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Abstract: This work accompanies the first part of our study “effects of dispersed fibres in myocardial
mechanics: Part I passive response” with a focus on myocardial active contraction. Existing studies
have suggested that myofibre architecture plays an important role in myocardial active contraction.
Following the first part of our study, we firstly study how the general fibre architecture affects
ventricular pump function by varying the mean myofibre rotation angles, and then the impact of fibre
dispersion along the myofibre direction on myocardial contraction in a left ventricle model. Dispersed
active stress is described by a generalised structure tensor method for its computational efficiency. Our
results show that both the myofibre rotation angle and its dispersion can significantly affect cardiac
pump function by redistributing active tension circumferentially and longitudinally. For example,
larger myofibre rotation angle and higher active tension along the sheet-normal direction can lead
to much reduced end-systolic volume and higher longitudinal shortening, and thus a larger ejection
fraction. In summary, these two studies together have demonstrated that it is necessary and essential to
include realistic fibre structures (both fibre rotation angle and fibre dispersion) in personalised cardiac
modelling for accurate myocardial dynamics prediction.

Keywords: fibre dispersion; myofibre rotation; generalised structure tensor; active stress; myocardial
contraction

1. Introduction

In this part, we will study how myofibre rotation and its dispersion affect left ventricle (LV) active
contraction. As demonstrated in many studies [1–4] and also the Part I [5], fibre dispersion can have
significant effect on passive behaviours of the myocardium. Here we will mainly review studies on
myocardial active contraction with myofibre dispersion. For a general introduction of myocardial
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mechanics and fibre dispersion in passive constitutive modelling, readers can refer to Part I [5] and
recent reviews [6, 7].

For the first time, Lin and Yin [8] reported that there was 40% cross-myofibre active stress in
their biaxial contraction tests in rabbit myocardium. Since then, modelling studies began to account
for cross-fibre active contraction using the active stress approach, in which total stress tensor consists
of passive and active parts. For example, Guccione and co-workers included cross-myofibre active
stress in the total stress to better match in vivo cardiac pump function [9, 10]. Later, Sack et al. [11]
added cross-myofibre active tension with cross-myofibre contraction ratios that were inversely
determined using a healthy porcine heart and a failing heart. Recently, Guan et al. [1] investigated the
effects of cross-myofibre active stress on cardiac pump function in which a generalised structural
tensor (GST) based dispersed active tension model was developed by assuming myofibres follow a
non-fully dispersed distribution, which was informed by experimental data, such as the
diffusion-tensor magnetic resonance imaging [12]. They found that the dispersed active stress along
the sheet direction, i.e., the transmural direction from endocardium to epicardium, would reduce the
cardiac pump function, whilst the active stress along the sheet-normal direction enhanced the pump
function. The GST-based active stress approach was also used by Eriksson et al. [13], which was
based on the κ–model [3] by assuming myofibres following a fully dispersed distribution. While
experimentally measured data demonstrates that the in-plane and out-of-plane myofibre dispersion is
different [14], suggesting an anisotropic myofibre dispersion will be more appropriate to be
considered for modelling dispersed active stress, such as the non-fully dispersed distribution.

There are a few studies [15] on how myofibre rotation angle variation affects LV passive
behaviour, but very limited on active contraction. In our previous study [1], we derived the dispersed
active tension from experimentally measured data and studied the effects of a few extremely dispersed
distributions on myocardial contraction. While there is no existing study about how myofibre rotation
angle variation affects LV contraction, and how the dispersed active tension in the sheet-normal
direction affects longitudinal contraction, we will address the two questions mentioned above in this
study, firstly by varying myofibre rotation angles from −40◦ ∼ 40◦ to −80◦ ∼ 80◦, and secondly by
increasing the sheet-normal active tension proportion from 0 to its analytical maximum using the
GST-based active tension model [1].

2. Methods

Similar to Part I [5], dispersed myofibre (fn) in a local fibre system (f0, s0,n0) can be defined by
the two spherical polar angles Θ and Φ,

fn(Θ,Φ) = cos Θ f0 + sin Θ cos Φ n0 + sin Θ sin Φ s0, (2.1)

and the domain of dispersed myofibres at each location is an unit hemisphere with
S = {(Θ,Φ)|Θ ∈ [0, π/2] ,Φ ∈ [0, 2π]}. By assuming the myofibre dispersion distribution following a
probability density function, then we have

%(fn) = %(Θ, b1, Φ, b2) = G ρin(Θ, b1) ρop(Φ, b2), (2.2)

in which ρin(Θ, b1) describes the in-plane dispersion, ρop(Φ, b2) describes the out-of-plane dispersion,
and G is a constant. We choose the π-periodic Von Mises distribution for ρin and ρout, and please refer
to Part I [5] for further details.
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2.1. Passive constitutive modelling

