]

E[epy(t)] = sup
t∈[0,T ]

E[I p(t)(N − I(t))−p] ≤ N p sup
t∈[0,T ]

E[(N − I(t))−p] ≤ N pKp.

For any p < 0, it follows that

sup
t∈[0,T ]

E[epy(t)] = sup
t∈[0,T ]

E[I p(t)(N − I(t))−p] ≤ N |p| sup
t∈[0,T ]

E[I p(t)] ≤ N |p|K|p|.

Hence the desired conclusion holds. □

The forthcoming theorem concerns exponential property of numerical solution X(t), t ∈ [0,T ],
which plays an important role in discussing strong convergence rate of arithmetic.

Theorem 4.4. For any P > 0, Eq (4.4) has the property that

sup
∆∈(0,1]

sup
0≤k≤⌊T/∆⌋

E[epX(tk)] ≤ C, ∀T > 0.

Proof. By Eq (4.3), it is immediate to get that

F(X(tk−1)) ≤ (F0 ∨
c
θ

)βN +
σ2N2β2

θ2
. (4.9)

Substituting Eq (4.9) into Eq (4.4), it is immediate to get that

X(tk) ≤X(tk−1) + [(F0 ∨
c
θ

)βN +
σ2N2β2

θ2
]∆ +

σβN
θ
∆B(tk−1)

≤y0 + [(F0 ∨
c
θ

)βN +
σ2N2β2

θ2
]k∆ +

σβN
θ

k−1∑
i=0

∆Bi,

for any integer k ≥ 1. For any p > 0, using the Itô formula and the Gronwall inequality further yields

E[epX(tk)] ≤epy0+pT [(F0∨
c
θ )βN+

σ2N2β2

θ2
]
E[e

σpβN
θ

∑k−1
i=0 ∆Bi]

≤epy0+pT [(F0∨
c
θ )βN+

σ2N2β2

θ2
]e(σpβN

√
2θ

)2T

≤C.

The proof is complete. □

4.2. Strong convergence rate of method

In this subsection, the first order strong convergence of positivity preserving logarithmic EM method
for Eq (2.5) is proved by using Theorem 4.1, Theorem 4.3 and Theorem 4.4.

Theorem 4.5. For any q > 0 there exists a constant C > 0 such that for any ∆ ∈ (0, 1]

E[ sup
k=0,1,···,⌊T/∆⌋

|X(tk) − y(tk)|q] ≤ C∆q, ∀T > 0.
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Proof. By integrating on both sides of Eq (4.2), it is easy to get that

y(tk+1) = y(tk) +
∫ tk+1

tk
F(y(s))ds +

∫ tk+1

tk
σNn(s)dB(s). (4.10)

Using Eqs (4.3), (4.4) and (4.10), it follows that

X(tk+1) − y(tk+1)

=X(tk) − y(tk) + (F(X(tk)) − F(y(tk)))∆ +
σβN
θ

(1 − e−θtk)∆B(tk) +
∫ tk+1

tk
(F(y(tk)) − F(y(s)))ds

−

∫ tk+1

tk

σβN
θ

(1 − e−θs)dB(s)

=X(tk) − y(tk) + (γ + µ)N
∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

dI(u)ds −
∫ tk+1

tk

σβN
θ

(1 − e−θs)dB(s)

+
σ2β2N
θ2

∫ tk+1

tk

∫ tk

s
(1 − e−θs)2dI(u)ds +

2σ2β2N(N − I(tk))
θ

∫ tk+1

tk

∫ s

tk
e−θu(1 − e−θu)duds

+ βN(c − F0θ)
∫ tk+1

tk

∫ tk

s
e−θududs +

2σ2β2N(N − I(tk))
θ

∫ tk+1

tk

∫ s

tk
e−θu(1 − e−θu)duds

− (γ + µ)(eX(tk) − ey(tk))∆ +
σ2β2N2

θ

∫ tk+1

tk

∫ tk

s
e−θu(1 − e−θu)duds +

σβN
θ

(1 − e−θtk)∆B(tk)

