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Abstract: Many real world problems depict processes following crossover behaviours. Modelling
processes following crossover behaviors have been a great challenge to mankind. Indeed real world
problems following crossover from Markovian to randomness processes have been observed in many
scenarios, for example in epidemiology with spread of infectious diseases and even some chaos. De-
terministic and stochastic methods have been developed independently to develop the future state of
the system and randomness respectively. Very recently, Atangana and Seda introduced a new con-
cept called piecewise differentiation and integration, this approach helps to capture processes with
crossover effects. In this paper, an example of piecewise modelling is presented with illustration to
chaos problems. Some important analysis including a piecewise existence and uniqueness and piece-
wise numerical scheme are presented. Numerical simulations are performed for different cases.
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1. Introduction

Deterministic models have been initiated to replicate processes in nature. They have been applied
with great success in the last decades. However, when dealing with processes following randomness,
indeed these deterministic models cannot be in use as they have failed to model random behaviors.
However they are very useful to depict processes exhibiting power-law, fading memory to power law,
passage from fading memory to power-law. They are also useful to depict memory processes. Stochas-
tic differential equations have been introduced to deal with processes exhibiting randomness. They


http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022163

3527

have been used in many real world problems with great success. Noting that, these models are ob-
tained using the concept of differentiation and integral. In particular, the concept of differentiation
with the generalized Mittag-Leffler function was developed in [1], while Caputo and Fabrizio sug-
gested a differential operator with exponential decay function [2]. Atangana generalized the concept
of rate of change in his paper [3]. Atangana and Seda have suggested piecewise differential and in-
tegral operators in their work [4]. An analysis of a new chaos model was presented in [5]; Atangana
and Gomez presented some important properties of fractional differential and integral operators with
no singular kernel in [6]. Chaos in a turbulent swirling flow was investigated in [7], another impor-
tant analysis of chaos with stochastic properties was presented in [8]. A comparative study between
chaos and stochastic dynamics was presented in [9], Daniel et al, presented a simple method to detect
chaos in nature [10], another important analysis of stochastic chaos was performed in [11]. However
there exist in nature processes that exhibit passage from power-law to fading memory, or even from
memoriless to power-law, indeed such processes cannot be replicated using either stochastic models
or deterministic models. Very recently Atangana and Seda introduced new concepts called piecewise
differentiation and integration, where a derivative or an integral is defined as a piecewise within a given
interval [4]. Such a concept is indeed a new mathematical weapon to model complex real world prob-
lems exhibiting complex cross-over behaviors. The new type of modeling will be able to handle many
complex problems. For example, we observe a very strange way of spread exhibiting by Covid-19,
where in some cases, the spread shows a sign of deterministic within a given period of time then later
it shows sign of stochastic randomness. A clear indication of complex cross-over. In this paper, we
aim at modeling behaviors of real world exhibiting cross-over from deterministic to stochastic or vice
versa.

2. Modeling cross-over from deterministic to stochastic and vice versa
In this section, we discuss different possible scenarios that could possibly occur in nature [4].

Case 1. Assume that a real world problem exhibiting cross-over from memoriless process to ran-
domness with no steady state. A general Cauchy problem associated to this is given as

DO = f(ty®),0<t<n

¥ (0) = 3y on
dy(t)=f(t,y@®)dt+oy®)dB() ,t; <t<T ’
y(t) =y

where o and B (¢), are density of randomness and environmental noise respectively.
Case 2. Assuming that a real world problem exhibits cross-over from power-law to stochastic
processes, then the Cauchy problem associated to this problem can be defined as

§DIy () = ft,y®),0<r<1

y(0) =y 2.2)
dy(t)= ft,y@®)dt+oy@®)dB(t) ,t; <t<T ’
y(t) =y

where 0 < o < 1.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3526-3563.



3528

Case 3. Assuming that a real world problem exhibits cross-over from fading memory to stochastic
processes, then the general Cauchy problem associated to this real world problem can be defined as

SEDYy (1) = f(1,y(1),0<1<1

¥ (0) = 5o 03
dy(t)= ft,y@®)dt+oy(@®)dB(t) ,t; <t<T )
y(t) =y

where 0 <@ < 1.
Case 4. Assuming that a complex real world problem is exhibiting cross-over from Mittag-Leffler
process to stochastic processes, then the general Cauchy problem associated to such problem is defined

as
SEEDy (1) = f(Ly(®),0<t <1

y(0) =y 2.4)
dy@®) = f(t,y@)dt +oy(@)dB @) 1, <t <T ‘
y(t) =y

where 0 < o < 1.

In the stochastic part, the classical derivative can be replaced by global derivative to capture more
complex behaviors. To accommodate readers that are not use to fractional calculus, we present the
following definitions

1 !
oDy (1) = Ti-o f(; yr(@)(t-1)7%dr (2.5)
where 0 < a < 1.
M t
o1y = T [y @esw|-rto - n]dr 2.6)

where 0 < @ < 1,M (0) = M (1) and M («) is defined as normalized function. The space within which
such is defined is well presented in [12]
AB !
LD [y @E -2 -y
1-«a 0 1-«a

where 0 < @ < 1,AB(0) =AB(l)and AB(a@) =1 —a + % .

Finally a global derivative of a function f with respect to a function g where g is positive continu-
ously increasing function is defined as

0%Dly (1) =

dr 2.7)

. f@) - f1)
D,f (t) = lim ————. (2.8)
oSO = e~ g
If f and g are differentiable with g7 (¢) # 0, then
fr @
D.f(t) = ——. (2.9)
SO= 0w
Case 5. Assuming that a real world problem exhibits random walk processes from [0, ¢, ], then later the
process follows changes within region in [#;, T]. A mathematical model associate to this will be

dy(t)=f(t,y@®)dt+oy(t)dB(),0<t<t
y(0) =y
Dy =ft,y@®) .t <t<T
y(t) =y

(2.10)
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where D, can be fractional also.
3. Analysis of deterministic-stochastic models

In this section, we present a discussion regarding numerical solution of each defined deterministic-
stochastic model. For each suggested deterministic-stochastic model, the analysis of existence and
uniqueness of solutions can be performed piecewisely according to each interval. A proper space of
the function can be chosen and a suitable methodology for proving existence and uniqueness of such
a model can be performed within each interval. This will not be the object of discussion in our paper,
however some examples will be considered later and the existence and uniqueness of their solutions
will be presented accordingly. In this section, our focus will be to provide a numerical solution to each
model using the Newton polynomial interpolation formula [12].

