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Abstract: It is widely acknowledged that an imbalanced biomechanical environment can have signif-
icant effects on myocardial pathology, leading to adverse remodelling of cardiac function if it persists.
Accurate stress prediction essentially depends on the strain energy function which should have com-
petent descriptive and predictive capabilities. Previous studies have focused on myofibre dispersion,
but not on fibres along other directions. In this study, we will investigate how fibre dispersion affects
myocardial biomechanical behaviours by taking into account both the myofibre dispersion and the
sheet fibre dispersion, with a focus on the sheet fibre dispersion. Fibre dispersion is incorporated into a
widely-used myocardial strain energy function using the discrete fibre bundle approach. We first study
how different dispersion affects the descriptive capability of the strain energy function when fitting to
ex vivo experimental data, and then the predictive capability in a human left ventricle during diastole.
Our results show that the chosen strain energy function can achieve the best goodness-of-fit to the ex-
perimental data by including both fibre dispersion. Furthermore, noticeable differences in stress can
be found in the LV model. Our results may suggest that it is necessary to include both dispersion for
myofibres and the sheet fibres for the improved descriptive capability to the ex vivo experimental data
and potentially more accurate stress prediction in cardiac mechanics.

Keywords: fibre dispersion; strain energy function; left ventricle model; passive myocardial
mechanics; stress prediction

1. Introduction

Cardiac disease remains one of the tops kills worldwide, in particular the adverse remodelling of
cardiac function. Many factors have been acknowledged which are responsible for the deterioration in
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heart function, of which is stress. A few studies have demonstrated that an imbalanced biomechanical
environment can have significant effects on triggering myocardial pathology [1, 2]. However, it is
nearly impossible to measure stress in vivo. On the contrary, patient-specific biomechanical models can
predict detailed stress fields, in which the myocardial constitutive law is a crucial component. Many
myocardial constitutive models have been proposed to capture myocardial mechanical behaviours,
ranging from linear elastic to hyperelastic, from isotropic to anisotropic, and from phenomenological
to microstructurally informed constitutive laws [3]. In these mathematical models, myofibre structure
plays the important role to determine the spatial passive and active stress responses of myocardium.

Nowadays, the prevalent practice is to treat myocardium as an anisotropic and hyper-elastic ma-
terial. To this end, the invariant-based Holzapfel and Ogden (H-O) model [3] has been widely used in
the cardiac modelling community for personalized modelling [4–7], which incorporates strain invari-
ants from two families of fibres, one for the myofibre and the other one for the fibre along the sheet
direction or the transmural direction. For example, the LivingHeart Project [6] used the H-O model in
a four-chamber heart model. In a series of studies, Gao et al. [5, 8] studied myocardial biomechanics
both in passive diastole and active systole by implementing this H-O model into an immersed-boundary
based finite-element LV model, and later in a poroelastic heart model [9]. Wang et al. [10] explored
the effects of myofibre orientation on the diastolic filling process of the left ventricle (LV) by using the
H-O model. Recently, Guan et al. [11] studied how accurate the general H-O model is when fitting
to various ex-vivo experimental data, such as biaxial tests or simple shear tests. They found that the
H-O model has good descriptive and predictive capability for characterizing myocardial mechanical
behaviours. Alternatively, Gao et al. [12] firstly explored the inverse estimation of material parameters
of the H-O model using in vivo data, with recent extension using machine-learning based statistical
emulators for faster parameter inference [13, 14].

Often existing studies assumed myofibres or collagen fibres align perfectly along one unique di-
rection at a specific location. Experimental data has clearly suggested that both myofibres and collagen
fibres are dispersed in the myocardium [15, 16]. With the fast development of imaging technologies,
detailed data of collagen network can be measured and quantified, which has led to micro-structurally
informed constitutive modelling by taking into account dispersed fibres [17–20]. In specific, cardiac
modelling studies also [19,21–24] have begun to consider dispersed myofibres rather than assuming all
fibres aligning perfectly along one direction. To model fibre dispersion, a probability density function
is usually used, such as the π-periodic von Mises distribution [18,25,26]. Then, the total strain energy
function is the sum of each dispersed fibre’s mechanical contribution, such as the angular integration
method [17]. In general, accounting for each fibre contribution can be very computationally expen-
sive. Another approach to incorporate dispersed fibre contributions is the generalised structure tensor
method that analytically determines the proportion of fibre dispersion along each material axis [18],
while to exclude compressed fibres can be very difficult. To overcome the computational cost in the an-
gular integration approach and the difficulty in excluding compressed fibres in the generalised structure
tensor model, Li et al. [26] proposed a discrete fibre dispersion model (DFD) that is an approximation
of the angular integration model using pseudo-fibre bundles. In this study, we will follow the DFD
approach for taking into account fibre dispersion at the same time for the convenience of excluding
compressed fibres.

Although a few studies have shown that myofibre dispersion can have significant effects on my-
ocardial mechanics [19, 22, 24, 27], a few studies have investigated the effects of sheet dispersion,
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i.e., the collagen fibre dispersion around the sheet direction, except Eriksson et al. [19] who included
myofibre and sheet dispersion for the two anisotropic terms in the H-O model. However, they only
considered the fully dispersed fibre dispersion by using the κ-model based on the generalised structure
tensor method, and assumed the coupling term was not affected by the fibre dispersion. Full dispersion
indicates the dispersed fibres rotationally symmetrically around the mean fibre axis [28, 29], in other
words, fully dispersed in the cross-section plane. Moreover, the data of myofibre and sheet dispersion
were cited from different species, and compressed fibre exclusion was not considered in their study.