+ (
1

1 + ey(tk) −
1

1 + eX(tk) )(
σβN
θ

(1 − e−θtk))2∆

=X(tk) − y(tk) +
eX(tk) − ey(tk)

(1 + ey(tk))(1 + eX(tk))
(
σβN
θ

(1 − e−θtk))2∆ − (γ + µ)(eX(tk) − ey(tk))∆ + J(1)
k

+ J(2)
k + J(3)

k + J(4)
k + Z(1)

k + Z(2)
k .

where

J(1)
k = βN(c−F0θ)

∫ tk+1

tk

∫ tk

s
e−θududs, J(3)

k =
σβN
θ

(1−e−θtk)∆B(tk)−
∫ tk+1

tk

σβN
θ

(1−e−θs)dB(s), (4.11)

J(2)
k =

σ2β2N2

θ

∫ tk+1

tk

∫ tk

s
e−θu(1 − e−θu)duds, J(4)

k =
2σ2β2N(N − I(tk))

θ

∫ tk+1

tk

∫ s

tk
e−θu(1 − e−θu)duds,

(4.12)

Z(1)
k =(γ + µ)N

∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

[(
βc
θ
+ (F0β −

cβ
θ

)e−θu)(N − I(u)) − γ − µ]I(u)duds

+
σ2β2N
θ2

∫ tk+1

tk

∫ tk

s
(1 − e−θs)2[(

βc
θ
+ (F0β −

cβ
θ

)e−θu)(N − I(u)) − γ − µ]I(u)duds,

(4.13)

Z(2)
k =(γ + µ)N

∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

σβ

θ
(1 − e−θu)(N − I(u))I(u)dB(u)ds +

σ2β2N
θ2

∫ tk+1

tk∫ tk

s
(1 − e−θs)2σβ

θ
(1 − e−θu)(N − I(u))I(u)dB(u)ds.

(4.14)
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Let uk = X(tk) − y(tk), Jk = J(1)
k + J(2)

k + J(3)
k + J(4)

k and Zk = Z(1)
k + Z(2)

k , then

u2
k+1 =u2

k + (γ + µ)2(eX(tk) − ey(tk))2∆2 +
(eX(tk) − ey(tk))2

(1 + ey(tk))2(1 + eX(tk))2 (
σβN
θ

(1 − e−θtk))4∆2

− 2(γ + µ)uk(eX(tk) − ey(tk))∆ + 2uk
eX(tk) − ey(tk)

(1 + ey(tk))(1 + eX(tk))
(
σβN
θ

(1 − e−θtk))2∆

+ J2
k + Z2

k + 2ukJk + 2ukZk − 2(γ + µ)
(eX(tk) − ey(tk))2

(1 + ey(tk))(1 + eX(tk))
(
σβN
θ

(1 − e−θtk))2∆2

− 2(γ + µ)(eX(tk) − ey(tk))Jk∆ − 2(γ + µ)(eX(tk) − ey(tk))Zk∆ + 2JkZk + 2(1 − e−θtk)2∆

Jk
eX(tk) − ey(tk)

(1 + ey(tk))(1 + eX(tk))
(
σβN
θ

)2 + 2Zk
eX(tk) − ey(tk)

(1 + ey(tk))(1 + eX(tk))
(
σβN
θ

(1 − e−θtk))2∆.

(4.15)

Further, it is immediate to get that

uk(eX(tk) − ey(tk))
(1 + ey(tk))(1 + eX(tk))

≤
|uk||eX(tk) − ey(tk)|

(1 + ey(tk))(1 + eX(tk))
≤ u2

k ,

By using Lagrange mean value theorem, it follows that

(eX(tk) − ey(tk))2

(1 + ey(tk))2(1 + eX(tk))2 ≤
(X(tk) − y(tk))2e2ξ

(1 + ey(tk))2(1 + eX(tk))2

≤
u2

ke2(X(tk)∨y(tk))