3.1. Numerical scheme for Case 1

We consider the following problem to present numerical scheme

dy(t) _
Z_[t—f(t,y(l)),OSZ‘Stl

y(0) =y 3.1
dy(t)= f(ty @) di+oy(H)dBG) .t <t <T ‘

y(t) =y

The above is converted to

y(t):{ yO)+ [ f (my)dr 32)

v+ [ f @y@)dr+ [ oy () dB (D)

or

y@m)z{ YO+ 1 e (3:3)

Y+ [ f @y@)de+ [ oy(@) Br()dr

Att =t,.1, we write

yO) + [ f (my)dr
n+l) = In+1 In+1 3.4
Y (ts1) {y(t1)+ftl [ @y@)de+ [ oy (@) B (1) dr oY

and

Y (i) = { Sl I (3.5)

Y) + B [ f @y @)dr+ T, [ oy (@) Br () de

We approximate f (¢, y) within [#, #,+1] when O < ¢ < #; using the Newton interpolation polynomial

F0y) = P = flay oy + DO T2l ) g
+f (1, y (4) = 2f (-1, Y (x-1)) + [ (-2, y (x-2))

2 (Ar)?

(t—tie1) (t = tr2) .
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Replacing f (¢,y) by Py (¢) within [#, t;+1] , we have following scheme

%f(tk_z,yk‘z) t=3f (o)) Ar
(tk,y )At
=f (fk—z,yk_z) At—4f (tk—l»yk_l)At }
+2 (tk, yk) At
2 (B(ti1) — B(ti2)) oy} 2
+ 03] —2(B(t) — B(tie1) oy
+2 (B (tre1) — B (1) oy

y(0)+ Xk, {

y(t) + Xiziis { 3.7

y (tn+1) =

3.2. Numerical scheme for Case 2

We deal with the following problem where first part is with Caputo fractional derivative and second
part is stochastic. Such model is given by

SDty(t)=f(t,y(1),0<t<n
y(0) =y
dy(t)= ft,y@®)dt+oy@)dB(@) ,t; <t<T
y(t) =y1.

(3.8)

The above is converted to

1 4 a-1
_ = f@y @ -0 dr 1o
y {)’(t1)+ft]tf (T,y(T))dT+ft]tO'y(T)B/(T)dT ' (39)

Att = t,,, we write

Y (ts1) = tﬁ fotm S _t T)a_l dr (3.10)
yy)+ [ f @y@)dr+ [ oy(0) Br(v)dr

and

1 i Tk+1 _ye-l
) = { i Zico J 1 @) Gy =) dr G

Yt + S [ f @y @)dr+ S, [ oy (@ B (1) dr

Replacing f (¢,y) by its Newton polynomial, we can approximate f (¢, y) within [#, f;,1] as follows

| T Zhea £ (20200
+iem Zia | (10107) = £ (12,072) 2
G f(fk,)’k) -2f (tk—l’yk_l) A
T A (ar3) 2uk=2 +f (Tk_z, yk—z)
%f (tk—Z’ k—Z) Af — if (tk—l,yk_l)At ] . (312)
+2 (tk, )At
> (B(fk 1) = B(t)) oy* 2
+ 2k 3 (B (1) = B(tr_1)) oy!
+33 (B (1) — B (1)) oy*

y (tn+l) = [
y (tl) + ZZ:i+3
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3.3. Numerical scheme for Case 3

In this subsection, we present numerical approximation for stochastic-deterministic Cauchy prob-
lem given by
SEDey (1) = f(t,y(®),0<t <t

y(0) =yo
dy(®) = f(t,y@)dt+oy(®dB() , 1, <t <T (3.13)
y(t) =y

where the first part is Caputo-Fabrizio fractional derivative and second part is stochastic. Such problem
can be integrated as

y () = ”%f )+ 5 b ft(T’y)dT (3.14)
Yy + [ f @y@)dr+ [ oy(@dB ()
or
() = iy o))+ s @) . (3.15)
ye)+ [ f @y@)dr+ [ oy Br(v)dr
Att =t,.1, we write
f @+ 0 f (@yde
pel) = % o) I 3.16
) {y(t1)+f,l f @y@dr+ [ oy Br (@) de 510
and ' -
Y (tye1) = M(a)J:k+$tnay MC(YQ) k=0 f,t{‘ f t(l:'; y)dr (3.17)
Y + Y [ @y@)dr+ i, [ oy (@ Br (D) dr
We can approximate f (z,y) within [#, t;,] as follows
5 k—2 4 k—1
. —f L2,y At — —f ti—1,y At
sl oY)+ i Ti ] ( +f—§ (tk,;k) (At ) }
[ 5 k—2 4 k—1 1
n Ef ti—2,y )At — §f (tk—l’y )Al
Y (tye1) = y(n) + Zk:i+3{ +2 (tk’yk) At (3.18)

2 (B(ti1) — B (ti2)) oy* 2
+ Dhina —‘g‘ (B(t) — B(t;_1)) oy*!
+22 (B (tre1) — B (1) oy

3.4. Numerical scheme for Case 4

To obtain numerical scheme for following problem with piecewise derivative, we consider the fol-
lowing problem
OEEDYy () = f(1,y(0)),0<1<1
y(0) =y
dy(t)=ft,y@®)dt+oy(t)dB(t) ,ty <t<T
y () =y

(3.19)

The above problem can be converted as
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y(@) = A )+ pGr fo f@y @ -0dr
)’(11)+f”f (T,y(T))dT+fI] oy (7) Br () dr