In this study, we will focus on how fibre dispersion affects myocardial passive behaviours, in par-
ticular the sheet dispersion. We firstly extend the DFD-based dispersed model to the sheet dispersion
for the H-O model. We then calibrate the H-O model with/without considering the sheet dispersion
using the simple shear data from Sommer et al. [15] to estimate material parameters. A human LV
model in diastole is further simulated to quantify how sheet dispersion affects the LV passive filling.
Finally, the effects of myofibre and sheet rotation angle are studied together with dispersed myofibres
and sheet fibres.

2. Methods

2.1. Invariant-based HO models

To describe the mechanical properties of the myocardium, the invariant-based strain energy func-
tion proposed by Holzapfel and Ogden [3] is used in this study,

Ψ = Ψiso + Ψaniso,

Ψiso =
ag

2bg
{exp[bg(I1 − 3)] − 1},

Ψaniso = Ψ
I4f
aniso + Ψ

I4s
aniso + Ψ

I8fs
aniso,

(2.1)

in which Ψiso accounts for the isotropic ground matrix, Ψaniso describes the anisotropic behaviours
associated with the two families of fibres and their interactions,

Ψ
I4f
aniso =

af

2bf
{exp[bf(I4f − 1)2] − 1}H(I4f − 1),

Ψ
I4s
aniso =

as

2bs
{exp[bs(I4s − 1)2] − 1}H(I4s − 1),

Ψ
I8fs
aniso =

afs

2bfs
[exp(bfsI2

8fs) − 1],

(2.2)

where a(g,f, s, fs), b(g,f, s, fs) are material parameters, I1 = trace(C) is the first invariant of the Cauchy-Green
deformation tensor C = FTF with F the deformation gradient tensor, I4f = f0 · (C f0) and I4s = s0 · (C s0)
are the invariants representing squared stretches along each fibre direction, in which f0 is the mean
myofibre direction at the reference configuration and s0 is the sheet direction, I8fs = f0 · (C s0) is the
coupling effect between the two families of fibres, andH(·) is the Heaviside function to ensure the only
stretched fibres can bear the load. For example, if f0 is stretched, thenH(I4f − 1) = 1 with I4f − 1 > 0,
and the contribution of f0 is included into the total strain energy, otherwiseH(I4f − 1) = 0.
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2.2. Discrete fibre dispersion

Studies have found that fibres are spatially dispersed around the mean directions [15, 16], and the
mean myofibre and sheet directions usually form a local material coordinate system (f0, s0, n0) at each
material point with n0 = s0 × f0. Thus a corresponding local spherical polar coordinate system can
be defined as Figure 1(a), and a single myofibre, fn(Θ,Φ), can be defined by the two spherical polar
angles Θ and Φ according to f0, s0, n0, that is

fn(Θ,Φ) = cos Θ f0 + sin Θ cos Φ n0 + sin Θ sin Φ s0. (2.3)

Given that two fibres lying in one straight line have identical mechanical response, thus the domain
of all myofibres in related to the mean direction f0 can be reduced to be a unit hemisphere with Sf =

{(Θ,Φ)|Θ ∈ [0, π/2] ,Φ ∈ [0, 2π]}. In a similar way, a dispersed sheet fibre with respect to s0 can be
defined as

sm(θ, φ) = cos θ s0 + sin θ cos φ f0 + sin θ sin φn0, (2.4)

in which θ and φ are the two polar angles as shown in Figure 1(a), and its domain is Ss =

{(θ, φ)|θ ∈ [0, π/2] , φ ∈ [0, 2π]} with respect to the s0. Please note the myofibre dispersion and sheet
dispersion are independent, and we do not consider crosslinks between myofibres and sheet-fibres.

(a) (b)

Figure 1. (a) Schematic of heart from Wikipedia (left). Microstructural arrangement of
myofibres and sheet fibres in the myocardium (middle). The blue network describes sheet
fibres that connect myofibres (red columns). Dispersed fibre field is drawn on the right. An
unit vector fn (red) representing the myofibre direction defined by Θ and Φ with respect to
the mean myofibre direction f0 in the (f0, s0, n0) fibre system. Similarly, the greed arrow is
the dispersed sheet with θ and φ with respect to s0. (b) Illustration of the unit hemisphere
domain centralised with the mean myofibre direction f0 (the red arrow). In the DFD method,
it is divided into N discrete triangular elements with representative myofibre directions fn

(green arrows) at the centroid of each triangular surface.

We assume that dispersed fibres at any location can be described by a probability density function
%(Θ,Φ), and further assume %(Θ,Φ) to be composed by two independent functions in terms of Θ and
Φ following [24, 27, 30]. Specifically, for dispersed myofibres around f0, we have

%
(
Θ, b1,Φ, b2

)
= G ρin(Θ, b1) ρop(Φ, b2), (2.5)

in which ρin(Θ, b1) denotes the in-plane myofibre dispersion and ρop(Φ, b2) describes the out-of-plane
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myofibre dispersion, b1 and b2 are the concentration parameters, and G is a constant to ensure∫
S

ρin(Θ, b1) ρop(Φ, b2) dS = 1. (2.6)

The π-periodic von Mises distribution [30] is then used for ρin and ρop,

ρ(τ, η) =
exp (η cos(2τ))∫ π

0
exp (η cos(x)) dx

=
exp (η cos(2τ))

I0(η)
, (2.7)

where τ is the dispersed myofibre angle, η > 0 is the concentration parameter which can be
estimated from measured in-plane and out-of-plane myofibre distributions [15, 31], and I0(η) =
1
π

∫ π

0
exp(η cos(x))dx is the modified Bessel function of the first kind of order zero. Note larger η

value suggests less dispersion. Figure 2 shows the density function ρ defined in Eq (2.7) with η = 4.5,
η = 3.9 and η = 0.0.