(1 + e(X(tk)∨y(tk)))2 ≤ u2
k ,

where ξ ∈ (X(tk) ∧ y(tk), X(tk) ∨ y(tk)). Then, Eq (4.15) can be estimated as

u2
k+1 ≤2u2

k + 4(γ + µ)2(eX(tk) − ey(tk))2∆2 + 2u2
k(
σβN
θ

)4∆2 + 3u2
k(
σβN
θ

)2∆ + 4J2
k + 4Z2

k + 2ukJk + 2ukZk

≤[2 + (
σβN
θ

)2(3 + 2(
σβN
θ

)2∆)∆]u2
k + 4(γ + µ)2(eX(tk) − ey(tk))2∆2 + 4J2

k + 4Z2
k + 2ukJk + 2ukZk

≤

k∑
i=0

(2 +C∆)k−i[4J2
i + 4Z2

i + 4(γ + µ)2(eX(ti) − ey(ti))2∆2] + 2
k∑

i=0

(2 +C∆)k−i[uiJi + uiZi]

≤C
k∑

i=0

[J2
i + Z2

i ] +C
k∑

i=0

[(eX(ti) − ey(ti))2∆2] + 2
k∑

i=0

(2 +C∆)k−i[uiJi + uiZi].

(4.16)

LetM0 = 0, andMk =
∑k−1

i=0 (2 +C∆)k−1−iuiZ
(2)
i for any k ≥ 1, since

E[Z(2)
k |Fk] =

σβN(γ + µ)
θ

E[
∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

(1 − e−θu)(N − I(u))I(u)dB(u)ds|Fk]

+
σ3β3N
θ3

E[
∫ tk+1

tk

∫ tk

s
(1 − e−θs)2(1 − e−θu)(N − I(u))I(u)dB(u)ds|Fk] = 0,

it is then easy to show that E[Mk+1|Fk] = Mk + ukE[Z(2)
k |Fk] = Mk. This implies immediate thatMk is

a martingale. Using Burkholder-Davis-Gundy inequality and Hölder inequality, it is easy to get that

E[ sup
k=0,1,···,l

|Mk|
q] ≤ CE[(

l−1∑
i=0

u2
i |Z

(2)
i |

2)
q
2 ] ≤ CE[(⌊T/∆⌋)q/2−1

l∑
i=0

|ui|
q|Z(2)

i |
q], (4.17)
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for any q ≥ 2 and l = 0, · · ·, ⌊T/∆⌋. Using Eq (4.17) and the basic inequality (
∑n

i=1 ai)p ≤ C
∑n

i=1 ap
i for

Eq (4.16), it follows that

E[ sup
k=0,1,···,l

|uk+1|
2q]

≤E[ sup
k=0,1,···,l

|C
k∑

i=0

(J2
i + Z2

i ) +C
k∑

i=0

(eX(ti) − ey(ti))2∆2 + 2
k∑

i=0

(2 +C∆)k−i(uiJi + uiZi)|q]

≤CE[(
l∑

i=0

(J2
i + Z2

i ))q + (
l∑

i=0

(ex(ti) − ey(ti))2)q∆2q + sup
k=0,1,···,l

|

k∑
i=0

(2 +C∆)k−i(uiJi + uiZi)|q],

then, using the Hölder inequality, the triangle inequality and the basic inequality, it is easy to get that

E[ sup
k=0,1,···,l

|uk+1|
2q]

≤CE[ sup
k=0,1,···,l

(|Mk+1|
q + |

k∑
i=0

(2 +C∆)k−iuiJi|
q) + (⌊T/∆⌋)q−1(

l∑
i=0

|J2
i + Z2

i |
q +

l∑
i=0

|ex(ti) − ey(ti)|2q∆2q

+

l∑
i=0

|uiZ
(1)
i |

q)]

≤CE[(⌊T/∆⌋)q−1
l∑

i=0

(|J(1)
i |

2q + |J(2)
i |

2q + |J(3)
i |

2q + |J(4)
i |

2q + |Z(1)
i |

2q + |Z(2)
i |

2q + |ex(ti) − ey(ti)|2q∆2q

+ |uiZ
(1)
i |

q + ((2 +C∆)l−i|uiJi|)q) + sup
k=0,1,···,l

|Mk+1|
q]

