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Abstract: Adaptive immune responses can be activated by harmful stimuli. Upon activation, a cascade 
of biochemical events ensues the proliferation and the differentiation of T cells, which can remove the 
stimuli and undergo cell death to maintain immune cell homeostasis. However, normal immune 
processes can be disrupted by certain dysregulations, leading to pathological responses, such as 
cytokine storms and immune escape. In this paper, a qualitative mathematical model, composed of key 
feedback loops within the immune system, was developed to study the dynamics of various response 
behaviors. First, simulation results of the model well reproduce the results of several immune response 
processes, particularly pathological immune responses. Next, we demonstrated how the interaction of 
positive and negative feedback loops leads to irreversible bistable, reversible bistable and monostable, 
which characterize different immune response processes: cytokine storm, normal immune response, 
immune escape. The stability analyses suggest that the switch-like behavior is the basis of rapid 
activation of the immune system, and a balance between positive and negative regulation loops is 
necessary to prevent pathological responses. Furthermore, we have shown how the treatment moves 
the system back to a healthy state from the pathological immune response. The bistable mechanism 
that revealed in this work is helpful to understand the dynamics of different immune response processes. 

Keywords: immune response; cytokine storm; immune escape; mathematical model; bistable; 
feedback loops 
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1. Introduction 

The adaptive immune response is a complex process that protects our body from external 
stimuli [1]. After infection with bacteria, viruses or parasites, naive T cells undergo a process of 
activation, proliferation and differentiation. These differentiated effector cells, especially Cytotoxic T 
lymphocytes (CTLs), are responsible for clearing pathogens. Once the pathogens are removed, the 
effector cells appear to be eliminated to maintain T cell homeostasis [2].  

The immune system can discriminate between self and non-self, which depends on the precise 
control and regulation of immune cells, cytokines and signaling molecules. Kenneth introduced a 
detailed description of the immune response processes, which evolves from antigen presentation to 
effector immune defenses, and finally to the generation of immune memory [3]. Anisur reviewed the 
positive (negative) feedback loops (FLs) within the adaptive immune responses, and focuses on the 
influence of these interlocking loops on the efficient response [4]. In terms of pathological responses, 
Mok illustrated the potential mechanism by which systemic lupus erythematosus (SLE) develops from 
the point of immune dysregulation [5]. Some work has investigated the cellular and molecular 
mechanisms of immune escape in cancer, which also result from dysregulation of the immune 
system [6,7]. Therefore, both positive and negative FLs are important for the normal function of the 
immune system.  

Mathematical modeling has proven to be a valuable tool to understand the immune system. In [8], 
the advantages of positive FLs are fully illustrated.  Nicolas presented a conceptual mathematical 
model of autoimmune disease which is characterized by a positive FL [9]. Wang developed a HIV-
immune model and analyzed the bistable response within the immune system [10]. Modeling studies 
on human hepatitis B virus (HBV) infection analyzed the relationship between HBV and the CTL-
mediated immune response, and the simulation and theoretical results can interpret the wide range of 
clinical manifestations of HBV infection by taking different sets of parameters [11]. The role of 
negative FLs on immune response is also studied in some modeling work. Kalet well explained the 
tolerance of the immune system by a negative FL between Treg and effector T cells [12]. Given that 
transforming growth factor beta (TGF β) functions as an inhibitory protein to effector immune cells, 
Mark analyzed the immunosuppressive mechanism induced by TGF β related negative feedback [13]. 

At the same time, tumor cells escape from immune-mediated destruction also attracted the 
attention to many scholars. Seyed described myeloid derived suppressor cells (MDSC) -induced 
immunosuppression mediated by tumor, which forms a positive FL between tumor and effector 
cells [14]. Lai has introduced PDE models with immune checkpoint proteins [15–18], and their studies 
focus on the efficacy of combinatorial inhibitor treatment for different cancer subtypes. These results 
are also consistent with clinical findings [19,20], in which the use of inhibitor therapy alone may lead 
to tumor hyper progression or cytokine storms. 