Figure 2. Illustrations of ρ with η = 4.5, η = 3.9, η = 0.0 and τ ∈ [−π/2, π/2]. When
η = 0.0, it is a uniform distribution.

Using Eq (2.5), the fibres related strain energy functions by taking into account their dispersion
are

Ψ
I4f†

aniso =

∫
Sf

%
(
Θ, b1,Φ, b2

)
Ψ

I4f
aniso(I4f(Θ,Φ)) dS f,

Ψ
I4s†

aniso =

∫
Ss

%
(
θ, b3, φ, b4

)
Ψ

I4s
aniso(I4s(θ, φ)) dS s,

(2.8)

where I4f(Θ,Φ) = fn · (C fn) and I4s(θ, φ) = sm · (C sm).
To exclude non-stretched fibres efficiently in Eq (2.8), Li et al. [26] proposed the DFD method

by dividing the surface of a hemisphere space domain S into N spherical triangle elements with rep-
resentative fibre bundles at each triangle element, see Figure 1(b). Note the DFD approach can also
be considered as a quadrature formula for evaluating the integrals in Eq (2.8) but based on spherical
triangular elements. In brief, the fibre in the centroid of the nth spherical triangle element is defined by
a representative fibre fn(Θn, Φn) for the triangular area ∆Sn. Then, the fibre distribution probability at
this triangle is

ρn =

∫
∆Sn

%(Θ, b1, Φ, b2) sin Θ dΘ dΦ, n = 1, · · · ,N, subject to
N∑

n=1

ρn = 1, (2.9)
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where N is the number of spherical triangle elements for the unit hemisphere after discretization. Then
Ψ

I4f†

aniso can be accordingly approximated as

Ψ
I4f∗

aniso =

N∑
n=1

ρn Ψ
I4f
aniso(In

4f), with In
4f = fn · (C fn). (2.10)

Similarly, for the sheet dispersion, the total strain energy is

Ψ
I4s∗

aniso =

M∑
m=1

ρm Ψ
I4s
aniso(Im

4s), with Im
4s = sm · (C sm). (2.11)

Some studies have tried to consider fibre dispersion in the coupling term I8fs. For example, Melnik
et al. [21] used the generalised structure tensor approach [18] to account for fibre dispersion in the
myocardium with two fully dispersed families of fibres. However, the physical meaning of dispersed
I8fs between two dispersed fibre bundles has not been studied well. Some studies considered it through
cross-link fibres, whilst some studies completely ignored the dispersion in I8fs. Given the lack of
detailed experimental data for I8fs, we also do not consider fibre dispersion on I8fs, which shall be
studied in the future in particular when modelling fibrosis. Finally, the approximated total strain energy
function with two dispersed families of fibres is

Ψ =
ag

2bg
{exp[bg(I1 − 3)] − 1} + Ψ

I4f∗

aniso + Ψ
I4s∗

aniso +
afs

2bfs
[exp(bfsI2

8fs) − 1]. (2.12)

The importance of convexity of a strain energy function has been studied in [32]. Here we will
briefly analyse the convexity of the proposed strain energy function in Eq (2.12). Because the convexity
of the two terms Ψiso and Ψ

I8fs
aniso has been demonstrated in [3], we only discuss the convexity of Ψ

I4f∗

aniso
and Ψ

I4s∗

aniso. For each myofibre bundle, ρn is a positive constant, thus for the local Cauchy-Green tensor
C, we have the following derivatives

∂Ψ
I4f∗

aniso

∂C
=

N∑
n=1

ρn Ψ
′

f(I
n
4f)fn ⊗ fn,

∂2Ψ
I4f∗

aniso

∂2C
=

N∑
n=1

ρn Ψ
′′

f (In
4f)fn ⊗ fn ⊗ fn ⊗ fn,

(2.13)

with

Ψ
′

f(I
n
4f) = af (In

4f − 1) exp[bf(In
4f − 1)2]H(In

4f − 1),

Ψ
′′

f (In
4f) = af exp[bf(In

4f − 1)2] [1 + 2bf(In
4f − 1)2]H(In

4f − 1).
(2.14)

Because af and bf are positive material parameters, when the myofibre bundle (fn) is under stretch,
In
4f > 1 ensures both Ψ

′

f(I
n
4f) > 0 and Ψ

′′

f (In
4f) > 0; when the myofibre bundle is under compression,

H(In
4f−1) = 0, then Ψ

′

f(I
n
4f) = Ψ

′′

f (In
4f) = 0. Therefore,

∑N
n=1 Ψ

′

f(I
n
4f) ≥ 0 and

∑N
n=1 Ψ

′′

f (In
4f) ≥ 0. Similarly,∑M

m=1 Ψ
′

s(I
m
4s) ≥ 0 and

∑M
m=1 Ψ

′′

s (Im
4s) ≥ 0 for all positive as and bs. Finally, the convexity of the strain

energy function (Eq (2.12)) can be ensured.
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Our previous studies of myocardium only considered the dispersion along myofibre [24, 27] but
not in the sheet direction, and the corresponding strain energy function is

Ψ =
ag

2bg
{exp[bg(I1−3)]−1}+Ψ

I4f∗

aniso+
as

2bs
{exp[bs(I4s−1)2]−1}H(I4s−1)+

afs

2bfs
[exp(bfsI2

8fs)−1]. (2.15)

In this study, we further investigate how dispersion in the sheet direction affects passive myocar-
dial mechanic behaviours by using Eqs (2.12) and (2.15) in terms of the fitting to the experimental data
and the heart dynamics in diastole.