(4.18)

for any q ≥ 2 and l = 0, 1, · · ·, ⌊T/∆⌋. By using Lagrange mean value theorem, it follows that

E[(ex(ti) − ey(ti))2q] ≤ E[(ex(ti) + ey(ti))q|ex(ti) − ey(ti)|q] ≤ E[(ex(ti) + ey(ti))2q|x(ti) − y(ti)|q]. (4.19)

Combining Eq (4.19), Theorem 4.3, Theorem 4.4 and Young inequality, it is easy to get that

E[∆2q(⌊T/∆⌋)q−1
l∑

i=0

(ex(ti) − ey(ti))2q] ≤ T q−1
l∑

i=0

E[∆q+ 1
2 (ex(ti) + ey(ti))2q|ui|

q∆
1
2 ]

≤
T q−1

2

l∑
i=0

E[∆2q+1(ex(ti) + ey(ti))4q + |ui|
2q∆] ≤ CT q∆2q +CT q−1∆

l∑
i=0

E|ui|
2q.

(4.20)

For any q ≥ 2, using triangle inequality, basic inequality, Hölder inequality, Theorem 3.1 and
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Theorem 4.1 for Eq (4.13), it is immediate to get that

E|Z(1)
i |

2q ≤CE[(
∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

|(
βc
θ
+ (F0β −

βc
θ

)e−θu)(N − I(u)) − (γ + µ)|I(u)duds)2q

+ (
∫ tk+1

tk

∫ s

tk
(1 − e−θs)2|(

cβ
θ
+ (F0β −

cβ
θ

)e−θu)(N − I(u)) − (γ + µ)|duds)2q]

≤C∆2qE[(
∫ tk+1

tk

1
(N − I(s))(N − I(tk))

ds)2q] +C∆4q

≤C∆2qE[(
∫ tk+1

tk
1

2q
2q−1 ds)2q−1(

∫ tk+1

tk
((N − I(s))(N − I(tk)))−2qds)] +C∆4q

≤C∆4q−1
∫ tk+1

tk
(E[(N − I(s))−4q])

1
2 (E(N − I(tk))−4q)

1
2 ds +C∆4q ≤ C∆4q.

(4.21)

Using Hölder inequality, Burkholder-Davis-Gundy inequality, Theorem 3.1 and Theorem 4.1 for
Eq (4.14), it is immediate to get that

E|Z(2)
i |

2q ≤CE[|
∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

σβ

θ
(1 − E−θu)(N − I(u))I(u)dB(u)ds|2q

+ |

∫ tk+1

tk

∫ s

tk
(1 − E−θs)2σβ

θ
(1 − e−θu)(N − I(u))I(u)dB(u)ds|2q]

≤CE[|
∫ tk+1

tk

∫ s

tk

1
(N − I(s))(N − I(tk))

dB(u)ds|2q + |

∫ tk+1

tk

∫ s

tk
dB(u)ds|2q]

≤C∆2q−1[
∫ tk+1

tk
E[|
∫ s

tk

1
(N − I(s))(N − I(tk))

dB(u)|2q]ds +
∫ tk+1

tk
E[|
∫ s

tk
dB(u)|2q]ds]

≤C∆3q−2[
∫ tk+1

tk

∫ s

tk
E[((N − I(s))(N − I(tk)))−2q]duds + ∆2]

≤C∆3q−2[
∫ tk+1

tk

∫ s

tk
(E[(N − I(s))−4q])

1
2 (E(N − I(tk))−4q)

1
2 duds + ∆2] ≤ C∆3q.

(4.22)

Thus, the Hölder inequality gives that

E[|ui|
q|Z(1)

i |
q] ≤ (E|ui|

2q)
1
2 (E|Z(1)

i |
2q)

1
2 ≤ C(E|ui|

2q)
1
2∆2q. (4.23)

E[|ui|
q|Z(2)

i |
q] ≤ (E|ui|

2q)
1
2 (E|Z(2)

i |
2q)

1
2 ≤ C(E|ui|

2q)
1
2∆

3q
2 . (4.24)