Following the results from Part I [5], the passive strain energy function for the myocardium is

Ψ =
ag

2bg
{exp[bg(I1 − 3)] − 1} + Ψ

I4f∗

aniso + Ψ
I4s∗

aniso +
afs

2bfs
[exp(bfsI2

8fs) − 1],

Ψ
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aniso =
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n=1

ρn
af

2bf
{exp[bf(In

4f − 1)2] − 1}H(In
4f − 1),

Ψ
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{exp[bs(Im

4s − 1)2] − 1}H(Im
4s − 1),

(2.3)

where a(g,f,s,fs), b(g,f,s,fs) are material parameters, I1 = trace(FTF), F is the deformation gradient tensor,
and I8fs = f0 · (FTF s0), in which f0 is the mean myofibre direction and s0 is the sheet direction, i.e., the
transmural direction from endocardium to epicardium. Ψ

I4f∗

aniso and Ψ
I4s∗

aniso are the sums of strain energy
of all dispersed myofibres (fn) and sheet fibres (sm), respectively, by using the discrete fibre dispersion
method [2], in which In

4f = fn · (FTF fn), Im
4s = sm · (FTF sm),H(·) is the Heaviside function to ensure the

only stretched fibres can bear the load, and discrete probability ρn of fn and ρm of sn are determined by
their respective probability density functions. Further details can be found in Part I [5].

2.2. Active stress modelling

If without myofibre dispersion, then the generated active stress is only along f, that is

σa = Ta
f ⊗ f
I4f

, (2.4)

where Ta is the active tension and I4f = f · f is the square of myofibre stretch with f = Ff0. Cross-
myofibre active contraction has been observed in the biaxial active contraction experiment conducted
by Lin and Yin [8], which has inspired modelling studies [9, 16] to include cross-myofibre active
contraction along with the myofibre contraction. Here, the dispersed active stress approach [1, 13] is
employed to take into account myofibre dispersion, that is

σa = nf Ta f̂ ⊗ f̂ + ns Ta ŝ ⊗ ŝ + nn Ta n̂ ⊗ n̂, (2.5)

in which f̂ = Ff0/|Ff0|, ŝ = Fs0/|Fs0| and n̂ = Fn0/|Fn0| are unit vectors in the current configuration,
and n0 is the sheet-normal direction and defined by n0 = s0 × f0, nf, ns and nn can be derived from a
generalised structure tensor H that is defined over an unit hemisphere using the predefined probability
density function Eq (2.2) [3, 13, 17],

H =

∫
S

%(Θ, b1, Φ, b2) fn ⊗ fn dS = diag(H11,H22,H33), (2.6)

where H11,H22,H33 are diagonal components with respect to the orthogonal material axes (f0, s0 and
n0). Thus we have

nf = H11, nn = H22, and ns = H33, (2.7)
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and nf + ns + nn = 1. The tensor H is diagonal because of the π−period Von Mises probability density
functions for the fibre dispersion and the independence assumption between the in-plane and out-of-
plane dispersion. In other words, the myofibre dispersion distribution is symmetric with respect to (f0,
s0) plane, (f0, n0) plane and (s0, n0) plane. We would like to mention that the tensor H may not be
diagonal for general fibre dispersion.

The active tension (Ta) is determined by a well-established time-varying elastance model [11,18],

Ta(t, l) =
Tmax

2
Ca2

0

Ca2
0 + ECa2

50 (l)
(1 − cos (ω(t, l))) , (2.8)

in which Tmax is the maximum isometric active tension, Ca0 is the peak intra-cellular calcium, and the
length-dependent calcium sensitivity (ECa50) is given by

ECa50(l) =
Ca0max
√

eB(l−l0) − 1
, (2.9)

where B and Ca0max are constants, l0 is the minimum sarcomere length to produce active stress, and l
is the deformed sarcomere length

l = lr

√
2Eff + 1, (2.10)

in which lr is the stress-free sarcomere length, and Eff is the Lagrange strain in the myofibre direction.
The time function after onset of contraction in Eq (2.8) is

ω(t, l) =


π t

t0
for 0 6 t 6 t0

π t−t0+tr(l)
tr

for t0 < t 6 t0 + tr

0 for t > t0 + tr

, (2.11)

where t0 is the time to peak tension, and tr is the duration of relaxation

tr(l) = ml + b, (2.12)

where m and b are constants. Finally, the total myocardial Cauchy stress is formulated using the active
stress approach,

σ = F
∂Ψ

∂F
+ σa − pI, (2.13)

where p is the Lagrange multiplier to enforce the incompressibility and I is the identity tensor.