At t = t,,, we write

sy = | 755 )+ g [ @ -0 de
T y@+ [ F @y@)de+ [ oy @) Br (o) dr
and t
Y(tysy) = AB(a)f (0 Y") + Z3r@ k=0 fkﬂ f @y (t — 1) dr
VI @)+ S [ @y @) dr+ D [ oy (@) Br (1) dr

Replacing f (¢, y) by its Newton polynomial, we can get the following scheme

—a n @ i -

AIB((l)f(tn,y ) + AB() % Zk:z f (tk—Z, yk 2) IT
+ABL§C,) (FA(3+2) Zk 2 [f (fk—l,yk_l) - f(lk—z,yk_z)] b
4o (A" ! Zl f(tk,yk) —-2f (tk—l,yk_l) A

AB(a) 2T(a+3) &k=2 +f (l‘k—z, yk—z)
5f (fk—z,yk_z) AE - %}(]; (fk—l,yk_l)Af }

I,y At

= (B(t-1) — B (1)) 0y* 2

+ sy —3 (B(t) — B(tiep) oy
+2 (B (tr1) — B () o)

y (tn+1) = [
y (tl) + ZZ=[+3

3.5. Numerical scheme for Case 5

In this paper, we consider the following problem with piecewise derivative

dy() = f(t,y@®)dt+oy(®)dB(E),0<t<1t

y(0) =yo
Dy(®)=f@t,y®) ,ty <t<T
y(t) =n

which is transformed into

o = y«D+Lf(Tﬂﬂﬂh+£ay@MBﬁ)
g vt + [ f (y@)dg (@)
or
o= YO + [ f @y@)dr+ [ oy (@) B (1)dr
g Y+ [ f @y@) g (dr '

Att =t,.1, we write

(o) = y(0)+f0tf (T,y(T))dT+fOtO'y(T)B/(T)dT
Yt v+ [ f g (@ dr

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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and

Y (tan) = { YO Bl S O Bl OB (3.28)

YO+ S [ f @y@)gr(ydr

The function f (¢, y) can be approximated as follows

y(0) + Yico {%f (Tk—z,yk_2) At—5f (tk—layk_l) Ar+ 3 (tk,yk) Af}
Ly { 3 (B(ti-1) — B(52)) 0¥ 2 = £ (B (&) — B (tx-1)) oy
k=2 +2 (B(ti1) — B () o)
y (tys1) = 15—2f (tk_z,yk_z) (g (t-1) — g (k—2))
Y+ Nz —3f (tk—l’yk_l) (& (1) = g (ti-1))
+B 1 (167") (8 (tirn) = g (8)

(3.29)

4. Analysis with illustrative example with Hindmarsh-Rose model of neuronal activity

Case 1, we assume that the process follow classical mechanical behavior from [0, 12], then later
follows the randomness from [12, 25] . Thus the model can be formulated as

% :dy+¢(x)—Z+I
y
i @ [‘S‘é(f)x;)y_ ; ifo<r<12 4.1
x(0) = x0,y(0) = y0,2(0) = 2o
dx =+ ¢(x)—z+1)dt +o0xdB (1)
dy = (f (x) — y)dt + o2ydB, (1)
dz = (r[s(x— xg) — z]) dt + 03zdB5 ()
x(12) = x12,y (12) = y12,2(12) = z»

if 12 <t <25. (4.2)

Here ¢ (x) = —ax® + bx*, (x) = ¢ — dx°.

We define the norm ||¢||,, = SUP,ep, lo (1)], we consider a Banach space. We present here the exis-
tence and uniqueness of the solution piecewisely. However to achieve this, we verify the linear-growth
and Lipschitz condition properties. We also assume that V¢ € [0, 12], there exists 3 positive constant
M, M, and M3 < oo such that ||x||, < M1, ||l < M> and ||z]|e, < M3.

):C:fl (xayazat)
y=5Hxyzt) 1f0<1<12. (4.3)

2= f(x,y,2,1)
Vi =1,2,3, we first verify that
£ 0P < ki (1 + 1) (4.4)
and )
(60 = (2 0)| <l -2 (4.5)

For proof, we consider the function f; (x,y, z,t)
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V+b —ax’ —z+ 1 (4.6)
41 +4|px - ax’| + 412 + 4P

fi ey, 20

IA

IA

4( sup [y?| + |bx - czx2|2 x> + sup ||+ 12)
1€[0,12] 1€[0,12]

< 4 (||y2||oo +||bx = ax?||_ 1x? + ||| + 12) (4.7)

||bx— ax2|| )
< 4 5 D) 12 1 00 2
< (||y .+ [l + )[ * 2l + 2] + 2 A

.. bx—ax?
under the condition that B [[p=ax], < 1, then

Iz ll+r?

1fi Gz, OF < (14 ).

Using same routine,

e —dx® - (4.8)
3¢ +3d° || + 31y

1o (. y, 2.0

IA

IA

3 (c2 +d* sup |x4| + |y2|)

t€[0,12]

IA

3(c?+ d ||, + ) (4.9)
2 2 4 1 2
ﬂc+d”xk%1+;:;wagwq

< 1, then

IA

.. 1
under the condition that T

Ay 2P <k (1+DP).
For the function F3,

Ir[s (x — xg) — z1I*

27757 [x — le2 + 277 |z|2

|f3 (-x’ Y. %, l‘)l2

IA I

IA

2 (rzs2 sup |x — xxl* + |z|2)
1€[0,12]

IA

27 (5% |lx = xgll?, + I2I?) (4.10)

< 2}’2 (S2 ||)C — XR”zo) (1 + ﬁ |Z|2)
5% lx = xzlls

under the condition that < 1, then

___
[

s (2 DF < s (14 12).
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Therefore the condition of linear growth is verified if

||bx— ax2|| 1 1 }
<1

max
{||y2||o<,+||22||m+12 2+ | 2 Hlx = xll

4.11)