For any q ≥ 2, using Eqs (4.11) and (4.12) and Theorem 3.1, it follows that

E|J(1)
k |

2q ≤ E|βN(c − F0θ)
∫ tk+1

tk

∫ tk

s
e−θududs|2q ≤ C∆4q, (4.25)

E|J(2)
k |

2q ≤ E|
σ2β2N2

θ

∫ tk+1

tk

∫ tk

s
E−θu(1 − e−θu)duds|2q ≤ C∆4q, (4.26)
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E|J(4)
k |

2q ≤ E|
2σ2β2N(N − I(tk))

θ

∫ tk+1

tk

∫ s

tk
e−θu(1 − e−θu)duds|2q ≤ C∆4q. (4.27)

using Eq (4.12), Burkholder-Davis-Gundy inequality and Lagrange mean value theorem, it follows that

E|J(3)
k |

2q ≤ E|
σβN
θ

(1 − e−0tk)∆B(tk) −
∫ tk+1

tk

σβN
θ

(1 − e−θs)dB(s)|2q

≤ CE|
∫ tk+1

tk
(e−θs − e−θtk)dB(s)|2q ≤ CE[(

∫ tk+1

tk
|e−θs − e−θtk |2ds)q] ≤ C∆3q.

(4.28)

For any q ≥ 2, the Canchy-Schwarz inequality gives that

E[|ui|
q|J( j)

i |
q] ≤ (E|ui|

2q)
1
2 (E|J( j)

i |
2q)

1
2 ≤ C(E|ui|

2q)
1
2∆2q, j = 1, 2, 4, (4.29)

E[|ui|
q|J(3)

i |
q] ≤ (E|ui|

2q)
1
2 (E|J(3)

i |
2q)

1
2 ≤ C(E|ui|

2q)
1
2∆

3q
2 . (4.30)

Thus, substituting Eqs (4.20)–(4.30) into Eq (4.18), it is immediate to get that

E[ sup
k=0,1,···,l

|uk+1|
2q] ≤CE[(⌊T/∆⌋)q−1

l∑
i=0

(|J(1)
i |

2q + |J(2)
i |

2q + |J(3)
i |

2q + |J(4)
i |

2q + |Z(1)
i |

2q + |Z(2)
i |

2q

+ |ex(ti) − ey(ti)|2q∆2q + |uiZ
(1)
i |

q + ((2 +C∆)l−i|uiJi|)q) + sup
k=0,1,···,l

|Mk+1|
q]

≤
CT q−1

∆q−1 [C∆3q +C
l∑

i=0

(E|ui|
2q)

1
2∆2q +C

l∑
i=0

(E|ui|
2q)

1
2∆

3q
2 ] +CT q∆2q

+CT q−1∆

l∑
i=0

E|ui|
2q +CE[(⌊T/∆⌋)q/2−1

l∑
i=0

|ui|
q|Z(2)

i |
q]

≤C∆2q +C∆
l∑

i=0

E|ui|
2q

for any q ≥ 2, and l = 0, 1, · · ·, ⌊T/∆⌋, and applying the Gromwall inequality we obtain

E[ sup
k=0,1,···,l

|uk+1|
2q] ≤ C∆2q

for any q ≥ 2, and l = 0, 1, · · ·, ⌊T/∆⌋. This completes now the proof of the assertion for q ≥ 2. The
Hölder inequality yields

E[ sup
k=0,1,···,l

|uk+1|
2p] ≤ E[ sup

k=0,1,···,l
|uk+1|

2q]
p
q ≤ C∆2p

for any p ∈ (0, 2), and l = 0, 1, · · ·, ⌊T/∆⌋. The proof is complete. □

Above, the convergence rate of the EM method of Eq (4.2) is given. Below, we will give the
convergence rate of the original Eq (2.5) of Eq (4.2).
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Theorem 4.6. For any p > 0, there exists a constant C > 0 such that for any ∆ ∈ (0, 1]

E[ sup
k=0,1,···,⌊T/∆⌋

|I(tk) − Ī(tk)|p] ≤ C∆p, ∀T > 0,

Where Ī(tk) and I(tk) denote the value of the analytical solution at time tk and the value of the
numerical solution at time tk respectively.