There are also extensive studies on feedback mechanisms in immune system. Kormarova 
considered a two-dimensional ODE model (virus and immune cells) for antiviral immune response, 
and present a simple relation between timing of therapy and efficacy of drugs required for success [21]. 
Wodarz built an ODE framework to study oncolytic virus dynamics. They found that whether the 
viruses can eliminate the tumor depends on the replication rate of virus, which give potential 
implications beyond the study of virus therapy of cancers [22]. Lowengrub highlight the dynamic 
interaction of macrophages within a growing tumor, and showed that M2 cells lead to larger tumor 
growth through a modeling framework, which may help to optimize cancer immunotherapy [23]. All 
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these models give a detailed description about how immune system works to clear pathogens. 
From the models mentioned above, we know that the FLs in immune system are responsible for 

a lot of diseases. However, some issues between biological behavior and modeling work remain 
unclear. For example, in an immune model with a positive FL, how to understand the hypersensitivity 
that occurs after the pathogen is eliminated, and why the immune system did not return to the healthy 
state of a bistable model. Furthermore, the regulatory effects of negative FLs on bistable model, 
especially the modeling of tumor immune escape behavior, also are not well studied. Based on these 
problems, we prefer to propose a model to explore the mechanism of hypersensitivity using irreversible 
bistability, and to understand the immune escape based on the role of negative FLs on bistability.  

In this work, we develop a nonlinear model of the adaptive immune response. Compared with the 
existing models, the present model explains the mechanism of cytokine storm, which is induced by an 
irreversible bistability. The irreversibility results from ultra-strong positive feedbacks or ultra-weak 
negative feedbacks. What is more, we explain the mechanism of immune escape caused by ultra-strong 
negative feedbacks, which change the stability of the model from bistable to monostable. These 
mechanisms are also the novelties of the present model. The organization of the rest of the paper is as 
follows. Section II presents the mathematical model that describes infection-immune interactions. In 
section III, we outline the numerical simulation results which are qualitatively consistent with 
experimental results and theoretical analysis of the model. In this section, several pathological 
response behaviors will be reproduced, and the treatments for the pathological responses will also be 
discussed. We also compare the impact of different treatment methods and duration on the final 
outcome in this part. At last, section IV is a conclusion of the work. 

2. Model formulation 

2.1. Model description 

Figure 1 is a schematic diagram illustrating the relationship between the infection and the immune 
system. The infected cells produce antigens, which are collected by dendritic cells. These dendritic 
cells interact with naive T cells, and activate them. Then, activated T cells secrete multiple cytokines, 
such as Interleukin-2 (IL-2), IL-6 and Interferon-γ (IFN-γ), which causes more naive T cells activation 
and proliferation. Upon expansion, activated T cells will differentiate into two cell types with different 
functions, namely CTLs and regulatory T cells (Tregs). The former releases cytotoxic cytokines to 
destroy infected cells, and the latter releases anti-inflammatory cytokines to inactivate the former. 
Furthermore, inhibitory protein production could also be indirectly promoted by CTLs to prevent 
overactivation of the immune system. 

The infection-immune model in Figure 1 includes many regulatory FLs. There are two negative 
FLs and two positive FLs within the immune system, one of which is the self-promotion of activated 
T cells. If we consider the infected cells, one more negative feedback is present. 
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Figure 1. A diagram of immune response to infection. Dotted lines indicate positive (black) 
or negative (red) regulations, and solid line denote the transition between immune cells. 