4.1. Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model

We consider the Hindmarsh-Rose model in piecewise where the first part is classical and the second
part is stochastic such that the stochastic-deterministic model of Hindmarsh-Rose model[13] is given
as

d—x—y ax* +bx? —z+1
%—c—dx -y .
i if0<tr<np (4.12)
G=rs(x—xg)—rz
x(0) = x0,y(0) = y0,2(0) = 20
dx:(y—ax3+bx2—z+1)dt+0'1del(t)
dy=(c—d —y)dt+aydBr() oo g 4.13)

dz = (rs(x — xg) — rz) dt + 03zdB; (1)
x(t) =x,yt) =y,z(t) =z

Using the numerical scheme presented in Case 1, the numerical solution of the stochastic-deterministic
Hindmarsh-Rose model is given as follows:

% (yk—z — ax3k0 4 pxkt k2 I) At
O+ Yid -3 (yk‘l —ax¥*3 + px?? -4 I) At 3,if0<t<t

+% (yk —axk 4+ px*k — 4 I) At

% (yk 2 _ gxdk6  py2k4 k2 1) At

x(ty1) = P _43_1 (yk D _ g3k 3 o pa2h2 _ kel g 1) At . (4.14)
+f§(y"—ax3k+bx2"—zk+l)At ift, <t<T
2 (Bi (tr-1) — By (fi-2)) oy X2
+ sy —3 (Bi (1) — By (t-p)) o6k
+32 (B) (tra1) — By (1) o1 &
| %( k4 yk—z) At
W+ i 5 (e - 2“—y’<-1)Ar if0 <1<t
+%—( —dx* - yk) At

3 dx2—4 — yk—2) At
y (tw1) = TS YA (c —dx22 — k_l)At ) (4.15)
+E ( — dx* — y") At
2 (B (tre1) — By (tr-2)) 022
+ Y3y —3 (Ba(ti) — By (tiey)) o)t
+23 (By (tra1) — By (1) ooy

Lft <t <T

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3526-3563.
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(rs (xk‘2 - xR) - rzk‘z) At
(rs (xk‘l - xR) — rzk‘l)At ,if0<tr<y
% (rs (xk - xR) - rzk) At
; (rs (xk‘2 - xR) — er—z) At
2(t) =3 | 2430, 54 -4 (rs (xk—l — xR) - rzk—l)At : (4.16)
+% (rs (xk - xR) - rzk) At
2 (B3 (tre1) — B3 (ti-0)) 032572
+20iad —3(Bs (1) — By (1) 032!
+23 (B3 (tre1) — B3 (1)) 0732°

e o

AR -

,ify <t <T

4.2. Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

We provide the numerical simulations for the Hindmarsh-Rose model[13] with piecewise derivative

%:Z—ax3+bx2—z+l
%d_ijsc(;_di)_ J. itosrsy 4.17)
x(0) = x0,y(0) = y0,2(0) = 29
dx = (y —ax’ +bx* -z +I)dt+ o1 xdB; (1)
dy=(c=dd =y)di+onydB(® 7 (4.18)

dz = (rs (x — xg) — rz) dt + 03zdB; (1)
x(t) =x,yt) =y,z(t) =z

where the first part is classical and the second part is stochastic. Here initial data is taken as

x(0)=0.1,y(0) =0.1,z(0) = 0.1. (4.19)

In Figure 1, the numerical simulations are depicted with the parametersa = 1,b =3,c=1,d =5,s =
4,xp = -8/5,r=1073,1 = 6.
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Deterministic-Stachastic Hil R madel Deterministic-Stachastic Hindmarsh-Rose modal

yity
=

) a(t
Deterministic-Stachastic Hindmarsh-Rose modal

1.2

0.8+

.

Sos
0.4-

0.2 -

Figure 1. Numerical visualization of Hindmarsh-Rose model for @ = 1,0y = 0.01,0, =
0.015,05 = 0.012.

4.3. Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model

We present the numerical solution for Hindmarsh-Rose model[13] in piecewise where the first part
is with Caputo fractional derivative and the second part is stochastic. Such model is represented by

SDix=y—ax’+bx* —z+1
SDYy=c—dx*—y if0<tr<p (4.20)
OCD;”Z =rs(x—xg)—rz
dx = (y —ax’ +bx* -z + I) dt + o xdB (t)
dy = (c —dx* - y) dt + o,ydB; (1) ifry,<t<T.
dz = (rs(x — xg) — rz)dt + 03zdB; (t)
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3538
The numerical solution of such model is given by
A a—1 i _ _ _ _
(r(3+1) Zk:? (yk 2 _ k6 4 px2kt k2 I)H
R 1 Z (yk_l —ax3*3 4 P I) 5
T Ta+2) 2ik=2 _ (yk—z — kO px2kh k2 ‘
(yk—z — a6 g py2kd k2 I) JAf0 <<t
Lo k=1 _ gy 3k=3 22 _ k-1
-x(tn+1) — +(y —ax +bx —Z +I (421)
15_2 (yk—2 — ax3h6 4 pxkt _ 2 1) At
xS —% (y" U ax 3 4 a2 — 1 4 I) At
23 (k 3k 2% _ k
+12(y —ax* +bx™ -+ 1) At it <t<T
2 (Bl (t-1) — By (1)) o x*72
+ Yieivsd —3 (Bi () — By (tiey)) o x4
+23 (By (tx1) — By (1) o1 4
(AN i 2k—4 k-2
mZkzz(C_dx 2% 2—)’ k ?H
(AZ)MZ (c—dx‘ —y‘) 5
F(a+2) k=21 ¢ — dx24 — yk—z) "
4o - Z 2(c—dx2k 2 _ k1) | A
T o (ar3) 2ik=2 y
2% ok
Y (tus1) = 7 (c - d* ~y) 4.22)
3(c- A2k yk—z) At
X+ Y 3 (c dx*-2 yk‘l)At
23 2% _
+12(C dx —y)At ,ifty <t<T
> (Bz (ti-1) = Ba (1x-2)) 02y~
+ Dheia3 (Bz (1) = B (tx-1)) o2y*™!
+% (B, (txs1) — By (1)) ooyt
@' i k-2 k-2
Ta+D) Zkﬁ(”( ~AR) T2 )H
L@t i (”(kz_x’?)_rzk_z) )
»1 <
(rs (xk‘2 - xR) rzk 2) !
ozA -1 — _
zﬁ(;)m S| 2 (rs (xk I xR) —rzt 1) A
_ ok
2(ther) = | (s (o - x) -2 (4.23)
15—2 rs(xkz—x) )At
X'+ YR —%( (xk b — xg —rzk ])At
23
. +12(rs(xk_xR)_rZ)A Jift <t<T
2 (Bs (tx-1) — By (tx-2)) 07322
+ sy —3 (B3 () — B3 (tiey)) 032!
+32 (B3 (txs1) — B3 (1) 032
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4.4. Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