2.3. Parameter estimation using shearing experimental data

Shearing experimental data is obtained from Sommer’s study [15], in which six types of shear
tests were performed on human myocardial samples. As shown in Figure 3, the specimen was cut
from the LV free wall and followed by six different shear modes using this sample. From Eq (2.1), the
passive Cauchy stress is

σ = F
∂Ψiso

∂F
+ F

∂Ψaniso

∂F
− pI, (2.16)

where p is the Lagrange multiplier to enforce incompressibility of the myocardium, and I is the identity
tensor. Thus, the derived total stress using the dispersed strain energy function Eq (2.12) is

σ = Ψ
′

iso B + 2
N∑

n=1

ρn Ψ
′

f(I
n
4f)f

∗
n ⊗ f∗n + 2

M∑
m=1

ρm Ψ
′

s(I
m
4s)s

∗
m ⊗ s∗m + Ψ

′

I8fs
(f ⊗ s + s ⊗ f) − pI, (2.17)

where B = FFT, f∗n = Ffn, s∗m = Fsm, f = Ff0, s = Ff0, and

Ψ
′

iso = ag exp[bg(I1 − 3)],

Ψ
′

s(I
m
4s) = as (Im

4s − 1) exp[bs(Im
4s − 1)2]H(Im

4s − 1),

Ψ
′

I8fs
= afs I8fs exp(bfs I2

8fs).

(2.18)

Similarly, the total stress derived from the strain energy function Eq (2.15) which only consider
myofibre dispersion is

σ = Ψ
′

iso B + 2
N∑

n=1

ρn Ψ
′

f(I
n
4f)f

∗
n ⊗ f∗n + 2Ψ

′

s(I4s)s ⊗ s + Ψ
′

I8fs
(f ⊗ s + s ⊗ f) − pI. (2.19)

Similar to our previous study [33], we first estimate material parameters in Eqs (2.12) and (2.15)
using a non-linear least square minimization function (fmincon from MatLab, MathWorks 2021) with
the following loss function

L(Λ) =

K∑
k=1

[σk(Λ) − σexp
k ]2, (2.20)

where K is the total number of data points, Λ denotes the set of unknown parameters, the scalar σk

is the model-predicted stress component according to the corresponding experiment, and σexp
k is the

measured value. In specific, σ is σ21 for the shear mode (fs), σ31 for the shear mode (fn), σ32 for the
shear mode (sn), σ12 for the shear mode (sf), σ13 for the shear mode (nf), and σ23 for the shear mode
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(ns). In this study, the range for each parameter is set to be 0.001–60 [33]. To further quantify the
fitting goodness, the relative and absolute errors (errRelative and errAbsolute) between the experimental and
model-predicted stress-shear curves are introduced,

errRelative =

∑K−1
k=1 ∆γk|σk(Λ) − σexp

k |∑K−1
k=1 ∆γkσ

exp
k

,

errAbsolute =

K−1∑
k=1

∆γk|σk(Λ) − σexp
k |,

(2.21)

where ∆γk = |γk − γk−1| is the step size of measured shear amount. In other words,
∑K−1

k=1 ∆γkσ
exp
k

approximates the area under the experimental stress-strain curves, and
∑K−1

k=1 ∆γk|σk(Λ) − σexp
k | is the

area enclosed by the measured and model-predicted stress-strain curves. The closer the error value to
zero, the more accurate the fitting to the experimental data.

Figure 3. The left is the sketch of a left ventricle with inside myofibres (red lines) and a cubic
sample cut from the ventricular wall. The right is a sketch of all six possible shear modes
where f0, s0 and n0 denote the myofibre, sheet and sheet-normal direction, respectively. (i j)
refers to shear in the j0 direction within the i0 j0 plane, where i , j ∈ {f, s, n}.

Due to the lack of experimental data for sheet dispersion, we first assume that the dispersion dis-
tributions along f0 and s0 are same, i.e., b1 = b3 and b2 = b4, denoted as Case 1, in which the values of
b1 = 4.5 and b2 = 3.9 are adopted from the study by Sommer et al. [15]. Based on Case 1, two special
cases are considered, which are Case 2 with the same in/out-of-plane dispersion along both the myofi-
bre and sheet direction, and Case 3 with fully-dispersed fibre in the out-of-plane, the so-called fully
dispersed case. Since most existing studies only consider myofibre dispersion, including ours, thus we
further include three cases based on Cases 1–3 by only considering myofibre dispersion. All simulated
cases are summarized in Table 1, and corresponding illustrations of fibre dispersion distributions are
shown in Figure 4. Case 1 is considered to be the most realistic one with experimentally measured
in/out-of-plane dispersion; Case 4 is the up-to-date model with measured myofibre dispersion [15,24];
while Case 6 is the simplest one yet prevalent dispersion model for myofiber and other soft tissue with
a fully dispersed distribution [19, 21, 25] which can be considered to be generalised from Case 3.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3972–3993.
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Table 1. Summary of the concentration parameters b1 and b2 in the six fibre dispersion cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

b1 4.5 4.5 4.5 4.5 4.5 4.5
b2 3.9 4.5 0.0 3.9 4.5 0.0
b3 4.5 4.5 4.5 - - -
b4 3.9 4.5 0.0 - - -

Figure 4. Fibre dispersion distributions of the six cases. Cases 1–3 include fibre dispersion
both along f0 and s0, whilst Cases 4–6 only include fibre dispersion along f0.

