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Abstract: This paper studies the nonlinear vibrating behaviour of a nonlinear cantilever beam system
(primary system) using a nonlinear absorber (the secondary system). The nonlinear vibrating
behavior for the present dynamical system is considered with the effect of the external force. The
one controller type, nonlinear saturation controller (NSC), is introduced to decrease the vibration of
this system. Perturbation method treatment is produced to get the mathematical solution of the
equations for the dynamical modeling with NSC. The perturbation technique is used to obtain the
approximate solution of the dynamical system. This research focuses on resonance case with primary
and 1:2 internal resonance. Time histories of the primary system and the controller are shown to
demonstrate the reaction with and without control. The time-history response, as well as the impacts
of the parameters on the system and controller, are simulated numerically using the MATLAB
program. Routh-Hurwitz criterion is used to examine the stability of the system under primary
resonance. A numerical simulation, using the MATLAB program, is obtained to show the time-
history response, the effect of the parameters on the system and the controller. The effects of system
parameters on the performance of the primary system and the controller are investigated. A
comparison between all the obtained solutions made to confirm the results. Validation curves are
provided to show how closely the perturbation and numerical solutions are related. A comparison is
made with recently released papers.
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external excitation

1. Introduction

In recent years, applications of controllers using the saturation phenomenon developed to end
system’s vibrations. Many researchers studied this phenomenon in different dynamical systems. Oueini
et al. [1] recommended an active control for a cantilever beam by adding a vibration damper. The
flexible structure with the controller has been presented analytically using multiple scale method at
two-to-one autoparametric resonances. Pai et al. [2] improved the performance of NSC and the linear
position feedback algorithm analytically, numerically and experimentally. From this study they showed
that NSC is efficient to decrease the steady-state vibrations. Oueini and Nayfeh [3] a control strategy
for the excited beam by cubic velocity feedback under a principal parametric resonance is suggested.
The analysis detected that this controller reduced the amplitude of the response. Pai and Schulz [4]
introduced a controller connected to a system with quadratic terms depended on saturation occurrence.
They controlled the oscillation of the system via PZT patches as actuators and sensor. Pai et al. [5]
considered some absorbers depended on saturation phenomena designed in support of declining the
vibrations of a plate model. Ashour and Nayfeh [6] used an absorber based on saturation phenomena
for lessening vibrations of the model. In favor of raising the action of the saturation control they
determine the frequency of excitation together with the system. Jun et al. [7] illustrated the saturation
controller to the structure by processing typical PZT patches. Depended on analytical solutions these
authors showed that the nonlinear absorber (NSC) was globally stable, as distinct from a linear model
where growing feedback gain value might instead go in front to instability. However, for a nonlinear
absorber, the power need will be greater than that for the linear system. Jun et al. [8] presented a
nonlinear saturation controller for decreasing vibrations of a self-excited plant. The control mechanism
performed via combination the absorber among the plant applying quadratic nonlinearity. Xu et al. [9]
proposed the influence of a time-delay in a structure depending of a linear beam with NSC absorber.
The analytical results based on the multiple scales method revealed much more complex dynamics for
the system. Presence of the time-delay widened or decreased the frequency bandwidth of effective
vibration suppuration.

EL-Sayed [10] presented the purpose delay positive position feedback control (DPPF) in support
of reduction vibrations in the Van der Pol oscillators system with external forces. The effectiveness of
vibrations suppuration by DPPF is tested for selected parameters to obtain the stability condition of
the model. Warminski et al. [11] concentrated on appliance of special controllers for a flexible beam
with MFC actuators. Mathematical solutions for the beam with NSC obtained using perturbation
technique. The best controllers for reduction the vibration for the system are NSC and PPF controllers.
Saeed et al. [12] illustrated time-delay saturation controller to decrease oscillations of nonlinear beam.
Hamed, and Elagan [13] considered effeteness of NSC control algorithms for huge oscillation of the
beam structure. Hamed and Amer [14] used NSC to decrease the oscillation amplitude of a composite
beam. Kamel et al. [15] proposed a magnetically levitated body with a NSC to decrease the horizontal
vibration simulated by a nonlinear differential equation. Omidi and Mahmoodi [16] for nonlinear
oscillation decreasing, they performed the Positive Position Feedback (PPF), the Integral Resonant
Control (IRC) and Nonlinear Integral Positive Position Feedback (NIPPF). They solved analytically
the system using multiple scales method. Conclusions show that controller construct has mainly job in
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suppression performance.