We present the numerical simulations for the Hindmarsh-Rose model[13] in piecewise

SD'x=y—ax’ +bx* —z+1
DYy =c—dx*—y if0<t<t (4.24)
SDYz=rs(x—xg)—rz
dx = (y —ax’ +bx* —z + I) dt + o1 xdB, ()
dy = (c —dx? - y) dt + o,ydB, (1) ift; <t<T.
dz = (rs(x — xg) — rz)dt + 03zdB; (1)

where initial data is considered as
x(0)=0.1,y(0) =0.1,z(0) = 0.1. (4.25)

In Figure 2, the numerical simulations are provided with the parametersa = 1,b=3,c=1,d =5,s =
4,xpg =-8/5,r=107,1 = 6.
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Figure 2. Numerical visualization of Hindmarsh-Rose model for = 1,0y = 0.01,0, =
0.015,03 = 0.012.
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4.5. Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model
We consider the Hindmarsh-Rose model[13] where the first part is Caputo-Fabrizio derivative and

the second part is stochastic as follows

SFDfx=y—ax’ +bx* —z+1
SFDfy=c—dx* -y if0<t<t (4.26)
SFDYz = rs(x —xg) — rz
dx = (y —ax® +bx* -z + I) dt + o1xdB; (t)
ifte; <t <T. 4.27)

dy = (c —dx* - y) dt + o5 ydB, ()
dz = (rs(x — xg) — rz)dt + 03zdB; (1)

Using the numerical scheme presented in Case 3, the numerical scheme for stochastic-deterministic

Hindmarsh-rose model is given as follows:

- (y” —ax’ + bx*? -7 + I)

M(a)
| % (yk—z — a3k a2kt k2 1) At
+% o —‘3—‘ (yk‘1 —ax3*3 4 px¥2 ey I) At ;,if0<t<t
+2 (y" —ax* + bx** - + I) At
5 (k=2 _ . 3k—6 2%k-4 _ k-2
x(t) = 124(y ax + bx 7+ I) At (4.28)
X'+ Yy -3 (yk‘l —ax¥*3 4 px? 4 I) At
23 (k 3k % _ k
ta(y —ax*+ b — 2+ 1) Ar Jiff <t<T
= (B (1) — By (k) 042
+ Y03y —3 (B (1) — By (=) oy X!
+22 (B (txs1) — By (1) oy x*
1-a 2n n
M (c —dx" -y )
% (c — dx** - yk‘z) At
tois Tind (e —dx 2 = YA 1O <1<ty
+% (c —dx* — yk) At
5 2%k-4 _ k-2
¥ () = B (e -dt =y (4.29)
Y Tisd (e —dx¥ 2 -y Ar

+%(C_dx2k_yk)m_ Jift <t<T
2 (By (tr-1) — By (r-2)) 022
—3 (B> (ty) — B (1)) 02y* ™!
+23 (B, (tre1) — By (1) ooy*

+ ZZ:i+3
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g (s (" = xg) = r2")

| 15—2 (rs K2 - R) - rzk‘Q) At
+% Dk —% (rs (xk‘l - xR) - rzk‘l)At ,if0<r<y
+% (rs (xk - xR) - rzk) At
5 -2 _ k=2
2 (tu1) = 5 (s (27 ) = r2) A (4.30)
2+ Tioisy —3 (rs Kt — xR) - rzk‘l) At
23 k k
. +33 (rs (& — xe) = r2¥) A Jift <t<T
= (B3 (tx-1) — B3 (k) 07322
+ Y03y —3 (B3 (t) — By (tx-1)) 032!
+2 (B; (trs1) — B3 (1) 0732
4.6. Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model
In this subsection, we consider stochastic-deterministic the Hindmarsh-Rose model[13]
SFDYx =y —ax’ +bx* —z+1
SFDfy =c—dx* -y if0<t<y (4.31)
SEDYz =rs(x—xg) — 12
dx = (y —ax® +bx* -z + I) dt + o1 xdB (t)
ifty, <t<T

dy = (c —dx? - y) dt + o,ydB; (1)
dz = (rs(x — xg) — rz) dt + 03zdB; (1)

where initial data is considered as

x(0)=0.1,y(0) =0.1,z(0) = 0.1. (4.32)

In Figure 3, we perform the numerical simulations with the parametersa = 1,b =3,c =1,d =5,s =
4,xg = -8/5,r=1073,1 = 6.
Volume 19, Issue 4, 3526-3563.
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Figure 3. Numerical visualization of Hindmarsh-Rose model for @ = 1,0y = 0.01,0, =
0.015,05 = 0.012.

4.7. Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model

In this section, we present the numerical scheme for Hindmarsh-Rose model[13] with piecewise
derivative

aBCDlx =y —ax’ +bx* —z+1
oBCDYy = ¢ —dx* -y if0<tr<y (4.33)
‘(;‘BCD?Z =rs(x—xg)—rz
dx = (y —ax’ +bx* -z + I) dt + o xdB (t)
dy = (c —dx* - y) dt + o,ydB; (1) ifty <t<T.
dz = (rs(x — xg) — rz) dt + 03zdB; (t)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3526-3563.
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Stochastic-deterministic Hindmarsh-Rose model can be solved by the following scheme