2.4. In vivo left ventricle modelling

A subject-specific human LV model from our previous study [5] is used here to study passive
diastolic filling process [10] as shown in Figure 5(a). The LV model has a rule-based myofibre structure
with linearly varied myofibre rotation angle from the epicardium (Θ̄epi) to the endocardium (Θ̄endo).
Considering the average wall thickness of the LV model is 8.7 mm and the mean myofibre rotation
angle is 14.8◦/mm as measured in the human myocardium [15], we thus set Θ̄endo = −Θ̄epi = 60◦ as
shown in Figure 5(b). The same myofibre rotation angle has been widely used in the literature [4,5,10].
The sheet fibre is along the transmural direction (s0) from endocardium to epicardium at each material
point, in other words, the sheet angle is zero.

Following [10], the myofibre rotation angle at ventricular wall thickness ē is

Θ̄ = (1 − ē) Θ̄endo + ē Θ̄epi, (2.22)

where ē = 0 at endocardial surface and ē = 1 at epicardial surface. The circumferential direction c0

and the orthogonal direction ñ0 at each material point can be determined by sheet s0 and longitudinal

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3972–3993.



3981

direction l0, which are

c0 =
l0 × s0

|l0 × s0|
, and ñ0 =

s0 × c0

|s0 × c0|
, (2.23)

Then, the myofibre direction f0 is defined by

f0 = cos Θ̄ c0 + sin Θ̄ ñ0. (2.24)

Corresponding sheet-normal direction is n0 = s0 × f0. Similarly, if we would like to include sheet
rotation, then the rotated sheet direction s′0 is

s
′

0 = cos θ̄ s0 + sin θ̄ n0, (2.25)

where θ̄ is the sheet rotation angle with respect to s0 in the s0 − n0 plane, and the sheet rotation angle at
the thickness of ē is

θ̄ = (1 − ē) θ̄endo + ē θ̄epi, (2.26)

in which θ̄endo and θ̄epi are sheet angle at the endocardial and epicardial surfaces, respectively. Note
when θ̄endo = θ̄epi = 0, all sheets along transmural direction with s′0 = s0.

The LV passive diastolic filling is simulated using ABAQUS 2019 (Dassault Systemes, Johnston
RI, USA), and the LV model is loaded with 8 mmHg within 0.5 s with a zero-displacement constraint
on the longitudinal movement of nodes on the top base surface. In this study, we consider LV passive
mechanics to be quasi-static, and the system of equations to be solved are

∇ · σ = 0 in Ω,

σ · n = −Pn on the endocardial surface,
uz = 0 on the basal plane,

(2.27)

where Ω is the computational domain occupied by the LV geometry, P is the LV cavity pressure, n is
the unit normal direction on the endocardial surface, and uz is the zero-displacement Dirichlet boundary
condition on the basal plane.

To measure the LV filling process, we introduce two ratios, they are 1) the radial expansion ratio
(Rr) that is estimated using the internal diameter (d) measured by the two points at the base plane
as indicated in Figure 5(a), and 2) the longitudinal elongation ratio (Lr) that is calculated using the
distance (l) between the central point at the base plane and the endocardial apex point, see Figure 5(a).
The definitions of Rr and Lr are

Rr = (dt − d0)/d0, and Lr = (lt − l0)/l0, (2.28)

where d0 and l0 are the initial values at t = 0, and dt and lt are the values at time t.
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(a) (b)

Figure 5. The human LV model with 133,042 linear tetrahedral elements and 26,010 nodes
(a), and the rule-based myofibre structure (b) that the myofibre angle varies from −60◦ at the
epicardium to 60◦ at the endocardium. The two black lines (d and l) are used to determine
radial expansion and longitudinal elongation ratios, respectively.

3. Results

3.1. Fitting to the experimental data

We fit all six cases to the simple shear experiments from Sommer et al. [15]. Note Cases 1–3
have dispersion along both f0 and s0 using the strain energy function Eq (2.12), while Cases 4–6 only
have dispersion along f0 using the strain energy function Eq (2.15). From our previous study [24],
we found that when N ≥ 640, the integration of Eq (2.10) converged to the analytical solution with
errors below 5e-5, thus we set N = 640 when accounting for dispersed fibre bundle contributions.
Figure 6 shows the final fitting results for all six cases. In general, all cases can well describe the
mechanical behaviours of the six shear modes. The relative and absolute errors are summarized in
Table 2. Case 3 has the least relative and absolute errors with fully dispersed fibre dispersion along
both f0 and s0, then followed by Case 6 with full dispersion along f0 only. The errors for other cases are
much higher than Cases 3 and 6. This comparison would suggest that different myofibre dispersion can
potentially have large effects on myocardial passive response, and the full dispersion could be a good
approximation of fibre dispersion if out-of-plane measurement is unavailable. Moreover, incorporating
fibre dispersion along s0 can marginally improve the descriptive capability of a constitutive law to the
experiential data, i.e., the H-O model studied here, which may further indicate the necessary to include
sheet dispersion if a high-fidelity myocardial model is needed. Inferred material parameters are listed
in Table 3. It can be found parameters from one case can vary from other cases, which suggests that
shear experimental data alone may not be sufficient to uniquely determine the 8 parameters in the
H-O type strain energy function due to parameter correlation, a common and not-resolved issue in
personalized cardiac modelling [12, 33].
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Table 2. Relative and absolute errors for the six cases when fitting to the simple shear
data [15]. The two best results are highlighted using bold fonts.