Proof. The Lamperti-type transformation yields

E[ sup
k=0,1,···,⌊T/∆⌋

|I(tk) − Ī(tk)|p] ≤ NE[ sup
k=0,1,···,⌊T/∆⌋

|
eytk

1 + eytk
−

eXtk

1 + eXtk
|] ≤ NE[ sup

k=0,1,···,⌊T/∆⌋
|y(tk) − X(tk)|p].

Thus, by applying Theorem 4.5, we infer that

E[ sup
k=0,1,···,⌊T/∆⌋

|I(tk) − Ī(tk)|p] ≤ NE[ sup
k=0,1,···,⌊T/∆⌋

|y(tk) − X(tk)|p] ≤ C∆p

for any ∆ ∈ (0, 1]. The proof is complete. □

Remark 4.7. For positive preserving numerical methods of nonlinear SDE, Mao et al. [25] have es-
tablished a truncated EM method for stochastic Lotka-Volterra competition model but without any
convergence rate of the algorithm. Theorem 4.6 has stated that for a stochastic SIS model which the
transmission coefficient and the noise intensity are the function of AQI, the logarithmic EM method has
the first-order pth-moment convergence rate over a finite time for all p > 0. This is a major innovation
of this paper.

5. Numerical simulations

In this section, we want to illustrate the correctness of our theoretical results obtained in previous
section by numerical simulations.

5.1. Numerical simulations of stationary distribution

In this subsection, in order to show theoretical result of stationary distribution, some numerical
simulations are presented. By using explicit Milsteins method [26], the numerical scheme for Eq (2.4)
is given by:

S (tk+1) = S (tk) + µN + γI(tk) − β[
c
θ
+ (F0 −

c
θ

)e−θtk]S (tk)I(tk) − µS (tk)

+
σβ

θ
[1 − e−θtk]S (tk)I(tk)

√
∆tξk +

β2σ2S 2(tk)I(tk)
2θ2

[1 − e−θtk]2(ξ2
k − 1)∆t,

I(tk+1) = I(tk) + β[
c
θ
+ (F0 −

c
θ

)e−θtk]S (tk)I(tk) − γI(tk) − µI(tk)

+
σβ

θ
[1 − e−θtk]S (tk)I(tk)

√
∆tξk +

β2σ2S (tk)I2(tk)
2θ2

[1 − e−θtk]2(ξ2
k − 1)∆t,

(5.1)

where ξk(k = 1, 2, · · ·) are independent Gaussian random variables N(0, 1).
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Table 1. Parameter values of stationary distribution.

Parameters and the epidemiological meaning Value Unit Source of data

N: The total number of people 50 person · km−3 Assumption
S 0: The total number of people 47 person · km−3 Assumption
I0: The total number of people 3 person · km−3 Assumption
F0: The initial concentration of AQI 3000/7.07 µg · m−3 Assumption
β: Baseline transmission coefficient 2.4769 × 10−4 m3 · km3 · person−1 · µg−1 · day−1 Reference [10]
θ: Clearance rate of pollutants 0.39 day−1 Reference [12]
c: Inflow rate of pollutants 30 µg · m−3 · day−1 Reference [12]
γ: Recovery rate for infected 0.3 day−1 Reference [12]
µ: The per capita death rate 0.0707 day−1 Assumption
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Figure 1. The paths of S (t), I(t) of Eq (2.4) under different noise intensities σ = 0.05µg ·
m−3(a) and σ = 0.10µg · m−3(b).

With the parameters in Table 1 and taking T = 600, 000 day,∆t = 1 day, σ = 0.05 µg ·m−3(resp.σ =
0.10 µg · m−3), simple calculation further yields that Rs