Alg(‘é) (y” —ax™ +bx*" — 7" + I)
a_ (A" i k-2 3k=6 2k—4 k-2
+AB(a)F(a+1)Zk=2 (y —ax + bx -z +I)H
Yy e i (yk—l — ax3k3 4 px2k2 kel 1)
+AB(a) T(a+2) Zk=2 _ (yk—z — ax3k6  pyPht k2 1) Lif0<t<t
(yk—z — k6 a2kt k2 I)
a (A7 i k-1 3k-3 2%-2 _ k-1
+ 1B e k=2 | 2y —ax T+ bxTT -z +I) A
X (the1) = +(yk — a3 + bk — k4 1) , (4.34)
5 (yk—z — ax3k6  px2kt k2 I) At
12
o+ S _;_l(yk—l ax33 4 pxh-2 _ k-l +I) At
+2—2(y —ax** + bx* - zk+1)At ifr<t<T
i (Bl (fie1) = By (tr-2)) o1 xF
+ iy —3 (Bi(t) — By (1) o X!
+3 (By (tx1) — By (1) 1 x*
1- o o (AT i k-4 _ k=2
AB@ ( —dx" -y ) AB(@) T(a+1) Z§z22(c _kd)l“ R )H
-1 c—dx™ " =y
+ABOZQ) (rA(;)Jrz) ed _ k2) | Z
(c —dx y ) £0 <
(C_dXZk—AL_yk—Z AMU<t =1
a_ (A" o .2%k=2 k-1
AB(a) 2T(a+3) Zk 2 2 (C dx y A
a2k Lk
Y (tni1) = +(c-dvt - ) . (4.35)
% (c dx*4 —yk 2) At
X+ Y -3 (c —dx*2 — 1) At
+12( dek—y)At Jifty <t <T
2 (B (tr-1) = By (tx-2)) 02y*™
+ Yheii3y =3 (Ba () = B (1)) 0'2yk_1
+33 (B (fx1) — B2 (1) 02y*
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s (rs (0" = x6) = r2)
a (AN i k-2 k-2
+ TB@ TarT) k=2 (rs (x a XR) e )H
" a (At)d—l Zl (I"S ()Ck_z - xR) - I’Zk_z)
AB(@) T(@+2) &k=2 _ (rs (xk‘l - xR> - rzk‘l) ,if0<t<ty
(rs X2 - XR) — rzk‘2)
a A a—1 i _ .
B —z(r(t;+3) Y| =2 (rs (x" I xR> -t 1) A
2(tur1) = +(rs (x* - xR) - rzk) (4.36)
15—2 (rs (xk‘z - xR) - rzk_z) At
X+ Yl -3 (rs (xk“ —~ xR) — rzk‘])At
23 k
' +ﬁ(”(xk_x’?)_rz)m Jifty <t<T
2 (Bs (tx-1) — B3 (tx-2)) 07322
+ sy —3 (Ba(t) — B3 (tiey)) 032!
+33 (B3 (111) — B3 (1) 0732
4.8. Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model
We provide the numerical simulations for the Hindmarsh-Rose model[13] in piecewise
BCDIx =y —ax’ +bx* —z+1
ABCDYy = ¢ —dx* -y if0<r<y 4.37)
05Dz = rs(x — xg) — 1z
dx = (y —ax +bx* -z + I) dt + o1 xdB (t)
dy:(c—dxz—y)dt+0'2ydB2(t) ifty <t<T

dz = (rs(x — xg) — rz)dt + 03zdB; (1)

where the first part is with Mittag-Leffler kernel and the second part is stochastic. Initial data is con-
sidered as

x(0)=0.1,y(0) =0.1,z(0) = 0.1. (4.38)

In Figure 4, the numerical simulations are depicted with the parametersa = 1,b =3,c=1,d =5,s =
4,xp = -8/5,r=1073,1 = 6.
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Figure 4. Numerical visualization of Hindmarsh-Rose model for @ = 1,0y = 0.01,0, =

0.015,05 = 0.012.

4.9. Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model

In this section, we deal with the Hindmarsh-Rose model[13] where the first part is stochastic and
the second part is global derivative. The stochastic-deterministic model of Hindmarsh-Rose model is

represented by

dx = (y —ax’ +bx* -z + I) dt + o xdB, (t)
dy = (c —dx* - y) dt + o,ydB; (1)

if0<r<n
dz = (rs(x — xg) — rz)dt + 03z2dBs ()
x(0) = X0,y (0) = y0,2(0) = 2o
Dix = (y—ax3+bx2—z+l)
@ 2
Dy = (c—dx* -y) ifr, <t<T.

Dgz =(rs(x—xg)—1r2)
x(t) =x,y(t) =y,z(t) =z

(4.39)

(4.40)
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Using the numerical scheme presented in Case 5, we can have the following scheme for the stochastic-
deterministic Hindmarsh-Rose model

i(ykz 36 4 py2k4 k—2+1)At

(yk U qo3k=3 4 py2k=2 _ k- +I) At

+ (y —ax* + bx* — 7 +I)At

. 152 (Bl (t-1) — By (1)) oy x*72

X (tpe1) = + 22y 3 (Bl (1) — Bi (t-1)) oy X! ,
2 (B (trs1) — By (1) oy xF

S -ax 4 it 1) (8 (1) - 8 ()

D AN -1 (yk‘1 —ax33 4 px?? I) (gt)—g(tiy) ¢, ifty<t<T

+B (Y = ax¥t + bt = 2+ 1) (g (i) - 8 (1)

,1fO <t <1

4.41)
| 2 (c — dx** - yk’z) At
W+ Do —‘3—‘ (c — dx*2 - yk‘l) At
23 % _ ok
. "‘E(C_dx R )A’k J | ifo<r<n
. 25 (Ba (tr-1) — B2 (fx-2)) 02y
y (tws1) = + i —5 By () — By (1) ooyt ; (4.42)
+33 (B (tx1) — B2 (1)) 02y*

3 (e = ad® =y 2) (g (t1) — g (1))