2.3. In vivo left ventricle modelling

The same human LV model [19] as in the Part I is used here to study how different myofibre
dispersion and rotation can affect the LV pump function, as shown in Figure 1(a). The mean myofibre
direction at each location is generated using a rule-based method [15], in which the myofibre rotation
angle varies linearly from the epicardium (Θ̄epi) to the endocardium (Θ̄endo). A simplified close-loop
lumped-parameter circulation system including the aorta and the left atrium is coupled to the LV model
to provide physiologically accurate pressure boundary conditions, which is implemented using the
surface-based fluid cavities and the fluid exchanges [20] as shown in Figure 1(a). This type of boundary
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condition is equivalent to a two-element Windkessel model [21], and more details can be found in
Appendix.

LV simulations are performed by using the nonlinear finite-element software ABAQUS
EXPLICIT (Dassault Systemes, Johnston RI, USA). In brief, the dynamic system of the LV model is

Mẍ + Cẋ + Kx = Fext, (2.14)

whereM is the mass matrix, C is the damping matrix, K(x) is the nonlinear stiffness matrix depending
on the current configuration, Fext is the external forces, and x is the displacement field. To eliminate
unrealistic transient behavior, the damping matrix is introduced via Rayleigh damping [20], i.e.,

C = αM, (2.15)

where α is the damping factor. We find that α = 160s−1 can simulate LV dynamics without noticeable
oscillation, which is also the value used in the LivingHeart Project [16].

(a) (b)

Figure 1. (a) A schematic illustration of the human LV model (133,042 linear tetrahedral
elements and 26,010 nodes) with a simple circulation system that only includes left atrium
and aorta, and a rule-based myofibre structure with varying myofibre angle from Θepi to
Θendo. MV: mitral valve, AV: aortic valve, LA: left atrium, Ao: aorta, and Sys: systemic
circulation. Grounded spring with a stiffness of k is tuned to provide the appropriate
pressure-volume response (i.e., compliance) for the corresponding cavity. Flow through
valves is realized by only allowing uni-directional fluid exchanging between two cavities.
The layered myocardium constructs a right-handed orthonormal coordinate system with fibre
axis f0, sheet axis s0 and sheet-normal axis n0. (b) Positions of nodes to estimate long-axis
shortening, radial shortening and apex twist angle. L is the length of long-axis from centre
point of base plane to the inner apex point, R is the mean radius of the circular points at the
inner surface of middle section of LV, and θ is the mean rotation angle of all twisted points
with respect to their respective positions at end of diastole.

The material parameters of the passive strain energy function are re-scaled from the fitted
parameters in Part I [5] following the approach proposed in [22, 23], that is

a j = α · a0
j , b j = β · b0

j for j ∈ {g,f,s,fs}, (2.16)
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where a0
j and b0

j are the parameters of Case 4 in Part I [5]. We find that the filling volume in diastole
is around 60 ml when α = 0.4 and β = 0.5, which lies in the normal physiological range of human
cardiac function. Table 1 summarizes the passive constitutive parameters of the myocardium in this
study, along with active contraction parameters. Values of t0, m, b, l0, B, lr, Ca0 and Ca0max are
referred from [11, 18], and Tmax is inversely determined by achieving an ejection fraction within 50–
75%. Note in this study, we do not intend to simulate personalized LV dynamics, which requires extra
measurements for presonalization [19].

To simulate LV dynamics, we first preload the LV to 8 mmHg within 0.5 s to reach the end of
diastole, then the iso-volumetric contraction begins as the whole LV is contracting simultaneously,
then followed by the systolic ejection at t ≈ 0.6 s when the LV cavity pressure exceeds the aortic
pressure (about 80 mmHg), and finally the ejection ends when the LV pressure is lower than the aortic
pressure.

Table 1. Parameter values for the lumped circulatory model, passive constitutive model, and
active tension constitutive model.

Lumped circulatory model [1]

CV (MPa ·mm2 · s/tonne) k (N/mm )

CAV
V CMV

V CSys
V kAo kLA

1.2 1.0 100.0 1.2 0.1

Passive constitutive model

ag (kPa) bg af (kPa) bf as (kPa) bs afs (kPa) afs

0.1731 5.1207 1.9344 0.2199 0.2143 0.0005 0.2665 2.5505

Active tension constitutive model [12]

t0 m b l0 B Ca0 Ca0max Tmax lr

(s) (s µm−1) (s) (µm) (µm−1) (µM) (µM) (kPa) (µm)

0.2 1.0489 -1.7 1.58 4.750 4.35 4.35 120 1.85

To describe LV contraction, we further introduce the long-axis shortening, radial shortening and
apex twist angle with respect to the end of diastole (beginning of systole), as shown in Figure 1(b).
The long-axis length is the distance between the centre at the base plane and the apex point at the inner
surface, then the long-axis shortening (Lr) is

Lr = (Lt − L0)/L0, (2.17)

in which L0 and Lt are the long-axis length at the beginning of systole and the current time t,
respectively, and the radial-axis shortening (Rr) is the mean radius change of the inner wall at the
middle LV,