0 = 2.569865 > 1, σ2 = 2.5 × 10−3 µg2 · m−9 <

2.47 × 10−3 µg2 · m−9 =
2µθ2

γI∗β2N2 min{S ∗2, I∗2} −
2βmax(I∗,S ∗)|F0−

c
µ |θ

2

NI∗β2 (resp.Rs
0 = 2.569875 > 1, σ2 = 1 ×

10−2 µg2 · m−9 < 2.47 × 10−2 µg2 · m−9 =
2µθ2

γI∗β2N2 min{S ∗2, I∗2} −
2βmax(I∗,S ∗)|F0−

c
µ |θ

2

NI∗β2 ) by Eqs (3.2) and
(3.14). Thus, it is immediate to get that Eq (2.4) exists stationary distribution under noise intensity
σ = 0.05 µg · m−3 and σ = 0.1 µg · m−3 by Theorem 4.1. Actually, as shown in from Figure 2, for Eq
(2.4), the probability density functions of S (600000 day) and I(600000 day) population satisfy normal
distribution under two different values of σ = 0.05 µg · m−3 and σ = 0.10 µg · m−3. This is the same
conclusion as given by Theorem 4.1.

5.2. Numerical simulations of approximation of positive solution

In this subsection, in order to illustrate the efficiency of the logarithmic Euler-Maruyama scheme,
some numerical simulations are given.
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Figure 2. Histogram of the probability density function of S (600, 000 day)(left column) and
I(600, 000 day)(right column) population for Eq (2.4) with two different values of σ : σ =
0.05µg ·m−3 and σ = 0.10µg ·m−3, the smoothed curves are the probability density functions
of S (t) and I(t), respectively.

5.2.1. Numerical simulations of the positive-preserving property

By using logarithmic Euler-Maruyama method, Eq (2.5) can be discretized in the following form:



X(tk+1) = X(tk) + [β(
c
θ
+ (F0 −

c
θ

)e−θtk)N − (γ + µ)(1 + eX(tk))

+
N
2

(
2NeX(tk)

1 + eX(tk) − N)(
σβ

θ
(1 − e−θtk))2]∆t +

σβN
θ

(1 − e−θtk)
√
∆tξk,

I(tk+1) = N −
N

1 + eX(tk) =
NeX(tk)

1 + eX(tk) .

(5.2)

With the parameters in Table 2, Figure 3 plots the sample paths of the numerical solutions of the
logarithmic EM scheme, the classic EM scheme and I = 0 person · km−3 under different initial values
(I0 = 1 person · km−3 and I0 = 10 person · km−3, respectively). It is clear to see from Figure 3 that the
purple line will have negative values, but red line will achieve the effect of maintaining positive.
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Table 2. Parameter values of approximation of positive solution.

Parameters and the epidemiological meaning Value Unit Source of data

N: The total number of people 100 person · km−3 Assumption
F0: The initial concentration of AQI 100 µg · m−3 Assumption
β: Baseline transmission coefficient 2.4769 × 10−4 m3 · km−3 · person−1 · µg−1 · day−1 Reference [10]
θ: Clearance rate of pollutants 0.3 day−1 Reference [12]
c: Inflow rate of pollutants 5 µg · m−3 · day−1 Assumption
µ: The per capita death rate 0.0707 day−1 Assumption
γ: Recovery rate for infected 0.4 day−1 Reference [12]
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Figure 3. When T = 400 day, ∆ = 1 day and σ = 5 µg · m−3, the paths of I(t) of Eq (2.4)
with Rs

0 = 0.69. Left: I0 = 1 person · km−3. Right: I0 = 10 person · km−3.

5.2.2. Numerical simulations of convergence rate

In this subsubsection, the parameters of simulations are those in Table 2. Since the exact solution
of Eq (2.5) cannot be obtained, we regard the classic EM scheme with small step size ∆ = 2−19 day as
the replacement of the exact solution I(t) of Eq (2.5). Figure 4 respectively shows that when p = 2 and
p = 3 the log2 day− log2 person · km−3 approximation errors Error(2) and Error(3) between the exact
solution I(t) and the numerical solution I(tk) with different step sizes ∆ ∈ [2−9 day, 2−8 day, · · ·, 2−4 day]
for 10,000 simulations. According to Theorem 4.6, we can get that when p is other positive values, it
also has the first-order convergence rate. In Figure 4, the blue solid line depicts log2 day−log2 person·
km−3 error while the red dashed is a reference line of slope 1 person · km−3 · day−1, and