Numerous main papers are studied the vibration absorbers on various nonlinear systems. Linear
and nonlinear dynamic vibration absorbers have been employed to suppress the primary resonance
vibrations of a weakly nonlinear oscillator systems having cubic nonlinearity subjected to external
excitations under primary resonance conditions [17-20]. The method of multiple scales is used to
obtain the averaged equations that determine the amplitudes and phases of the first-order approximate
solutions to the vibrations of the primary nonlinear oscillator and nonlinear absorber. The nonlinear
absorber can effectively suppress the amplitude of primary resonance response and eliminate saddle-
node bifurcations occurring in the frequency-response curves of the primary nonlinear oscillator.
Numerical results are given to show the effectiveness of the nonlinear absorber for suppressing
nonlinear vibrations of the primary nonlinear oscillator under primary resonance conditions. Moreover,
different control approaches are investigated and confirmed to decrease the unsafe vibrations which
are made in different nonlinear systems [21-25]. Furthermore, Ji et al. [26] studied the dynamic
behavior of a quadratic nonlinear oscillator involving time delay under two-to-one resonances of two
Hopf bifurcations. Also, Ji [27] investigated the secondary resonance response of a time-delayed
quadratic nonlinear oscillator after the trivial equilibrium of the system loses its stability via two-to-
one resonant Hopf bifurcations. Zhang and Li [28] investigated the global bifurcations and chaotic
dynamics of a nonlinear oscillator with two-degree-of-freedom. The fast and slow modes may exist
simultaneously, and the chaotic motions were found by using numerical simulation. Chaos in beams
has been widely investigated recently. With the Galerkin method, the method of multiple scales and
numerical simulations, Zhang [29] investigated the chaotic motion and its control for the nonlinear
non-planar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse
excitations at the free end. By means of the Galerkin procedure, normal form theory and a global
perturbation method. Zhang et al. [30] investigated the bifurcations and chaotic dynamics of a simply
support symmetric cross-ply composite laminated piezoelectric rectangular plate, which are
simultaneously forced by the transverse and in-plane excitations and the excitation loaded by the
piezoelectric layers. Hao et al. [31] studied the complicated nonlinear dynamics of a functionally
graded material cantilever rectangular plate subjected to the transverse excitation in thermal
environment. Zhang et al. [32] analyzed nonlinear dynamic responses of cantilever rectangular
laminates with external excitation. Nonlinear forced vibration characteristics of carbon nanotube
reinforced composite plates were studied by Guo and Zhang [33]. Lu et al. [34] proposed a robust
control method for the vibration suppression of composite laminated cantilever rectangular plates
subjected to the aerodynamic force in hygrothermal environment. Recently, Siriguleng et al. [35]
studied the dynamic response of a rotating laminated composite blade in the case of 2:1 internal
resonance and the author reported the interesting saturation phenomena in the rotating composite blade.

The key goal of this research is to provide a general guideline for removing high vibrations of the
framework by using a suitable control technique. The nonlinear saturation control (NSC) considered
for active suppression of high vibration for the nonlinear dynamical system which presented in [16].
The analytical result received by using perturbation technique process near simultaneous internal and
primary resonance case. The comprehensive mathematical solutions, frequency response equations
(FRESs), and stability analysis with NSC process are obtained using the perturbation method. Numerical
solution and effect of all parameters on the vibrating system and NSC system are plotted and reported.
The MATLAB software is used to simulate the impact of various parameters and the controller on the
system. The validations of the analysis’s time history and frequency response curves (FRCs), as well

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3487-3508.