Rr =
Rt

i − R0
i

R0
i

(2.18)

where R0
i is the mean radius at the end of diastole, and Rt

i is the corresponding value at time t. Apex
twist angle (θ) is the average angle change of the apex in related to the end of diastole.
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3. Results

In this section, we first investigate the LV pump function with different myofibre rotation angles in
Section 3.1 with the same myofibre dispersion (b1 = 4.5 and b2 = 3.9). The values of the corresponding
scaling factors nf , ns and nn in Eq (2.5) are 0.879, 0.009 and 0.112 obtained from [1]. Then, the effect
of myofibre dispersion on the cardiac pump function is studied in Section 3.2 with the same myofibre
rotation angle whilst values of b1 and b2 vary according to the predefined values of nf , ns and nn.
Please note the sheet dispersion remains the constant fully dispersed distribution with b3 = 4.5 and
b4 = 0.0.

3.1. Transmural myofibre rotation

Seven cases are considered here with different myofibre rotation angles from the epicardium to
the endocardium, which are

• rot-80: −40◦ ∼ 40◦, and the rotation angle: 80◦;
• rot-100: −50◦ ∼ 50◦, and the rotation angle: 100◦;
• rot-120: −60◦ ∼ 60◦, and the rotation angle: 120◦;
• rot-140: −70◦ ∼ 70◦, and the rotation angle: 140◦;
• rot-160: −80◦ ∼ 80◦, and the rotation angle: 160◦;
• rot-unsym1: −30◦ ∼ 90◦, and the rotation angle: 120◦;
• rot-unsym2: −90◦ ∼ 30◦, and the rotation angle: 120◦,

and the corresponding myofibre structures are shown in Figure 2. Cases rot-80 to rot-160 have the
same angle to the circumferential direction with opposite signs at the epicardium and the endocardium,
denoted as symmetrical cases, and Cases rot-unsym1/2 have different angles to the circumferential
direction at the epicardium and the endocardium, denoted as unsymmetrical cases.

Figure 2. Myofibre structures with different transmural rotation angles.

Figure 3(a) shows the Pressure-volume (PV) loops of the seven cases, and the corresponding
values of end diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) are
summarised in Table 2. For the symmetric rotation cases (rot-80 to rot-160), myocardial contraction is
significantly improved when increasing myofibre rotation angle from 80◦ (rot-80) to 100◦ (rot-100),
with a further decrease of 5.9 ml in ESV from 55.8 ml of the Case rot-80. Less improvement in
myocardial contraction with further increased myofibre rotation angle, the smallest ESV (46.1 ml)
happens with 140◦ rotation angle. Interestingly, EDV increases 1.0 ml per 20◦ increment of the
myofibre rotation angle. Except for EF in Case rot-80 that is 46%, Cases rot-100 to rot-160 achieve an
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EF of greater than 50% with the biggest one (56.5%) occurring in Case rot-140.
Long-axis shortening is shown in Figure 3(b) where the greater negative value suggests larger

longitudinal contraction. Again, for the symmetric rotation cases, the long-axis shortening ratio at the
end of systole (t = 0.2 s) increases with increased myofibre rotation angle from Case rot-80 (5.0%) to
Case rot-160 (-16.0%). Interestingly, for Cases rot-80 and rot-100, due to the small rotation angle, the
long-axis shortening ratio is positively increasing in the early-systole rather than shortening compared
to other cases. This long-axial elongation during systole suggests that the LV does not contract
longitudinally compared to the end-diastolic shape, which means the LV contraction may not
physiologically accurate. The radial shortening is similar for all cases as shown in Figure 3(c). The
rotational angle affects the radial shortening magnitude, the less the rotational angle, the more the
radial shortening, which can be explained by more myofibres aligned along the circumferential
direction, leading to deeper contraction circumferentially, thus more radial shortening. Figure 3(d)
describes the LV apex twist, in which the small rotation angles can cause large twists, such as from
34.2◦ in Case rot-80 to 20.0◦ in Case rot-160. Summary of LV pump function can be found in Table 2,
including EDV, ESV, EF, etc.