2.2. Model equation 

The proposed mathematical model was developed utilizing five ordinary differential equations. 
Here we assume that the population of naive T cells is sufficient, and we only consider activated T 
cells, CTLs, Tregs, infected cells and inhibitory proteins as the model variables. In the absence of 
adequate experimental data, the model presented here is qualitative, not quantitative. The principles of 
model formulation include: the regulations result from realistic experimental data, and the model 
should reproduce the qualitative features of realistic immune response behavior. Specifically, we select 
arbitrary parameter values for which the model exhibits qualitative behaviors consistent with the 
normal response process. Equations of the five variables are show as follows: 

𝛼 ∙ 1 𝜆 ∙ 𝐾 ∙ ∙ 𝑒 ∙ 𝑋 𝑒 ∙ 𝑋 ∙ 1 𝜇 ∙ 𝑑 ∙ 𝑋        (1) 

𝑒 ∙ 𝑋 𝑙 ∙ ∙ 𝑌 𝑑 ∙ 𝑌                                                                  (2) 

𝑒 ∙ 𝑋 ∙ 1 𝜇 ∙ 𝑑 ∙ 𝑍                                                                  (3) 

𝐾 ∙ 𝐶 ∙ 1 ∙ 𝑙 ∙ 𝑌 ∙ 𝐶 𝑑 ∙ 𝐶                                              (4) 

𝛽 ∗ 𝑑 ∙ 𝑃                                                                                     (5) 

Equation (1) describes the population of the activated T cells. The first term represents 
transformation of naive T cells to activated T cells due to infection [24,25], 𝛼, 𝜆 are the activation rate 
and maximum recruitment rate of infected cells to naive T cells. The second term describes the self-
promotion of activated T cells [26–28], which can be suppressed by inhibitory proteins [20,29]. The 
third and fourth terms represent differentiation to CTLs and Tregs respectively. In addition, Treg 
differentiation could be facilitated by inhibitory proteins [30,31]. The last term is an apoptotic term. 

Equation (2) gives the population of the CTLs. The first term is differentiation source of CTLs. 
The second term accounts for the reduction of CTLs by Tregs, due to the competition of IL-2 [32,33]. 
The last term 𝑑 ∙ 𝑌 represents natural death. 

Equation (3) gives the population of the Treg. 𝑒 ∙ 𝑋 ∙ 1 𝜇 ∙   is differentiation source of 
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Tregs, 𝜇  is the maximum promotion rate for Treg differentiation due to inhibitory proteins. 𝑑 ∙ 𝑍 
represents natural death. 

Equation (4) models the population of the infected cells. It is assumed that infected cells follow 
a logistic growth formula with Allee effect, which could be indicated by the first term [34–36]. The 
second term in this equation describes elimination of infected cells by CTLs [ 37,38]. 𝑑  is the rate of 
normal cell death. 

Equation (5) describes the population of the inhibitory proteins. We consider inhibitory proteins 
primarily produced by CTLs, this term explains the mechanism of immune system to prevent 
overactivation [39,40]. 𝛽 in the first term is max production rate. 𝑑 ∙ 𝑃 describes protein degradation. 

3. Results 

3.1. Simulation for the normal immune response 

 

Figure 2. The normal immune response process (self-healing). Plots indicate the growth of infected 

cells (A) and immune cell populations (C) over time. Parameters values are taken from Table 1. In 

this case, the immune system is able to clear the infection. (B) and (D) show the normal immune 

response process: dynamics of the viral titer and the number of T cells.  

We used our model to first mimic the normal immune response to infection, which is a self-
healing process. As shown in Figure 2, the immune cells first undergo activation and expansion to 
clear infection, and then inactivation to return to their initially healthy levels. Initially, the immune 
system is in a healthy state, with infected cell populations varying from 0 to a large value (we take 100 
here) after infection is present. In this case, the presence of infected cells induces the activation of 
naive T cells, so the population of activated T cells will expand, leading to the increase of CTL 
population in Figure 2C. Next, the population of Tregs will also increase due to differentiation of 
activated T cells. Since the population of CTLs at the early time is not sufficient to control the infection, 
infected cell populations will continue to increase. Until CTLs accumulate to a greater population to 
compete with infection, the population of infected cells will decrease because of killing by the CTLs. 
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To prevent overactivation of the immune system, inhibitory proteins induced by CTL down-regulate 
the response by promoting Tregs and suppressing activated T cells. This process allows the immune 
system to be inactivated and return back to the initial state once the infection is cleared. 