3490

as the numerical results, were satisfied by comparing them. Before and after providing the controller
in the simultaneous internal and primary resonance case, the system is numerically and graphically
examined. The simulation outcomes give that the NSC method is found to be the most effective at
eliminating high vibrations and making the system more stable. Finally, numerical results are obtained
that show an outstanding agreement per the analytical results.

2. Governing equations and approximate solutions

In this section, the model for the nonlinear dynamics of a cantilever beam is governed by a
nonlinear partial differential equation. The primary resonant mode of the cantilever beam is considered
not to be involved in an internal resonance with other modes of the system. Single-mode discretization
approach results in nonlinear differential equation of [16] yields:

¥+nx+@’x+ax’ + fxi’ +yx’x = f cos(2r) 2.1
To perform the multiple-time-scale procedure, system parameters are scaled, such that:

n,—>en,a—ea, Bo>eB,y ey, foef

So, the equation motion of the cantilever beam obtained from [16] is modified by using NSC
process as follows:

¥+enx+alx+eax’ +gfxi’ +eyx’x =& fcos(2t)+ ey, vV (2.2)
V+enyv +a@v =gy, xv (2.3)

where 7, and 77, are linear damping coefficients of the main system and NSC, f and (2 are the
forcing amplitude and the frequency of the system, @, and @, are natural frequencies of the main

system and NSC, «, f and y are nonlinear factors, y, is control signal gain, y, is feedback

signal gain and ¢ 1is a small perturbation value.
Figure 1 shows connection of NSC system to the main system in a closed figure which describing
Egs (2.2) and (2.3).
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Figure 1. Block map of the blocked loop system.

2.1. Perturbation analysis

In this section, the perturbation manner [36,37] is useful to seek the approximate solutions of
Eqgs (2.2) and (2.3) as known:

x(t,6)=x,(T,.T,)+ex,(T,,T,)+O (&%) (2.4)

v(t,e)=v,(T,.T,)+ev,(T,.T,)+O (&) (2.5)

The time derivatives of the Eqgs (2.2) and (2.3) can be written in terms of two time-scales as:

d >, 0
—-=Dy+eD,, —==D;+£2D,D,), D, =——(n=0,) (2.6)

n

Inserting Eqgs (2.4) to (2.6) in Eqs (2.2) and (2.3), and compare coefficients of similar power of
£, we achieve:

O (80)2
(DO2 +a)2)x0 =0 (2.7)

s

(Dg+a! v, =0 (2.8)
0(&'):
(D02 +a)s2)x1 =-2D,Dyx,—1,Dyx, —ax, _,on(Doxo)2 —yXoDyx o +f cos($2A)+y,v, (2.9)

(DO2 +@ )V1 =-2DDy,-n.Dy,+7,x,v, (2.10)
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The solutions of Egs (2.7) and (2.8) are:

x,=A,T,,T,)exp(iwT,)+cc. (2.11)

v,=4,T,.T)exp(iaTl,)+cc. (2.12)

Where, 4,(T,.T,), A,(T,,T,) are complex functions in T, and T, cc. locate for the complex

conjugate of the preceding terms. Substitute Eqs (2.11) and (2.12) interested in Eqs (2.9) and (2.10),
we obtain the following solutions:

ad] - P’} —yw’ A} _ f , 7 A .
X, = g 5 exp(BiwTl,)+| —— |exp(i 2T, +| 42— |expRi w.T
1 |: 86032 p( s 0) 2((03—[22) p( 0) @3_4@3 p( c o)
v{&i‘%}%a (2.13)
a)S'

v, :|: 7,44, :lexp(i (a)s + o, )T0)+|: 7, 4,4, )z:lexp(i (a)s -, )T0)+CC. (2.14)

@ (0, +a) -

c c

Wherever the over bar indicates the complex conjugate function. Before we proceed to the next
step of the solution, we have to establish the possible resonance cases at Eqs (2.13) and (2.14) which

be primary resonance ( £2=®, ), internal resonance ( @, =2w, ), and simultaneous resonance
(2=0,, o, =2, ) that is the worst one. Therefore, this case is investigated by introducing the two

parameters o, and o, to describe quantitatively the closeness of 2 and @, to , as follows:

R=z=ow +e0, 0, =20 +&0, (2.15)

Inserting Eq (2.15) into the small-divisor and secular terms of Eqs (2.9) and (2.10), we get the
following solvability conditions:

2iw D, =| i o4, +(-3a - o] +3y0] )44, |
J{fﬂ exp(i oT))+| 7,45 |exp(-i o) (2.16)

2iw DA, =—iwnAd,+y,A44,expio,T,) (2.17)

For analyzing Eqs (2.16) and (2.17), we rewrite A4,(I,) and A,(T,) in polar form as follows:
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A, =%an exp(if,), n=12 (2.18)

Wherever, a, and a, are the steady-state amplitudes of the system and 5, f, are the phases

of the two motions. Applying Eq (2.18) into Eqs (2.16) and (2.17) and sorting out the real and
imaginary parts, we acquire the following set of first-order differential equations.

i, = —%al {%} sin(@)) + {— 421) af}sin(@z) (2.19)

N s

a,f3 ={ Sa  Po Yo, )af +{—2f?} cos((9])+{—%a22}cos(02) (2.20)

8, 8 8 ] ]
i, =L q +| L2 qa, |sin6,) (2.21)
2 4o,
5 _ 72
a,p, = {——alaz}cos(ﬁz) (2.22)
4o,

Where, 6, =01, - f,,and 6, =o,T + 5, -24,.

Equations (2.19) to (2.22) form the system amplitude-phase modulating equations.
3. Stability analysis

The variations of amplitudes and phases of a periodically excited system are zero at steady state.
So, the algebraic equations that govern the steady state vibrations of the considered structure can be

found from Egs (2.19) to (2.22) by settinga, =d, = 6, =6, =0, yields

%al :[%} sin(lﬂ)—{%a')sazz}in(@) CRY

a,o, _[;CZ + ﬂg)x —32@ jaf :_{;—wj cos(@l)—L‘};l)s af}cos(@z) (3.2)
%az = [Z_;Calaz}in@) (33)

%2(0'2 +0,)= —{Z—;Cczlaz } cos(6,) (3.4)
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From Egs (3.1) to (3.4) we have the following cases:
(Da, #0,a,=0 (I)a,#0,a, =0 and (lll)a, #0,a, #0.

In support of the helpful case (III), Squaring Eqs (3.1) and (3.2), after that count the squared results
together, similarly do the same for Eqs (3.3) and (3.4), next we contain the successive frequency
response equations:

2 2

77 1 2 7/2 2
~“~+—(0,+0,) = a 3.5
4 4( 2 1) 166062 1 ( )

) 2 2 2
77_Sa1 LONNG | 40— 3a Po,  3yo, @ N, (o, +a,) :f_2 (3.6)
2 2noa 8o 8 8 20,74, 40,

To perform stability criteria, we assume a,,, a,,, 6,, and 6,, are the solutions of Eqs (3.1) to
(3.4), and to observe the performance of small perturbations a,,, a,,, 6, and 6, from the steady

state solution a,,, a,,, 6,, and 6,, , we let

20 2

a, =a,+a,y, a,=0a,+ay, 6,=0,+6, 0,=0, +‘910} (3.7)

a=ay, a,=dy, 6,=6,, 6,=0,
Substituting Eq (3.7) into Eqs (2.19) to (2.22) and expanding for little parameters a,,, a,,, 6,,

and 6, with carry on linear terms only. We compact the linear system that is equivalent to Eqs (2.19)

to (2.22) at the equilibrium point (a,,, a,,, 6,4,6,, ):

ap e ho h3 Na ||y
0, Ty Ty Ty Ty || 6
= (3.8)
ay, By Ty Iy By ||y
0,, Ta T Ty T |0y

Wherever the over matrix is the system Jacobian matrix, and its coefficients are prearranged in
the Appendix. One could be able to get the following eigenvalue equations:

n,—4 4P 3 v
r 7, —A r r
21 2 23 24
=0 (3.9)
3 I3 I3 —A T3y
Ty Ty Ty3 Py —A
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By expanding determinant at Eq (3.9), yields