The unsymmetrical rotation angle can also significantly affect cardiac pump function as
demonstrated by Cases rot-unsym1 and rot-unsym2 that have the same rotation angle as Case rot-120.
Compared to Case rot-120 with 55.6% of EF, both unsymmetric cases have reduced contractility with
smaller EFs (50.0 % in Case rot-unsym1 and 46.7% in Case rot-unsym2) due to much larger ESVs.
The large myofibre angle at the endocardium in case rot-unsym1 leads to a slight increase in EDV
(108.1 ml) compared to Case rot-120 (105 ml), whilst a slightly reduced EDV occurs in Case
rot-unsym2 (104.4 ml). Small myofibre angle at the endocardium in Case rot-unsym2 achieves both
higher radial (Figure 3(c)) and long-axis shortening (Figure 3(b)) compared to Case rot-unsym1 at the
end of systole, whilst they both experience less circumferential contraction and larger longitudinal
contraction compared to Case rot-120, which may be explained by more longitudinally aligned
myofibres in those two cases. Furthermore, the unsymmetrical myofibre rotation significantly reduces
the apex twist as shown in Figure 3(d), in which the apex twist angle at the end of systole is 3.0◦ for
Case rot-unsym1 and 16.3◦ for Case rot-unsym2, much less than that of Case rot-120 (25.8◦).

Table 2. Cardiac pump functions with different myofibre rotation angles. EDV: end diastolic
volume, ESV: end systolic volume, EF: ejection fraction, LES

r : Long-axis shortening at end
of systole (ES), RES

r : Radial axis shortening at ES, and θES
r : Apex twist angle at ES. σ̄ff ± ϑ

is mean and standard deviation of myofibre stress σff.

Rotation Case EDV (ml) ESV (ml) EF (%) LES
r (%) RES

r (%) θES
r (◦) σ̄ff ± ϑ (kPa)

rot-80 103.3 55.8 46.0 5.0 -32.4 34.2 33.8 ± 31.1
rot-100 104.1 49.9 52.0 -3.6 -33.8 30.4 34.6 ± 31.1
rot-120 105.0 46.7 55.6 -9.5 -33.8 25.8 34.9 ± 30.7
rot-140 106.0 46.1 56.5 -13.5 -32.4 22.3 35.8 ± 31.2
rot-160 106.9 47.6 55.5 -16.0 -30.0 19.7 37.0 ± 32.4
rot-unsym1 108.1 54.0 50.0 -10.7 -24.3 3.0 34.7 ± 37.4
rot-unsym2 104.4 55.6 46.7 -17.4 -28.9 16.3 43.7 ± 33.8
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(a) (b)

(c) (d)

Figure 3. Using different myofibre rotation structure in the LV model, pressure-volume loops
(a), long-axis shortening (b), radial axis shortening (c) and apex twist angle (d). Results from
end of diastole to end of systole in one cardiac cycle are shown because active tension plays
the primary role in cardiac dynamics during this period (about 0.2 s).

Distributions of end-systolic myofibre stress (σff) with deformed geometries are shown in
Figure 4, and mean values are listed in Table 2. The mean myofibre stress σff slightly increases from
Case rot-80 (33.8 ± 31.1 kPa) to Case rot-160 (37.0 ± 32.4 kPa) in Figure 5. Compared to Cases
rot-120/140/160, higher myofibre stress can be found at the basal region of LV in Cases rot-80,
rot-100 and rot-unsym2 with more heterogeneous stress distributions. Corresponding statistic density
distributions of σff are shown in Figure 5. It can be found that Case rot-unsym1 and Case rot-unsym2
both have more heterogeneous stress distributions compared to other cases, while Case rot-120 has
the least standard deviation suggesting the most homogeneous distribution, see Figure 5.

In sum, myofibre rotation angles can significantly affect LV pump function. For example, a
myofibre structure with a large rotation angle can lead to greater longitudinal contraction than with a
small rotation angle. For the human LV model, it shows the myofibre rotation angle in the range of
120◦ ∼ 140◦ can achieve a more physiologically accurate pump function, i.e., EF > 50%. In fact, the
myofibre rotation angle from 60◦ to -60◦ is the most widely used range in the literature [15, 19, 24],
and also within the range reported by experimental studies [25].

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4101–4119.



4110

Figure 4. Distributions of stress along myofibre σff. The solid outline is slice of end diastole
for comparison.

Figure 5. Violion plot of the stress along myofibre direction (σff) over the whole LV domain
when using different myofibre rotation structure.

3.2. Sheet-normal active tension

The reduced myocardial contraction due to the dispersed active tension along the sheet direction
has been studied in [12], in which the LV ejection fraction was reduced by 12.8% when increasing
ns from 0 to 0.2 with a constant nf = 1. One reason is that since the myocardium is incompressible,
the active tensions along the myofibre and the sheet-normal directions need to overcome the non-zero
active tension along the sheet direction before the myocardium can contract. Our previous study also
has shown that ns = 0.008 based on Sommer et al.’s measurements from human myocardium [25] and
ns = 0.0009 based on Ahmad et al.’s measurements from neonatal porcine myocardium [14]. Both
values are very close to zero, thus we assumed the active tension along sheet direction is negligible by
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setting ns = 0. Based on Eq (2.6), value of ns = 0 drops to less than 0.01 for any b1 when b2 ≥ 16,
thus we set b2 = 16, whilst values of nf and nn are determined by b1. Finally, five cases of myofibre
dispersion are compared as following

• Case f10n0: nf = 1.0, and nn = 0.0, corresponding to no-dispersion;
• Case f8n2: nf = 0.8, and nn = 0.2, (b1 = 2.9, and b2 = 16);
• Case f6n4: nf = 0.6, and nn = 0.4, (b1 = 1.35, and b2 = 16);
• Case f5n5: nf = 0.5, and nn = 0.5, (b1 = 0.85, and b2 = 16);
• Case f4n6: nf = 0.4, and nn = 0.6, (b1 = 0.35, and b2 = 16).