Figure 2A,C show the normal immune response process by the model. Figure 2B,D shows the 
process of virus infection in experimental murine which are performed in vivo. The data points in these 
are shown by mean [41]. We connect adjacent data points with straight lines, to make it easy to explain 
a general trend. In the beginning, the population of immune cells are small. With the expanding of 
virus, the immune cells are activated and proliferates quickly to clear virus. When virus is eliminated, 
the population of immune cell will decrease to their original level. These figures depict a normal 
immune response process, which is also a process of activation first and then inactivation. Simulation 
results in Figure 2A,C are consistent qualitatively with the experimental results in Figure 2B,D. 

Table 1. Parameters for Eqs (1)–(5). 

Parameter Definition Value Unit 
𝛼 Activation rate due to infection 0.01 arbitrary
𝜆 Maximum recruitment rate of naive T cells by infected cells 8 arbitrary
𝐶  Half-saturation parameter for activation by infected cells 5 arbitrary
𝐾  Maximum self-promotion rate of activated T cells 0.58 arbitrary

𝑋  Half-saturation parameter for self-promotion of activated T cells 0.26 arbitrary

𝑃  Half-saturation parameter due to inhibition by inhibitory proteins 1 arbitrary

𝑒  Differentiation rate of CTLs 0.8 arbitrary
𝑒  Differentiation rate of Tregs 0.2 arbitrary

𝜇 
Maximum promotion rate of Treg differentiation due to inhibitory 
proteins 

5 arbitrary

𝑃  
Half-saturation parameter for Treg differentiation due to promotion 
by inhibitory proteins 

100 arbitrary

𝑑  Death rate of activated T cells 0.1 arbitrary

𝑙  CTL decrease rate due to inhibition by Tregs 2.5 arbitrary

𝑍  
Half-saturation parameter for CTLs decreasing due to inhibition by 
Tregs 

4 arbitrary

𝑑  Death rate of CTLs 0.1 arbitrary
𝑑  Death rate of Tregs 0.1 arbitrary
𝐾  Proliferation rate of infected cells 1.2 arbitrary
𝐶  Carry capacity of infected cells 9000 arbitrary
𝐶  Allee constant 300 arbitrary

𝑙  Decreasing rate of infected cell by CTLs 0.5 arbitrary

𝑑  Death rate of infected cells 0.01 arbitrary
𝛽 Maximum production rate for inhibitory proteins 3 arbitrary
𝑌  Half-saturation parameter for protein production due to CTLs 9 arbitrary
𝑑  Degradation rate of inhibitory proteins 0.3 arbitrary

*Note: parameters of all simulations in the paper are taken from this table unless otherwise specified. 
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3.2. Simulation for pathological immune responses 

This section presents three different types of pathological immune response processes under 
different immunological conditions, just as shown in Figure 3. 

Figure 3A,B describe an immune response process in which infected cells proliferate with higher 
proliferation rate (𝐾  changes from 1.2 to 2). During the first several days, infected cells in Figure 3A 
rapidly expand due to higher 𝐾 . Additionally, immune cells will be activated, and begin competing 
with the infected cells. However, although infected cell populations decrease from 6th day, they will 
increase then and eventually maintain a high level. Because the infected cells cannot be eliminated all 
the time, the immune system will be continually activated. Figure 3A,B suggest that if the infected 
cells proliferate quickly, infected cells could proliferate rapidly within a short time. In this situation, 
the immune system cannot remove the infection on its own, which activate the immune system and 
results high levels of immune cytokines. Figure 3C shows the kinetics of TNF-a in the acute 
inflammatory response, which are performed on human lung tissue, in vitro [42]. Compared with 
control group, the concentration of TNF-a (cytokine that induces inflammation) maintains at a 
significantly high level in the lipopolysaccharide (LPS) stimulated tissue.  