Model Relative Error (%) and Absolute Error (kPa)

(fs) (fn) (sf) (sn) (nf) (ns) Mean

Case 1
%: 8.03 7.74 16.1 26.0 22.5 10.5 15.2
kPa: 0.14 0.12 0.17 0.27 0.22 0.10 0.17

Case 2
%: 8.04 7.82 16.1 26.1 22.8 10.7 15.3
kPa: 0.14 0.12 0.17 0.27 0.22 0.10 0.17

Case 3
%: 4.75 3.65 9.04 7.35 9.06 6.65 6.75
kPa: 0.08 0.06 0.10 0.08 0.09 0.07 0.08

Case 4
%: 8.16 8.47 16.6 24.5 21.9 12.8 15.4
kPa: 0.14 0.13 0.18 0.25 0.21 0.12 0.17

Case 5
%: 8.17 8.57 16.6 24.6 22.2 12.9 15.5
kPa: 0.14 0.13 0.18 0.25 0.22 0.13 0.17

Case 6
%: 4.71 3.99 9.40 9.00 11.06 6.93 7.51
kPa: 0.08 0.06 0.10 0.09 0.11 0.07 0.09

Figure 6. Goodness-of-fit of the H-O model with the six cases as listed in Table 1.
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Table 3. The estimated parameters for the six cases when fitting to the simple shear data [15].

Model ag (kPa) bg af (kPa) bf as (kPa) bs afs (kPa) bfs

Case 1 0.501 9.690 4.229 0.924 0.006 0.042 0.610 5.740

Case 2 0.496 9.736 4.258 0.844 0.001 0.078 0.629 5.626

Case 3 1.061 5.873 1.867 7.644 0.107 13.431 0.228 0.001

Case 4 0.433 10.241 4.836 0.440 0.536 0.001 0.666 5.101

Case 5 0.430 10.279 4.860 0.368 0.528 0.001 0.685 5.002

Case 6 1.057 6.092 1.683 7.933 0.080 58.978 0.342 0.001

3.2. The human LV model

The LV model in diastole has been simulated with the six cases using the estimated material
parameters from Table 3. In order to reduce the computational time, we further compare N = 40 and
N = 640 for discretizing the unit hemisphere of the myofibre dispersion model, nearly identical results
are obtained, while the computational time is much reduced for N = 40 in a Windows workstation
(CPU E5-2680 v3@2.50 GHz and 64.0 GB memory). Thus we set N = 40 for all six cases when
simulating the LV model in diastole. Note N = 40 has also been used in [24, 26].

Distributions of stress components along myofibre (σff) and sheet (σss) directions at end of di-
astole in Case 1 are shown in Figure 7. Peak σff mainly occurs at the endocardium surface near the
LV base, and value of σff gradually decreases from the endocardium to the epicardium. Most of sheet
fibres are in compressed state with negative σss values. Differences of σff at each material point be-
tween Case 1 and other cases are calculated by δσff = σCase i

ff
− σCase 1

ff
with i ∈ {2, 3, · · · , 6}, and their

distributions are also shown in Figure 7. These absolute differences are minor with peak value of 0.5
kPa, which could be explained by the optimized material parameters from the same set of experimental
data, while the peak relative error can reach 20% with respect to the mean σff in Case 1. Cases 2, 4,
and 5 with non-full out-of-plane dispersion show almost same stress responses as Case 1, while the
fully dispersed Cases 3 and 6 have smaller σff and greater σss compared to Case 1. Their mean values
and standard deviations are summarized in Table 4. Compared to other cases, full dispersion in Cases
3 and 6 leads to slightly larger end-diastolic volume and with higher radial expansion but reduced
longitudinal elongation.

Reducing sheet dispersion in the constitutive model contributes to improving computing ef-
ficiency, such as saving 42.3% time in Case 4 compared to Case 1. The six cases are further
validated by comparing the end-diastolic pressure-volume relationship generated by our models to
the measurements from the human heart [34]. Normalised end diastolic volume is computed by
(EDV − EDV0)/(EDV30 − EDV0), in which EDV0 = 50.3 ml is the unloading volume, and EDV30

is the LV cavity volume with the diastolic pressure 30 mmHg. Figure 8 compares the model predic-
tions and the human experimental data. It can be found that our simulated pressure-volume curves are
overlapped with good agreements with experimental data, which suggests the H-O model with any one
of the six fibre dispersion cases can well predict LV cavity volume in diastole.
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Table 4. Summary of the end-diastolic volume (EDV), myofibre stress σff and sheet stress
σss with mean value and standard deviation (mean ± std), radial expansion ratio Rr and
longitudinal elongation ratio Lr in the six cases.

Model EDV (ml) σff (kPa) σss (kPa) Rr (%) Lr (%)

Case 1 76.8 2.468 ± 9.995 -0.164 ± 9.902 24.31 7.01
Case 2 76.8 2.471 ± 9.971 -0.165 ± 9.878 24.25 7.04
Case 3 78.7 2.293 ± 10.663 -0.151 ± 10.575 25.92 5.72
Case 4 76.3 2.516 ± 9.866 -0.168 ± 9.771 23.82 7.34
Case 5 76.3 2.518 ± 9.846 -0.168 ± 9.751 23.82 7.35
Case 6 78.8 2.271 ± 10.696 -0.148 ± 10.607 26.07 5.61

Figure 7. Myofibre stress distributions at end of diastole in the finite-element simulations
when including the six cases of fibre dispersion. σff and σss denote the stress component
along the mean myofibre direction f0 and the mean sheet direction s0, respectively. δσff and
δσss are the differences comparing to Case 1.
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Figure 8. Comparisons of end-diastolic pressure-volume relationship computed by our mod-
els and experimental data from ex vivo human hearts [34]. Normal, healthy heart; ICM,
ischemic cardiomyopathy; DCM, diopathic dilated cardiomyopathy; and LVAD, hearts sup-
ported by a left ventricular assist device.