Note the minimum value of nf is 0.33 when b1 = 0.0 and b2 = 16, thus we only consider nf ≥ 0.4 in
this study. The corresponding myofibre dispersion distributions (b1 and b2 in Eq (2.2)) are determined
according to the values of nf, ns and nn. Myofibre structures of those above cases are the same as that
of Case rot-120 (−60◦ ∼ 60◦) in Section 3.1 but with different in-plane and out-of-plane dispersion.

(a) (b)

(c) (d)

Figure 6. Using different sheet-normal active tension in the LV model, pressure-volume
loops (a), long-axis shortening (b), radial axis shortening (c) and apex twist angle (d).

Figure 6(a) shows the PV loops of the LV model with different dispersed active tension, and the
related EDV, ESV and EF are summarised in Table 3. In general, the case with large sheet-normal
active tension has small ESV and large EDV. For example, ESV in Case f4n6 is 31.6 ml, which is
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much smaller than that in Case f10n0 with an ESV of 45.9 ml. Similarly, the long-axis shortening is
greater with increased nn as shown in Figure 6(b). Long-axis shortening ratios at the end of systole
are negative for all cases, from -8.1% in Case f10n0 to -39.2% in Case f4n6. Conversely, the radial-
shortening is smaller with more active tension along the sheet-normal direction, from -34.3% in Case
f10n0 to -27.0% in Case f4n6 as shown in Figure 6(c). It also can be found that the sheet-normal
contraction can prevent long-axis elongation during systole in Case f10n0.

Apex twist is significantly influenced by the sheet-normal active tension as shown in Figure 6(d).
When nf is greater than nn, the apex twist increases to the peak value quickly at early-systole and then
decreases slightly at late-systole, while the larger nn in Cases f5n5 and f4n6 leads to continuously
increased apex twist in systole.

Table 3. Cardiac pump functions with different myofibre dispersion distributions.

Dispersion Case EDV (ml) ESV (ml) EF (%) LES
r (%) RES

r (%) θES
r (◦) σ̄ff ± ϑ (kPa)

f10n0 104.0 45.9 55.9 -8.1 -34.3 27.8 38.5 ± 33.4
f8n2 105.2 45.3 57.0 -12.2 -33.8 23.3 30.7 ± 28.8
f6n4 107.0 41.2 61.3 -25.0 -31.6 7.5 23.1 ± 31.7
f5n5 107.4 32.9 69.4 -35.3 -28.1 10.6 17.9 ± 40.2
f4n6 108.1 31.6 70.8 -39.2 -27.0 37.4 4.5 ± 41.8

Figure 7. Distributions of stress in myofibre direction. The solid curves outline the
corresponding end diastolic boundary of the cutting plane.

Although very strong pump function can be found in Case f5n5/f4n6 according to the PV loops
in Figure 6(a), excessive longitudinal contraction with compressed myofibres around the endocardium
can be found in Figure 7, which is not physiologically correct. Compared to Case f10n0, Case f8n2 has
the more homogeneous stress distribution at the base with greater long-axis shortening. Figure 8 shows
the statistics of stress distributions for the five cases, in which Case f8n2 has the most homogeneous
myofibre stress distribution. Case f6n4 achieves the better pump function with smaller myofibre stress
than Case f10n0 and Case f8n2 while maximum σff locating at the middle LV wall and preventing the
myofibre compression in Cases f4n6 and f5n5. Mean values of σff of the whole heart at end-systole
are summarised in Table 3. The myofibre stress σff reduces dramatically from 38.5 kPa in case f10n0
to 4.5 kPa in Case f4n6 (Figure 8), which is presumably because the active tension aligns more along
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the sheet-normal direction, less along the myofibre direction.

Figure 8. Violin plot of myofibre stress (σff) over the whole LV domain when using different
dispersed active tension.

In sum, we find that nn > 0 can lead to greater long-axis contraction, smaller ESV, and much-
reduced myofibre stress at systole compared to the case without dispersion. However, using larger
nn, i.e., nn ≥ 0.4, in the LV model, excessive long-axis contraction can occur which would not be
physiological correct.