 

Figure 3. Pathological responses of the model and several experimental results. Left and center columns 

relate to model results, including the immune response to infection (A&B&D&E&G&H), and to tumor 

cells (J&K). In detail, immune response in (A&B) corresponds a fast proliferation of infected cells 

(𝐾 2). For (D&E), the immune system has a low production rate of inhibitory proteins (𝛽 1). A 

high self-promotion rate (𝐾 0.65) of activated T cells is considered in (G-H). Right column gives 

several immunological responses from experiments: (C) describes the dynamics of TNF-a in acute 

inflammation response.  (F&I) show dynamical population of T cells and IL-6 in control group and 

patients after CAR-T therapy. (L) describes the dynamics of PD-L1 in mouse immune cells. 

In contrast to Figure 2, the populations of immune cells in Figure 3C cannot return to their initial 
levels after the infection has been cleared. Because of the lower production rate of inhibitory proteins, 
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the populations of activated T cells and Tregs are not to be downregulated. 
Figure 3D,E are consistent with the characteristics of cytokine release syndrome (CRS) or 

cytokine storm, suggesting that negative feedback is associated with CRS. In the absence of negative 
feedback or the negative feedback is weak, the immune system could remove the infection, but it 
cannot return to its healthy state and a complete immune response process cannot be achieved. 
Cytokine storms will cause destruction to multiple normal organs. 

Figure 3G,H can also capture the characteristics of cytokine storms, which results from the strong 
positive feedback induced by larger 𝐾 . Compared with Figure 3D,E, Figure 3G,H suggest that even if 
the production rate of inhibitory proteins (𝛽) is moderate, if the self-promotion of activate T cells is 
very strong, immune cell populations will remain at a high level after the infection is eliminated. 

Figure 3G,H show that both higher self-promotion rate of activated T cells and lower production 
rate of inhibitory proteins in the model could replicate the features of cytokine storms. This figure 
suggests that there should be a balance between activation and inhibition during the normal immune 
response. If the activation is ultra-strong or the inhibition is ultra-weak, the immune system will not be 
inactivated to its healthy state after the infection is cleared, and will remain activated forever. Figure 3F,I 
give the concentrations of immune cells and cytokines in serum obtained from patients, which are 
performed in vivo, and patients maintain a high level of cytokines and immune cells after CAR-T 
therapy [43]. 

Tumor development is closely related to the immune system, so we consider a long-term immune 
response process in our model. Compared to the infection model, tumor cells can prevent attacks from 
the immune cells by a number of mechanisms [7,44,45], including the overexpression of inhibitory 
immune checkpoint molecules (e.g., PD-1, CTLA-4, Tim-3). Take the coinhibitory immune complex 
PD-1/PD-L1 as an example. Tumor cells are capable of overexpressing the membrane protein PD-L1, 
and the binding of PD-L1 and PD-1 blocks the proliferation of activated T cells and contributes to Treg 
differentiation [30,46]. The mechanism of tumor immune escape by PD-1/PD-L1 suggests there is a 
positive regulation of tumor cells to inhibitory proteins production. It’s to say, one additional regulation 
should be added to Eq (5) for this model, which is shown below, 

𝛽 ∗ 𝐾 ∙ 𝑑 ∙ 𝑃                                                 (6) 

In Figure 3J, the population of tumor cells gradually accumulates at an early stage. Once the 

population increases to a critical level, the ultra-strong inhibition induced by the second term  𝐾 ∙  

of Eq (6) is activated, which leads to the suppression of activated T cells and ultimately contributes to 
the proliferation of tumor cells. There are two features of this immune response: one is that tumor cells 
cannot be removed due to the addition of inhibitory proteins, the other is that the population of tumor 
cells cannot increase rapidly due to early accumulation. 

Figure 3J,K demonstrate that by adding the above regulation, the time required for tumor to grow 
into a pathological population is prolonged. During this period, the tumor and the immune system are 
in a gaming state. Compared to Figure 2, the results in Figure 3J,K show that it’s the added regulation 
that helps tumor to escape from immune cell-mediated destruction. Figure 3J,K are consistent 
qualitatively with the experimental results shown in Figure 3L, in which PD-L1 is greatly expressed 
for a long time in mice bearing T9 sarcoma cells [47]. 