Error(p) := (E[ sup
k=1,2,···,2/∆

|I(tk) − Ī(tk)|p])
1
p ≈ (

1
10000

10000∑
j=1

[ sup
k=1,2,···,2/∆

|I( j)(tk) − Ī(t( j)
k )|p])

1
p ,

where j stands for the jth sample path. It is clear to see from Figure 4 that the logarithmic Euler-
Maruyama method has the first-order convergence rate. This is the same conclusion as given by Theo-
rem 4.6.
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Figure 4. The approximation error of the exact solution and the numerical solution by the
logarithmic EM scheme (5.2) as the function of step size ∆ ∈ [2−9 day, 2−8 day, · · ·, 2−4 day],
with σ = 0.005 µg · m−3, T = 2 day.

6. Conclusions

In this paper, we obtain an epidemic model affected by air pollution through disturbing the inflow
rate of pollutants. First, we prove existence and uniqueness of positive solution of Eq (2.5) in Theo-
rem 3.1. Then, the sufficient conditions for diseases extinction and existence of stationary distribution
is given by Theorem 3.2 and Theorem 3.3. Next, to approximate Eq (2.5) a positivity-preserving nu-
merical method logarithmic Euler-Maruyama method is introduced. Finally, for Eq (2.5), we prove
that the logarithmic Euler-Maruyama method has the pth-moment convergence rate over a finite time
interval for all p > 0 in Theorem 4.5.

It is well known that different places have huge divergence in the degree of air pollution. In view
of this, considering the heterogeneity of each individual is an important factor in constructing more
realistic models, that is, spatially heterogeneous epidemic models affected by air pollutants. The theo-
retical analysis of these models affected by air pollutants may be more complicated and we leave it for
further investigation.
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22. G. B. Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II),
Prob. Theory Relat. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01193751

23. S. Aida, S. Kusuoka, D. Strook, On the support of Wiener functionals, in Asymptotic Problems
in Probability Theory: Wiener Functionals and Asymptotic (eds. K. D. Elworthy and N. Ikeda),
Longman Scientific Technology, (1993), 3–34.

24. W. Guo, Y. Cai, Q. Zhang, W. Wang, Stochastic persistence and stationary distribu-
tion in an SIS epidemic model with media coverage, Phys. A, 492 (2018), 2220–2236.
https://doi.org/10.1016/j.physa.2017.11.137

25. X. Mao, F. Wei, T. Wiriyakraikul, Positivity preserving truncated Euler-Maruyama method for
stochastic Lotka-Volterra competition model, J. Comput. Appl. Math., 394 (2021), 113566.
https://doi.org/10.1016/j.cam.2021.113566

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4481–4505.

http://dx.doi.org/https://doi.org/10.1155/2018/7360685
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.121759
http://dx.doi.org/https://doi.org/10.1137/10081856X
http://dx.doi.org/https://doi.org/10.1098/rspa.2011.0505
http://dx.doi.org/https://doi.org/10.1007/s10543-016-0624-y
http://dx.doi.org/https://doi.org/10.1016/S0304-4149(03)00090-5
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2006.03.006
http://dx.doi.org/https://doi.org/10.1007/3-540-46122-1_9
http://dx.doi.org/https://doi.org/10.1525/9780520375918-020
http://dx.doi.org/https://doi.org/10.1007/BF01193751
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.11.137
http://dx.doi.org/https://doi.org/10.1016/j.cam.2021.113566


4505

26. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equa-
tions, SIAM Review, 43 (2001), 525-546. https://doi.org/10.1137/S0036144500378302

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4481–4505.

http://dx.doi.org/https://doi.org/10.1137/S0036144500378302
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model and preliminaries
	Preliminaries
	Model derivation

	Dynamic behavior
	Existence and uniqueness of positive solution
	Disease extinction
	Stationary distribution

	Numerical approximation of positive solution
	The logarithmic EM method
	Strong convergence rate of method

	Numerical simulations
	Numerical simulations of stationary distribution
	Numerical simulations of approximation of positive solution
	Numerical simulations of the positive-preserving property
	Numerical simulations of convergence rate


	Conclusions