3.3. Variation of the mean myofibre and sheet rotation angles

In this section, we further study the effects of mean myofibre and sheet angle variation from
the endocardium to the epicardium using Case 1 (with dispersion along both myofibre and the sheet
direction). In total, four fibre rotation tests are performed as following

• Test 1: the myofibre angle ∈ [−80, 80], the sheet angle ∈ [0, 0].
• Test 2: the myofibre angle ∈ [−40, 40], the sheet angle ∈ [0, 0].
• Test 3: the myofibre angle ∈ [−60, 60], the sheet angle ∈ [−30, 30].
• Test 4: the myofibre angle ∈ [−60, 60], the sheet angle ∈ [−60, 60].

Figure 9. Differences of end diastolic stresses from Test 1 to Test 4 with varied myofibre
and sheet rotation compared to Case 1. (left) myofibre stress differences; (right) sheet stress
differences. Stress distributions for Case 1 can be found in Figure 7.
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Table 5. Summary of EDV, σff, σss, Rr and ratio Lr for the four tests on the myofibre and
sheet rotation angle variations.

EDV (ml) σff (kPa) σss (kPa) Rr (%) Lr (%)

Test 1 75.9 2.366 ± 9.766 -0.159 ± 9.630 21.80 10.32
Test 2 78.0 2.456 ± 10.285 -0.164 ± 10.219 26.76 4.33
Test 3 76.9 2.473 ± 10.036 -0.115 ± 9.947 24.23 6.97
Test 4 77.1 2.483 ± 10.167 0.050 ± 10.097 24.32 7.01

Figure 9 shows the differences of myofibre and sheet stress distributions for the four tests com-
pared to Case 1. Myofibre rotation causes a significant difference in myofibre stress, while sheet stress
almost remains constant as in Case 1 when the sheet rotation angle is the same. The mean σff of Tests
1 and 2 in Table 5 is smaller than that of Case 1. While compared to Case 1, Test 1 with small myofibre
rotation angle has higher σff at the endocardium, but Test 2 with large myofibre rotation angle has
lower σff at the endocardium. The sheet rotation variation has little influence on myofibre stress, while
greater sheet stress can be found across the LV wall with increased sheet rotation angle as shown in
Figure 9. Table 5 further summarizes EDV, σss, Rr and Lr for the four test cases. It can be found that
the fibre rotation variations can affect the overall LV passive mechanics as reported by Wang et al. [10],
while the sheet rotation angle mainly affects σss with little influence on LV passive filling, i.e., EDV
and σff.

4. Discussion

In this study, we first implement a DFD-based dispersion model using the H-O model for both
the myofibre and sheet directions, and then study the effects of fibre dispersion when fitting to the
experimental data and later in a realistic human LV model in diastole. The focus of this study is on the
myocardial passive behaviour, and the active contraction will be studied in the accompanied paper. In
general, the dispersed H-O models considered in this study can match experimental data [15], agree
well with Klotz’s study [34], and produce very similar LV passive dynamics. While when including
both myofibre and sheet dispersion with fully dispersed distributions, the best fitting results to the
simple shear experimental data can be achieved as shown in Table 2, followed by the case only consider
myofibre dispersion with a fully dispersed distribution. However, when the out-of-plane dispersion is
not fully dispersed either for myofibres or the sheet fibres, both the relative and absolute errors are
increased by twice around. The simulated LV dynamics also have some differences in terms of out-of-
plane dispersion. Both Cases 3 and 6 are different from other cases which have non-full out-of-plane
dispersion. Therefore, our simulation results demonstrate that myofibre and sheet dispersion can have
large effects on myocardial passive response, and the full out-of-plane dispersion could be a good
approximation given the very sparse measurements and not-improved fitting to the experimental data.

Angular integration approach and the generalised structure tensor approach have been often used
to study fibre dispersion in soft tissue mechanics [18, 19, 25, 26, 35]. It is widely accepted that com-
pressed fibres cannot bear the loading, thus it is necessary to apply such criteria to each dispersed fibre
for both myofibres and collagen fibres in the myocardium at every loading time step. Considering the
high computing cost of the angular integration approach [26] and the extreme complexity of excluding
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compressed fibres in the generalised structural tensor approach [36], we adopt the DFD approach [26]
in this study, which is a numerical approximation of the angular integration approach with much fewer
fibre bundles than the full collagen network, thus it can achieve high computing efficiency [26], also
observed in our previous study [24].