Our mathematical model well reproduces several different immune response processes (Figure 3). 
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For these processes, there are obvious differences between normal responses and pathological 
responses, and these mechanisms are not clear.  

3.3. Dynamical analysis 

Our earlier model includes the FLs between two components (infection and immune system). In 
order to determine the mechanism of different response behaviors within the immune system, we view 
the infection as a constant stimulus to the immune system in the following section. The reduced model 
developed here opens up the closed loop between the immune system and the stimulus. Figure 4 is a 
reduced model including a constant stimulus, and retain the FLs inside the immune system. 

 

Figure 4. A diagram of immune response to a constant antigen stimulus. The thick and 
black line is a constant stimulus. Dotted lines indicate positive (black) or negative (red) 
regulation, and solid line denote the transformation between immune cells. 

Equations of the four variables corresponding to the Figure 4 are show as follows: 

𝑠 𝐾 ∙ ∙ 𝑒 ∙ 𝑋 𝑒 ∙ 𝑋 ∙ 1 𝜇 ∙ 𝑑 ∙ 𝑋                               (7) 

𝑒 ∙ 𝑋 𝑙 ∙ ∙ 𝑌 𝑑 ∙ 𝑌                                                       (8) 

𝑒 ∙ 𝑋 ∙ 1 𝜇 ∙ 𝑑 ∙ 𝑍                                                       (9) 

𝛽 ∗ 𝑑                                                                              (10) 

Figure 5 shows the steady production of the CTLs as a function of the constant stimulus 𝑠 under 
different  𝐾  and 𝛽. 𝐾  is the self-promotion rate of activated T cells, which determines the strength of 
positive feedback in Figure 4. 𝛽 is the production rate of inhibitory proteins by CTLs. 
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Figure 5. System’s multi-stable response under different positive and negative regulations. (A) 

Bifurcation results under different self-promotion rate of activated T cells. (B) Bifurcation results 

under different production rate of inhibitory proteins. Black lines indicate stable steady points, red 

lines indicate unstable steady points. For both panels: ① reversible and bistable, ② monostable, 

③ irreversible and bistable. 

The bifurcation line ① (both in Figure 5A,B) is the control cases (normal situation), in which 
𝐾 0.45, 𝛽 3. For one healthy individual, 𝑠 0 and 𝑌 𝐶𝑇𝐿 0. As 𝑠 increases from 0, so does 
the stable population of CTLs. Once 𝑠 increases to pass a critical value (≈ 0.03806), the system loses 
its lower branch, and the CTLs population jumps up to the upper branch. This means that once the 
infection reaches a critical population, the immune system initiates a strong response. Then, the 
immune system suppresses the infection and 𝑠 decreases. Once 𝑠 is reduced to a critical value (≈ 0.01157), 
the system loses its upper branch, and the CTLs jumps down to the lower branch. In this way, the 
immune system is able to eliminate the infection. This process characterizes the mechanism of normal 
immune response process. 

If 𝐾  is greater than the control value of Figure 5A, the bistable switch become irreversible. This 
means that after jumping up to the upper branch of line ②, even if the activated immune system could 
clear the stimulation, the population of immune cells still remains a much high level. This case is 
consistent with the immune response observed in Figure 3D,E and Figure 3G,H.  

If 𝐾  is lower than the control value of Figure 5A, the bistable switch become monostable. In this 
case, small 𝐾   induces a weak FL that cannot guarantee bistability. The corresponding immune 
response cannot achieve a switch-like behavior. 