MG+ A+ A+, =0 (3.10)

where A is the eigenvalue of the matrix, ¢,,¢,,¢; and &, arethe coefficients of Eq (3.10) known

in the Appendix. By applying Routh-Hurwitz criterion for stability, we find the necessary and sufticient
conditions to be stable solution are:

§1>Oa 414/2_43>0’ 43(4/14/2_4/3)_412§4>07 §4>0 (3-11)

4. Numerical simulation results

In this part, the original system Eqs (2.2) and (2.3) are plotted via Runge-Kutta algorithm (by
MATLAB 7.14 (R2012a) package) numerically. Figure 2 shows the responses of the model without

control process at primary resonance (2= @, (one of worse resonance cases) and zero initial. This

shape appears that, amplitude of the system x regarding 829% of the excitation amplitude f . Figure 3

demonstrate response and phase-plane for the nonlinear dynamical system with NSC at the simultaneous

resonance case 2=w, , 20 =@, within the initial values x (0)=0,x(0)=0,v(0)=0 and
v(0)=0.5. The amplitudes of the system (x ) and NSC ( v ) be about 285.6 and 1,394.2% of the

excitation amplitude f* , respectively. The saturation appears for the main system and the controller

at (t =700 sec) and (t = 600 sec), correspondingly. It is importance to note that from Figures 2 and 3 the
steady state amplitude of the system with NSC condensed to about 65.55 % from its value without NSC.

This wealth that the effectiveness of the NSC ( E, = the amplitude of the system without controller / the

amplitude of the system with controller) regarding 290.27 for the main system (x ).

0.8 1

Amplitude (System)
Velocity (System)

0 200 400 600 800 —-06 —-04 -—02 0 02 04 0.6
Time Amplitude (System)

Figure 2. Response of the system with no controller at primary resonance case

(n, =0.02;0, =L;a=0.894; 8 =0.0001; y =0.0001;/ =0.05;2 = w,).
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Velocity (System)

Amplitude (System)

-1 -1
0 200 400 600 800 —0.8 —0.6 —0.4 —0.2 0 02 04 06 08
Time Amplitude (System)

Amplitude (NSC)
Velocity (NSC)

0 200 400 600 800
Time Amplitude (NSC)

Figure 3. Response of the system and NSC at simultaneous resonance case
n, =0.02;0, =1, =0.894; 8 =0.0001; = 0.0001;/ = 0.05;
=0y, =021 =0.0001;20 =0y, =0.1 '

4.1. The effects of various parameters

In this branch, we will confirm all effect happening in the parameters of the model with NSC near
the measured resonance case. The frequency response equations (FRE) specified by Egs (3.5) and (3.6)
solved and plotted by matching value of parameters which showing in Figures 2 and 3. Figure 4 shows

the amplitudes for the system and NSC a and b against detuning value o, as surface plot. In
Figure 5(a), we presented the frequency response curves in two-dimensional to explain the behavior
of the main system (a ) before and after NSC (b ) at different values of o, oncase (a#0, b #0),

moreover, the solid line locate for stable solution and the dashed line for unstable solution. Figure 5(b)
indicates bending to the left, it shows obvious soft spring characteristics dominates nonlinearity. Figure 5
shows the frequency—response curves for closed loop case (controller in action) at chosen values to

remove the overload risk on the controller for some negative values of detuning parameter o,. The

figure shows that, the controller work effectively to suppress the main system vibrations at specific

frequency bandwidth around o, = 0:0, otherwise the controller will be deactivated automatically.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3487-3508.
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1 g 1.5
without NSC a SN b
a 05 : a

HF 0.5
Q

0 0

=0.5 i 0.5 =0.1 0.1
4] (4]

Figure 5. Frequency-response curves (a) the main system a ; (b) NSC b , PF= pitchfork
bifurcation, SN= saddle-node bifurcation, and HF= Hopf bifurcation.