4. Discussion

In this study, we have investigated the effects of transmural myofibre rotation angles and their
dispersion distributions on cardiac pump functions, and we demonstrate that they both can
significantly affect the LV pump function. Firstly, five symmetric transmural myofibre rotation angles,
from −40◦ ∼ 40◦ to −80◦ ∼ 80◦, are compared, and the results show that the larger myofibre rotation
angle can enhance myocardial contractility with greater longitudinal contraction compared to cases
with smaller myofibre rotation angle, while the two unsymmetric myofibre rotation cases not only
have reduced pump function but also reduced apex twist, especially with a small rotation angle at the
epicardium. Secondly, the results from different combinations of nf and nn show that dispersed active
tension along the sheet-normal direction can significantly increase longitudinal contraction, even
beyond the physiological range when its portion is greater than 0.4. Thus, myofibre rotation and
dispersion both can moderate cardiac pump function by adjusting the longitudinal and circumferential
active tension, which have not been quantified in other studies. This also would suggest that a
personalized cardiac model will need to take into account fibre dispersion and rotation angle variation
rather than assuming a general fibre structure without dispersion, such as the widely used −60◦ ∼ 60◦

myofibre rotation angle [10, 15, 22].
In the cases of myofibre rotation, the dispersion is constant, which means the cross-fibre active

tension is the same in those considered cases. Different myofibre rotation angles will change the active
tension along the circumferential and longitudinal directions, and further affect the contraction along
the two directions accordingly. For example, a larger myofibre rotation angle leads to more myofibres
aligning along the longitudinal direction and a larger fraction of active tension longitudinally, thus
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greater long-axis shortening. It can be found the maximum contraction can be achieved as shown in
Figure 3, when the myofibre rotation angle is in the range of 120◦ ∼ 140◦ with the same angles at the
endocardium and the epicardium.

The myofibre rotation angle −60◦ ∼ 60◦ is widely used in rule-based myofibre structure (Case
rot-120 in this study) in many studies [1, 15, 19]. Our results show that such a myofibre structure
can achieve a physiologically accurate LV pump function, which may suggest that if experimentally
measured fibre structure is not available, −60◦ ∼ 60◦ could be a good approximation. For the cases
with unsymmetric myofibre rotation angles, both cases have reduced pump function, i.e., larger ESV
compared to Case rot-120 that has the same and symmetric myofibre rotation angle. It may suggest
that a remodelled myofibre structure leads to inefficient myocardial contraction under pathological
conditions, for example, more circumstantially aligned myofibres [26].

For myofibre dispersion cases, nn determines the longitudinal proportion of active tension and
can significantly affect the long-axis contraction. Large nn, in other words, small nf leads to reduced
myofibre stress and increased long-axis shortening, and thus reduced ESV. This may suggest that the
long-axial shortening is highly sensitive to nn. Case f8n2 has the similar myofibre dispersion as the
measured data from the human heart [25] and achieves the similar PV loop as Case f10n0 without
myofibre dispersion, which is consistent with the results in [1], but with a more homogeneous stress
distribution and greater long-axial shortening. We further find that a much-enhanced contraction can
also be achieved when nn is in the range of 0.2 ∼ 0.4. In fact, 0.4 is the cross-fibre active tension
portion reported by Lin and Ying [8]. In our LV model, a 6% increase of Tmax is required for the case
f10n0 in order to match the pump function of the case f6n4. Non-fully dispersed myofibre distribution
is used in this study, because the experimental data measured by Sommer et al. [25] and Ahmad et
al. [14] has demonstrated myofibres disperse differently in-plane and out-of-plane. Our previous study
[12] showed that active tension along the sheet direction could reduce myocardial contraction, which
should be minimal in a healthy heart. Thus, we mainly focus on the variation of nf and nn with ns = 0
by setting a large value of b2 = 16.

Together with Part I [5], we have comprehensively studied how fibre dispersion affects LV
dynamics in diastole and systole, respectively. Our results suggest it is necessary to incorporate fibre
dispersion in the passive constitutive law of the myocardium, both the myofibre and sheet fibre
dispersion. Comparable results of LV passive dynamics can be achieved with only myofibre
dispersion given that the sheet fibre dispersion can be challenging to measure experimentally. In this
study, we focus on the effects of fibre dispersion on myocardial contraction. Our results further
suggest that it is essential to include realistic fibre structure with both realistic transmural myofibre
rotation angle and its dispersion.

The active stress approach (Eq (2.5)) was employed to simulate active stress response in the
myocardium, which included the effects of myofibre dispersion using the generalised structure tensor
approach, from which three scalar factors (nf, ns and nn) can be analytically derived to characterize
dispersed active tension along each material axis. To take into account length-dependency, the active
tension Ta was computed using the myofibre stretch along the mean fibre direction (Eqs (2.8)–(2.12)).
We further tested one simulation when the active tension for each dispersed myofibre was calculated
using its own stretch rather than the mean myofibre stretch, the dispersed active stress tensor was then
evaluated using the discrete fibre dispersion approach as done in the passive response, and the results
showed that the LV pump function was almost identical to the simulation using the GST approach.
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One advantage of using the GST-based active tension model is that it allows analytical integration of
dispersed active tension with a given distribution density function, thus much higher computational
efficiency can be achieved.