Because the inhibitory proteins directly suppress the FL, altering β (Figure 5B) will lead to the 
change of steady states, which is opposite to the change of  𝐾  . In the previous infection model 
(nonconstant), the pathological responses (cytokine storms) in Figure 3D,E and Figure 3G,H 
correspond to irreversible bistability ③ in Figure 5B and Figure 5A respectively. The pathological 
responses process (tumor immune escape) in Figure 3G,H corresponds to ② in Figure 5B. In the 
section below, we will present the treatment for these pathological immune responses.  
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3.4. Drug treatments 

3.4.1. Treatment for pathological response with greater  𝐾  

The immune response to a common infection follows a switch-like behavior (Figure 5①). In 
infected cells with high proliferation rates, the immune response begins with a jump to the upper 
branch of the switch, but the jumping down behavior is absent because the immune system is unable 
to decrease the stimulus s. In this case, antibiotics or other drugs are necessary to complete the normal 
immune response. 

Antibiotics are often used to treat bacterial infections. Some antibiotics reduce the growth rate of 
bacteria by interfering with their DNA replication, and some antibiotics increase their mortality by 
inhibiting the synthesis of cell walls. Therefore, we can use two intervention methods to mimic the 
antibiotics treatment (decrease  𝐾  and increase  𝑑 ). The details are show in the following figure: 

 

Figure 6. Simulations for the antibiotic treatments. Medication duration for the upper panel 

(A&B&E&F) is from 2th day to 8th day, while lower panel (E&F&G&H) is from 5th day to 11th 

day. Drug target of (A&B&E&F) is the proliferation rate, while (C&D&G&H) is the death rate. 

The length of pink lines at the top of each subfigure represents the duration of the medication. 

As shown in Figure 6A–D, both decreasing 𝐾  (from 0.8 to 0.4) and increasing 𝑑  (from 0.01 
to 1.05) can eliminate the infection, and eventually the population of immune cells decreases to its 
original level. However, if we postpone the onset of treatment in Figure 6E–H, although the infected 
cell population decreases to a much lower level, it will increase and maintain a high level once we stop 
the treatments. This figure indicates that the time to start treatment is also important to clear infections. 

3.4.2. Treatment for cytokine storm 

Cytokine storm is a systemic inflammatory syndrome, and will result in increased levels of 
cytokines and overactivation of the immune system. During the adaptive immune response (Figure 1), 
the activated immune cells secrete cytokines to activate more naive immune cells. This process is a 
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key positive feedback loop, which rapidly initiates the immune response.  
However, an abnormal and uncontrolled production of cytokines has been observed in some 

diseases, such as cytokine release syndrome after CAR-T therapy, arthritis (RA) and SLE. In these two 
diseases, an invader (bacteria or virus) triggers an immune response and leaves antibodies in the body. 
However, these antibodies may not be unique enough so that the immune system initiates the immune 
response to autoantibodies, and this induces high populations of immune cells and cytokines. 

Glucocorticoid therapy is widely used to treat diseases caused by hypersensitivity. These diseases 
are similar to the immune response behavior in Figure 3C–F, in which the infection is removed and 
the population of the immune cells retains high. Glucocorticoids reduce the rate of cytokine production, 
and attenuate the FL. Once it reaches a critical value, the bistability of the system is changed from 
irreversible to reversible, which corresponds to the Figure 2. After the infection is removed, immune 
cells and cytokines will return back to their healthy levels.  

In our model, the cytokine production rate is determined by 𝐾 , so we can reduce 𝐾  to mimic the 
glucocorticoid treatment. Whether the cytokine storm is caused by an ultra-strong positive FL or an 
ultraweak negative FL, it can be cured by glucocorticoids as shown in Figure 7. Given the multiple 
side effects, it is necessary to pay more attention to the dose and duration of glucocorticoid treatment. 

 

Figure 7. Simulation of glucocorticoid treatment. Panel (A) and (B) are treatments of 
cytokine storms induced by larger 𝐾  and smaller 𝛽. Every subpanel indicates a different 
administration proposal. The length of pink line at the top of each subfigure represents the 
duration of the medication, while the height represents the dose of the medication. 

Figure 7A1,B1 refer to large dose of glucocorticoids, and after 13 and 11 days of maintenance 
medication, immune cell populations can all drop to their original and normal levels. Figure 7A2,B2 
refer to moderate dose, and after 20 and 18 days of maintenance medication, immune cell populations 
also decrease to their original levels. Figure 7A3,B3 refer to small doses and intermittent medication 
for 45 days, while immune cell populations remain at high levels indefinitely.  