4.1.1. Effect of excitation amplitude f

Figure 6, explain that the amplitudes of the system and NSC are monotonic increasing functions

of the force amplitude /. The non-zero solutions at ¢, =0 for the main system are the same when the

force is increasing as shown in Figure 6(a—c).
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1 1
a b
£ =0.1
£ =0.05
o <_/ o
0 ]
=01 =0.05 0 0.05 0.1 =0.1 =0.05 0 0.058 0.1
% S
1.5 T : 4
C
3t
1
o a 2
0.5
.}
0 ! ! - : ] . *
—0.15 —0.1 —0.05 0 0.05 0.1 —0.15 —0.1 —0.05 0 0.05 0.1
o, o

Figure 6. Effects of excitation force f : (a) the main system a ; (b) NSC b .

4.1.2. Effects of linear damping coefficient 7,

On behalf of growing or lessening values for linear damping coefficient 7, the amplitudes of

the system and NSC are trivial as seen in Figure 7.

15

” a 7. =0.0001 |p
il 7. =0.001
T 7. =00001] = ek = o
02 n, =0.001 BT \
5
n. =001 |
0 : : 0 : : ;
-0.1 —0.05 0 0.05 0.1 —0.1 —0.05 0 0.0 0.4
o ag

Figure 7. Effects of damping coefficient 7, : (a) the main system a ; (b) NSC b .

4.1.3. Produce of linear damping coefficient 7, and natural frequency o,

From Figures 8 and 9, it is seen that the amplitudes of the system and NSC are monotonic lessening

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3487-3508.
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functions in linear damping coefficient 7, and natural frequency o, . But at o, = 0, the amplitude of the

system is increasing as exposed in Figures 8(a) and 9(a). Furthermore, the steady state amplitude of NSC

is shifting to the left when the natural frequency , increased as shown in Figure 9(b).

n. =0.002 a b
n. =03 2
@ 05 \J 2
§
n. =0.02

0 0

-0.1 —0.05 0 0.05 0.1 -0.1 —0.05 0 0.05 0.1

G o

Figure 9. Effects of natural frequency w, : (a) the main system a ; (b) NSC b .

4.1.4. The effects of nonlinear parameters a, f and y

It can expected from Figures 10—12 that, as the nonlinear parameters a, f and y increased,

the amplitudes of both system and NSC decreased. Additionally, the frequency bandwidth around

o, =0 unchanged for the main system as shown in Figures 10(a—c), 11(a—c) and 12(a—).

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3487-3508.
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0.6 a
o =0.894
0.4
]
0.2
0 . . .
—0.1 —0.05 0 0.05 0.1
9
15
C

&
0.5

0 L . . A
—0.1 —0.05 0 0.05 0.1

0.8

a=0.5 b
06 1

0.4 1

0e 1

—0.1 —0.05 0 0.05 0.1

1.5

05 1

Figure 10. Effects of nonlinear parameter « : (a) the main system a ; (b) NSC b .

0.6

B =0.0001

0.4

0.2

—0.04 —0.02 0 0.02 0.04

0.06

04

0.3

0.1 £=10

—0.05 0

0.05

0.4
b

7 \/
02 | \
01 [ /3 =5

& ;
—0.05 0 0.05

9%

15

05 1

Figure 11. Effects of nonlinear parameter £ : (a) the main system a ; (b) NSC 5 .
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06 ¥ =0.0001 a 06 | b
y=2
0.4 0.4 \/
(] ]
0.2 1 02
0 * + 0 * *
-0.1 —0.05 0 0.05 0.1 =0.1 —0.05 ] 0.05 0.1
S 9
0.6 c
y=4
0.4
m \xt/ n
0.2
p . : :
—0.1 —0.05 0 0.05 0.1
(8]

Figure 12. Effects of nonlinear parameter y : (a) the main system « ; (b) NSC b .

4.1.5. Effect of control signal gain y,

Figure 13(a) appears that the amplitude of the system saturated like control signal gain y,

increased. Moreover, the amplitude of NSC is a monotonic decreasing function of control signal gain
as shown in Figure 13(b).