Existed measurements have found that myofibres have both in-plane and out-of-plane disper-
sion [15, 31]. As suggested in [30], a non-rotational symmetric myofibre dispersion can well describe
different in-plane and out-of-plane dispersion. Because of the lack of measured data, a few assump-
tions have been made in this study, for example, the same dispersion for myofibres and the collagen
fibres along the sheet direction in Case 1, and further assumptions of the full distribution for the out-
of-plane dispersion. By comparing all six cases, we have quantified the effects of fibre dispersion on
myocardial passive behaviours. It can be found that including fibre dispersion can improve the fit-
ting to experimental data, and full out-of-plane dispersion seems a good approximation if there is no
measured data of the out-of-plane fibre distribution. Because the material parameters are re-calibrated
using the same shear experiments for all cases, the overall behaviours of the LV model are all similar,
while differences are still evident as shown in Figure 7. In general, Cases 1, 2, 4, 5 with non-full
out-of-plane dispersion have similar stress distribution, but very different from the Cases 3, 6 with full
out-of-plane dispersion, the variations being as high as 20% by comparing the peak δσff with respect to
the mean σff in Case 1. Cases 3 and 6 have the highest goodness-of-fit to the experimental data, which
would suggest the stress prediction could be more accurate than other cases. Even though Case 1 has
measured in-plane and out-of-plane dispersion, presumably the poor fitting result may be subject to the
measurement noises in out-of-plane dispersion. Future studies shall include both accurately measured
in-plane and out-of-plane dispersion to quantify the effects of out-of-plane dispersion on myocardial
mechanics.

Due to the lack of experimental data on the sheet collagen fibre structure, reduced strain energy
functions based on the H-O model have been proposed by only including two invariants I1 and I4f

[24, 28, 37]. We find that such reduced strain energy function can fit uni-axial or bi-axial data but has
difficulty in fitting the six different simple shear responses [15]. Therefore, the four invariant-based
H-O model is used in this study, which also allows to incorporating the sheet dispersion.

According to the microstructural measurements reported by Sommer et al. [15], only a few fibres
disperse along the sheet direction (s0). Similar results are also shown in Ahmad et al.’s study [16],
in which the out-of-plane dispersion is much smaller than the in-plane dispersion, suggesting most
fibre dispersed in the (f0,n0) plane. For a materiel with preferred fibre direction, i.e., the myocardium,
the mean fibre direction is the direction along which the majority of fibres will align that direction.
To describe myofibre dispersion, given that more dispersed myofibers in the (f0,n0) plane than those
in the (f0, s0) plane, thus the axis f0 is defined as the first primary direction while n0 is the second
primary direction, see Eq (2.3), and the probability density functions of Θ and Φ are both described
by Eq (2.7). As mentioned before, more myofibres are dispersed in the (f0,n0) plane, thus it would
also suggest that the probability for Φ = 0 is higher than Φ = π/2, and they are equal only with full
out-of-plane dispersion (b2 = 0).

The myofibre dispersion and sheet dispersion are two independent fibre families in the my-
ocardium and thus are analysed separately. To the authors’ best knowledge, no experiments have
observed that one dispersed myofibre will have one corresponding orthogonal dispersed sheet fibre.
The interaction between the two families of dispersed myofibres is ignored in this study, which means
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the I8fs term remains a phenomenological form. Melnik et al. [21] used the generalised structure ten-
sor method to study the effects of myofibre and sheet dispersion, and they found that including fibre
dispersion in I8fs caused softer material responses than the model without I8fs dispersion when using
the same set of material parameters. Furthermore, they approved the softening effects caused by fibre
dispersion was greater in I4f and I4s than I8fs. It is possible to use the discrete fibre dispersion approach
to take into account I8fs dispersion if assuming that one dispersed myofibre interacts with one corre-
sponding sheet fibres. While the biological explanation of I8fs is still unclear, an alternative approach
to including dispersion in I8fs is to model the cross-link between two families of fibres [38], which is
beyond the scope of this study.

Finally, we would like to mention limitations. Firstly, only the simple shear data is used to esti-
mate material parameters. The combination of the bi-axial and simple shear data should provide extra
information for more accurate parameter inference. However, published data is usually average values
of many different samples, leading to the difficulty in matching all data at the same time. Secondly,
experimental data of sheet dispersion is lacking, for which we have assumed the sheet dispersion is
similar to the myofibre dispersion, and future experiments shall measure that dispersion separately.
Thirdly, the mean fibre structure is constructed using a rule-based method without considering spatial
heterogeneity. Including more realistic fibre rotation from different regions would be necessary to fur-
ther improve our understanding of how fibre dispersion affects passive myocardial response. The zero
displacement boundary condition on the ventricular base is a simplified implementation. In in vivo, the
apex does not move much, instead the basal plane moves up-down. In our LV model, the basal plane
can not move along longitudinal direction, while the other regions including the apex are free to move.
This is equivalent to fixing the apex and allowing the basal plane free movement, depending on the
observer’s position either in the apex or in the basal plane. Various studies [5, 7] have used the fixed
basal plane along the longitudinal axis, and also have shown that main features of heart dynamics can
be reproduced. A more realistic basal boundary condition may need the measurements of myocardial
motion in the basal plane, and also the pericardium needs to be included in order to keep the apex in
place [39, 40].

5. Conclusions

This study has investigated myofibre and sheet fibre dispersion in passive myocardial mechanics
using a widely-used strain energy function, the so-called H-O model. The discrete fibre bundle dis-
persion model is used to exclude compressed fibres. Our results demonstrate that the H-O model can
match ex vivo experimental data very well by including fibre dispersion, in particular when assuming
fully dispersed dispersion for the out-of-plane fibre distributions of myofibres and the sheet fibres. No-
ticeable differences can be found in LV diastolic mechanics when comparing the cases between full
and non-full out-of-plane dispersion. Our results seem to suggest that the full out-of-plane dispersion
could be a good approximation considering the difficulty in measuring out-of-plane dispersion, and it
is necessary to include both dispersion for myofibres and the sheet fibres for the improved descriptive
capability to the experimental data and potentially more accurate stress prediction.
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