Y T - -y ) @) - g ) (Lifn<i<T
+2 (e = dn® — 1) (g (1) — 8 (1)

|

: (rs ()ck‘2 - xR) - "‘2) At

(rs(xk Iy ) k—l)At
+12 (rs(x" XR) —rz )At

. = (Bs (t-1) — B3 (tx-2)) 0322

Z (tas1) = + 30 _%(B300'_B30h4»03f_1 443

S
(=)
+
==
(3]
|4>N

LifO <<y

+23 (B3 (txa1) — B3 (1) 0732 |
rs (&2 o) = r2?) (g (1) — 8 (62))
(rs (! o) = 1) (8 () ~ g () poifn <t<T
2 (rs (xk - xR) - I”Zk) (& (tke1) — g (1))

a=1,b=3,c=1,d=5,5s=4,xg = -8/5,r=1073,1 = [-10, 10].
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4.10. Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

In this subsection, we provide the numerical simulations for the following Hindmarsh-Rose
model[13]

dx = (y —ax’ +bx* -z + I)dt + o xdBj (1)
dy = (c —dx* - y) dt + o5 ydB, ()
dz = (rs(x — xg) — rz) dt + 03zdB; (1)
x(0) = x0,y(0) = y0,2(0) = 29
Dgx = (y—ax3+bx2—z+l)
Dgy = (c —dx? —y)
D¢z = (rs(x — xg) = r2)
x(t) = x,y () =y,z2(t1) =2

if0<t<t (4.44)

ifty <t<T (4.45)

where g (f) = t and initial data is considered as

x(0)=0.1,y(0) =0.1,z(0) = 0.1. (4.46)

In Figure 5, the numerical simulations are depicted with the parameters a = 1,0 = 3,c =1,d = 5,5 =
4,xg =—-8/5,r=1073,1=6.
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Figure 5. Numerical visualization of Hindmarsh-Rose model for = 1,0y = 0.01,0, =
0.015,03 = 0.012.
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5. Applications for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model

In this section, we present illustrative examples for stochastic-deterministic 4D driven Lorenz
system[14] by taking into account all cases presented in this work.

5.1. Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model

We present the numerical solution for 4D sinusoidally Driven Lorenz model[14] in piecewise where
the first part is considered with classical and the second part is stochastic. Such model is represented
by

% =—-a(x—y—-csinu)

@by oo (5.1)
&= —dz - '
&=
dx = (—a(x—y—csinu))dt + o1xdB (t)
dy = (bx — xz—y)dt + o,ydB; (t) )
dz = (xy — dz) dt + o52dBs (1) ith<t<T
du = wdt + o4udB, ()
where initial data is considered as

x(0)=0.1,y(0)=0.1,z(0) = 0.1,u (0) = 0.1. (5.2)

For Case 1, the numerical simulations are performed in Figure 6. Here the parameters are chosen as
a=10,b=30,d =8/3,c=17,w =0.5.
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Figure 6. Numerical visualization of 4D Sinusoidally Driven Lorenz system for @ = 1,0 =
0.012,0, = 0.013,03 = 0.015, 04 = 0.014.

5.2. Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model
In this subsection, numerical simulations for 4D sinusoidally Driven Lorenz model[14] with piece-

wise derivative are presented

§DYx =—a(x—y—csinu)
SDYy =bx—xz—y

if0<t<t 5.3
§Djz = xy - dz nesrEh )
SD'u=w
dx = (—a(x—y—csinu))dt + o1xdB (t)
dy = (bx — xz —y)dt + o,ydB; (t) )
dz = (xy — dz) dt + o52dBs (1) ith<t<T
du = wdt + o4udBy (1)
where initial conditions are as follows
x(0)=0.1,y(0) =0.1,z(0) = 0.1, (0) = 0.1. 5.4

In Figure 7, the numerical simulations are depicted for the parameters a = 10,b = 30,d = 8/3,c =
17,w =0.5.
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Figure 7. Numerical visualization of 4D Sinusoidally Driven Lorenz system fora = 1,07, =
0.012,05 = 0.013,05 = 0.015, 04, = 0.014.

5.3. Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model
To give numerical simulation for 4D sinusoidally Driven Lorenz model[14], we deal with the fol-

lowing problem

gFD?x: —a(x—y—csinu)
SFDYy =bx—xz—y

SFDu = w
dx = (—a(x—y—csinu))dt + o xdB (t)
dy = (bx — xz —y)dt + 0,ydB; (1) i1, <r1<T

dz = (xy —dz)dt + 03zdB; (t)
du = wdt + o,udBy ()

where first part is with exponential decay kernel and the second part is stochastic. Initial conditions are
as follows

x(0)=0.1,y(0) =0.1,z(0) = 0.1, u (0) = 0.1. (5.6)

In Figure 8, we provide the numerical simulations for 4D Sinusoidally Driven Lorenz system with the
parameters a = 10,06 = 30,d = 8/3,c = 17,w = 0.5.
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Figure 8. Numerical visualization of 4D Sinusoidally Driven Lorenz system for @ = 1,0 =
0.012,0, = 0.013,03 = 0.015, 04 = 0.014.

5.4. Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model

In this subsection, we present the numerical simulation for the following 4D sinusoidally Driven
Lorenz model|[14]

oBCDYx = —a(x -y — csinu)

ABCDYy = bx—xz -y

QBCD(:Z - xy—dz if0<tr<t 5.7
oD u = w
dx = (—a(x—y—csinu))dt + o1 xdB (t)
dy = (bx — xz —y)dt + 0,ydB; (1) )
dz = (xy — dz) di + o52dBs (1) ith<t<T
du = wdt + o4udBy ()
where initial conditions are as follows
x(0)=0.1,y(0)=0.1,z(0) = 0.1,u (0) = 0.1. (5.8)

In Figure 9, the numerical simulations for the considered system are performed with the parameters
a=10,b=30,d =8/3,c=17,w=0.5.
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Figure 9. Numerical visualization of 4D Sinusoidally Driven Lorenz system for @ = 1,0 =
0.012,0, = 0.013,03 = 0.015, 04 = 0.014.