In the ABAQUS implementation, we treated the myocardium as nearly incompressible through a
Lagrange multiplier which is derived from an additional term ( 1

D ( J2−1
2 −ln(J))) added to the strain energy

function with a multiple of bulk modulus D. In the implementation, the deformation gradient tensor
(F) was further decomposed to a deviatoric part (F̄ = J−1/3F) and a volumetric part, and the volumetric
part was used to compute the Lagrange mutliplier to ensure the incompressibility constraint. In our
simulations, J = 1± 0.008 at the end of diastole and J = 1± 0.009 at the end of systole, suggesting the
incompressibility was ensured. We did not meet the volumetric locking problem in all simulations.

We would like to mention the limitations of this study. Firstly, a simple circulation system is
attached to the LV model to achieve physiologically-realistic cardiac boundary conditions. The
hemodynamics characteristics in the aorta and left atrium are ignored, which can be further included
to investigate the interaction between ventricles and blood flow [21, 27]. Furthermore,
electrophysiology is not modelled here because it will dramatically increase the complexity of the
model [28]. Considering that the propagation of action potential is much faster than the mechanical
contraction, the assumption of simultaneous contraction in the whole LV is feasible as done in many
other studies [11, 12, 19].

5. Conclusions

In this study, we have systemically investigated the effects of myofibre rotation and its dispersion
on cardiac pump functions with a focus on myocardial contraction. Our results suggest that they both
can significantly affect LV pump function, especially myofibre dispersion. Large transmural myofibre
rotation angle can lead to enhanced long-axis shortening, while a small rotation angle can lead to
enhanced circumferential contraction due to more myofibres aligned circumferentially. Myofibre
dispersion redistributes active tension along the myofibre and cross-fibre directions, which determines
how the LV contacts, especially when the dispersed active tension along the sheet-normal direction is
greater than 0.4 for which excessive long-axis shortening can happen. Our two studies have
highlighted that it is necessary to include realistic fibre structures in personalized cardiac modelling.
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Appendix

A. Analogy to a Windkessl model

A simplified close-loop circulatory model is implemented here by using the fluid-cavity and
exchange modules in ABAQUS [20], which is similar to a Windkessel model. Specifically, by
neglecting the inertia effects in the circulatory model, the flow rate between the two neighboring
cavities (Qc→c+1) is driven by [20],

∆pA = Cvṁ + CHṁ|ṁ|, (A.1)

in which ∆p is the pressure difference between the two connected cavities, A is the effective area of
the fluid exchange, Cv is the viscous resistance coefficient, and CH is the hydrodynamic resistance
coefficient that is 0 in this study. Let ξ be the blood density, then ṁ = ξ Qc→c+1 and

∆p A = Cv ξ Qc→c+1, (A.2)

that is
Qc→c+1 =

∆p
ξCv/A

. (A.3)

Thus, the fluid exchange corresponds to a resistor in the Windkessel model, and its resistance is
ξCv/A.

For a fluid cavity with one face fixed and the opposite one attached to a linear spring. The stiffness
of the linear spring is k, and the area of the attached face is Ã. Again by ignoring the inertia effect and
applying the force balance condition to the face attached to the spring at current time tc, we have

Ptc Ã = k∆xtc, Vtc = V0 + ∆xtcÃ, (A.4)

where P is the fluid cavity pressure, ∆xtc is the distance the spring is compressed, V is the fluid cavity
volume. Similarly for the next time step tn, we have

Ptn Ã = k∆xtn, Vtn = V0 + ∆xtnÃ. (A.5)
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Let Q = (Vtn − Vtc)/(tn − tc), it leads to

Q =
∆xtn − ∆xtc

tn − tc
Ã. (A.6)

By substituting ∆xtn − ∆xtc = (Ptn − Ptc) Ã/k,

Q =
Ptn − Ptc

tn − tc
Ã2

k
. (A.7)

Let tn − tc→ 0, the above equation can be written as

Q = C̃
dP
dt
, (A.8)

with the compliance C̃ = Ã2/k. The equivalent Windkessel model in this study is shown in Figure A1.

Figure A1. Schematic of the LV model coupled with an equivalent Windkessel circulatory
model, which is analogous to the circulatory model in Figure 1. RAV is aortic valve
resistance, RMV is mitral valve resistance, RSys is systemic circulation resistance, CAOR is
aorta compliance, and CLA is left atrium compliance.
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