Figure 7 indicates that the dose and duration of medication are two critical factors in the treatment 
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of cytokine storms. Clinically, developing an individualized medication proposal based on the patient 
will be the best way to prevent the side effects of glucocorticoid.  

3.4.3. Treatment for tumor immune escape 

Tumor cells can escape anti-tumor immune responses through numerous mechanisms, one of 
which is the over-expression of coinhibitory membrane proteins, such as the immune-checkpoint 
molecule PD-L1. Immune-checkpoint therapy aims to block PD-1 binding with PD-L1, and this 
therapy has proven effective for some cancers.  

For the tumor immune escape in our model (Figure 3G,H), the steady state is changed from ① to ② 
in Figure 5B, so an efficient removal process cannot be initiated. By introducing PD-1 inhibitors, the 
pathway between tumor cells and inhibitory proteins is inhibited, and the steady state returns to the 
healthy state. 

 

Figure 8. Simulation of immune checkpoint inhibitor treatment. Treatments identify the 
production rate of inhibitory protein by tumor cells as a drug target under different time to 
start the medication. Medication duration for the upper panel (A&B) is 180th–210th day, 
while lower panel (C&D) is 190th–220th day, The length of pink line at the top of each 
subfigure represents the duration of the medication. 

In our tumor model (Figure 6), this treatment could suppress the production of inhibitory proteins 
that are promoted by tumor cells. To mimic the PD-1 inhibitor treatment, we decrease 𝐾  to half to 
initiate the immune response. When the treatment begins earlier (Figure 8A,B), immune cells can be 
greatly activated, and then tumor cells can be cleared. However, if the treatment is initiated 10 days 
later (Figure 8C,D), immune cells can only be activated to a small extent, and tumor cell populations 
rapidly increase to high levels. This figure suggests it’s better to take medicine at an earlier time for 
tumor treatment. 
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4. Conclusions 

The immune response is a complex process, and this process involves the regulation of different 
immune cells, signaling molecules and cytokines via positive or negative FLs. FLs have been shown 
to play a crucial role in shaping an efficient immune response. In this work, we propose a qualitative 
mathematical model to explain the different immune response behaviors, especially the pathological 
immune responses. 

Our model incorporates one positive FL and two negative FLs within the immune system, and 
the modeling principle is based on the biological regulations. When the immune system encounters a 
foreign antigen, immune cells become activated and expand quickly, which characterized by a switch-
like behavior mediated by positive FLs. In order to maintain self-tolerance, the immune system 
develops negative FLs, and the immune cells are attenuated or switched off to retain homeostasis after 
the antigen is removed.  

The immune system’s switch-like behavior can be reproduced by our model, and this behavior 
presents a normal immune response process. However, many diseases are caused by pathological 
immune responses. For some autoimmune diseases accompanied by the overactivation of the immune 
system, our model with high (low) strength of positive (negative) FL could replicate these disease 
progressions. Simulations show that immune cell populations do not fall back to their initial levels 
when infection was eliminated, which is consistent with experimental data. In this case, the immune 
system alone is not fully effective against the progression of infection, additional drug treatments, such 
as immunosuppressive drugs, can help to achieve the switch-like behavior again. During tumor 
development, studies have found multiple mechanisms of immune escape in the tumor immune cycle. 
We modeled the effects of PD-L1 overexpression on tumor progression, and found that this 
overexpression weakens the negative feedback of the model, which leads to the absence of switch-like 
behavior either. Bifurcation analysis of reduced model illustrates that any abnormal positive (negative) 
FLs lead to a pathological immune response. A normal and efficient switch-like response results from 
a balance between positive FLs and negative FLs.  

In conclusion, the present study proposes an ODE-based mathematical model of immune 
responses. The model could reproduce several different pathological responses, which result from the 
imbalance between FLs. Our model and results are useful for understanding of immune system behaviors. 
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