5.5. Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model

We consider 4D sinusoidally Driven Lorenz model[14] with piecewise derivative where the first
part is stochastic and the second part is global derivative

dx =(—a(x—y—csinu))dt + oxdB (t)
dy = (bx — xz —y)dt + o,ydB; (t)
dz = (xy — dz)dt + 032dB; (1)
du = wdt + o,udB, ()

if0<r<y (5.9)

Dgx = —a(x—y—csinu)
Dgy=bx—xz—-y
Dgz=xy—dz
Dgu:w

ifty <t<T

such that g (r) = t. Here initial conditions are as follows
x(0)=0.1,y(0) =0.1,z(0) = 0.1,u (0) = 0.1. (5.10)

In Figure 10, the numerical simulations are depicted for the considered problem where the parameters
are chosenas a = 10,6 =30,d = 8/3,c = 17,w = 0.5.
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Figure 10. Numerical visualization of 4D Sinusoidally Driven Lorenz system fora@ = 1,0 =
0.012,0, = 0.013,03 = 0.015, 04 = 0.014.

6. Applications for stochastic-deterministic model of Bouali system
In this section, we present applications of stochastic-deterministic Bouali system for all cases [15].

6.1. Numerical simulation for stochastic-deterministic model of Bouali system

We consider the Bouali model[15] in piecewise where the first part is classical and the second part
is stochastic as follows

& —ax(1-y)-pz

Z=—y(1-x) if0<r<y 6.1)
G = h
dx = (ax(1 —y) = Bz)dt + o1xdB; (?)
dy = (=by(1-x))dt + oyydBy (1) ifty <t<T (6.2)

dz = uxdt + 03zdB; (1)
where initial conditions are taken as
x(0)=1,y(0)=1,z(0) = -0.02. (6.3)

In Figure 11 and 12, the numerical simulations are depicted for the parameters a = 3, 8 = 2.2,b =
1,4 =0.001.
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Figure 11. Numerical visualization of Bouali system for @ = 1,0y = 0.02, 0, = 0.022, 03 =
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Figure 13. Numerical visualization of Bouali system for @ = 1,0y = 0.02, 0, = 0.022, 03 =
0.025.

In Figure 14, we present the numerical simulations for stochastic-deterministic Bouali system for
the parameters a = 3,8 =2.2,b = 1,u = 1.51.
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6.2. Numerical simulation for stochastic-deterministic model of Bouali system

We consider the Bouali model[15]

SDYx=ax(1-y)—pz

Spey=-y(1-22) ifo<r<n (6.4)
§Djz = px
dx = (ax(1 —y) = Bz)dt + o1 xdB; (1)
dy = (=by(1 - 22))dt + ooydBy (1) ifty <t<T 6.5)

dz = uxdt + 03zdB; (1)

where the first part is Caputo and the second part is stochastic. Initial conditions are taken as

x(0)=1,y0) =1,z(0) = -0.02. (6.6)

In Figure 15, the numerical simulations are depicted for the parameters a = 3,8 = 2.2,b = l,u =
0.001.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3526-3563.
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Figure 15. Numerical visualization of Bouali system for @ = 1,0y = 0.02, 0, = 0.022, 03 =
0.025.

6.3. Numerical simulation for stochastic-deterministic model of Bouali system

We consider the Bouali model[15] with piecewise derivative

gFD;’x =ax(l -y)—-pz

Dty =-y(1-22) if0O<t<y 6.7)
§EDYz = pux
dx = (ax(1 —y) —Bz)dt + o1 xdB (1)
dy = (=by(1 - x*))dt + 0oydB, (1) ift, <t <T. (6.8)

dz = uxdt + 032dB5 (1)

Initial conditions are given by

x(0)=1,y0) =1,z(0) = -0.02. (6.9)

In Figure 16, the numerical simulations are provided for Bouali system where the parameters are taken
asa=3,=22,b=1,u=0.001.
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Figure 16. Numerical visualization of Bouali system for @ = 1,0y = 0.02, 0, = 0.022, 03 =

0.025.

6.4. Numerical simulation for stochastic-deterministic model of Bouali system

We deal with the stochastic-deterministic Bouali model[15]

ofD¢x =ax(1-y) - Bz
0"Dy = —y(l -2 if0<r<y
08Dz = ux
dx = (ax(1 = y) = B2)dt + 071 xdB, (1)
dy = (—by(l - xz)) dt + oyydB, (1) ift; <t<T.
dz = uxdt + 03zdBs (1)

(6.10)

(6.11)

Here the first part is Atangana-Baleanu fractional derivative and the second part is stochastic. Also

initial conditions are taken as

x(0)=1,y(0) = 1,z(0) = —0.02.

(6.12)

In Figure 17, we provide simulations for Bouali system with the parametersa = 3,8 =22,b=1,u =

0.001.
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Figure 17. Numerical visualization of Bouali system for @ = 1,0y = 0.02, 0, = 0.022, 03 =
0.025.

6.5. Numerical simulation for stochastic-deterministic model of Bouali system
We consider the Bouali model[15] with piecewise derivative

dx = (ax(1 —y) — B2) dt + o1 xdB; (t)
dy = (‘by (1 - xz)) dt+o,ydB, (1) if0<t<p

(6.13)
dz = uxdt + 032dB5 (1)
Dgx =ax(1-y)-pz
Diy=-y(1-x*) ifty<t<T (6.14)
D3z = ux
such that g (r) = t. Also initial conditions are as follows
x(0)=1,y(0)=1,z(0) = -0.02. (6.15)
In Figure 18, the numerical simulations are presented for the parameters a = 3,5 = 2.2,b = 1l,u =
0.001.
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7. Conclusion
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Using the concept of piecewise differentiation and integration suggested by Atangana and Seda
recently, we suggested classes of nonlinear ordinary differential equations. These classes are called
piecewise deterministic stochastic equations. We suggested five classes, of course more classes can
be obtained depending on how the piecewise differential and integral operators are defined with given
intervals. We informed that, of each class presented, a suitable method to prove existence and unique-
ness of piecewise solution can be performed in suitable spaces. However, we also informed that such
discussion was not presented in general in our paper. Nevertheless, we considered a few chaotic mod-
els and extended each one of the five classes suggested, for some we presented conditions under which
existence and unique solutions are obtained. General numerical solutions using the Newton polyno-
mial interpolation were obtained. Illustrative examples are presented together with simulations. The
obtained solutions leave us no chose to conclude that, this approach is the future of modelling complex

real world problems.
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