1.5
0.6 a
it
o 04 }"l = 0.2 o
w2l h = 0.5 05 |
7 =038
0 0
—0.1 -0.05 0 0.05 0.1 —0.1 —0.05
o c

Figure 13. Effects of control signal gain y,: (a) the main system a ; (b) NSC b .
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4.1.6. Effect of feedback control gain y,

Figure 14 illustrates that for the large value of the feedback signal gainy,, the amplitudes of

system and NSC increased. Furthermore, bandwidth for both steady state amplitude is wider.

0.6

¥, =01 / a
!

!

0.4
w o 1
¥, =05
0.2 05 t
0 : 0
—0.2 —0.1 0 01 0.2 0.3
a

Figure 14. Effects of control signal gain y,: (a) the main system a ; (b) NSC b .

4.1.7. Effect of detuning parameter o,

Figure 15 shows that once o, increased, amplitudes of both head system and NSC decreased

and shifted to the left. As of the frequency response curves, we obtained so as to the lowest amplitude

of the system occurs at o, =0.05,0, =0and o, =-0.05 when o, =-0.05,0,=0and o, =0.05,

respectively. This means thato, = —o,.

06 d

0.4

o, =0.05 o,=0 o,=-005

0
=0.1 —0.05 0 0.05 01 0.15

Figure 15. Effects of detuning parameter o, : (a) the main system a ; (b) NSC b .
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5. Verification of analytical solutions using numerical simulation solutions

The system which set by Eqgs (2.2) and (2.3) solved numerically at the simultaneous primary in

the presence 1:2 internal resonance case where (2= w,, @, =2w, ) compared with the analytical

solution of the modulating Eqgs (2.19) to (2.22) as presented in Figure 16. On the other hand, the
continuous lines symbolize the time histories which obtained numerically (using RKM) for Egs (2.2)
and (2.3), and the dashed lines confirm inflection of amplitudes for the coordinates x and v at
similar values of parameters which using in Figure 3.

1 T T T T
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= == == ==Perturbation Solution
£
oar
|3
@
L1
=
2
=
E
<
_1 1 L I I ! 1 1 L I
0 50 100 150 200 250 300 350 400 450 500
Time
2 T T T T
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- =5 e | e Perturbation Solution
i Ny Sy -—
=)
Z |
;o N Il I UL
=]
,-3 - - - .
g _qF - - =
E
=
_2 | | 1 | 1 |
0 100 200 300 400 500 600 700

Time

Figure 16. Relationship connecting numerical solution (using RKM) and mathematical
solution (using perturbation method) of the system and NSC.

6. Comparison with previously published work

Reference [16] studied a harmonically excited dynamical system with a new NIPPF, IRC and PPF
controllers. They studied the system with NIPPF analytically by using perturbation performance at
primary and 1:1 internal resonance case. They can reduce the vibration amplitude, with zero initial
conditions, by using NIPPF, PPF and IRC approximately to 84.87, 82.24, and 46.71%, respectively
from its value of the uncontrolled system.

The subject in this article presents the nonlinear system with external excitation force to decrease
vibrations by applying the nonlinear saturation controller (NSC). Perturbation technique useful to
conclude the frequency response equations at primary and 1:2 internal resonance cases. We succeed to
trim down the amplitude of the system, with nonzero initial conditions, approximately to 65.55% forms
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its resonance value of the non-controlled system. From the study of the effect of parameters and

stability regions, we obtained that we can reduce the amplitude by decreasing 7,,0,,a, andy.The

analysis demonstrates with the purpose of all calculation from the methodical solution is in excellent
agreement with the numerical simulation.

7. Conclusions

A nonlinear saturation controller is proposed to improve the control performance of a dynamical
cantilever beam system. The suggested nonlinear controller NSC has been studied for the main system
with external excitation force near the considered simultaneous resonance case. According to the
introduced control law, the system dynamical model is investigated and then analyzed utilizing
perturbation techniques. Stability and the effects of some key parameters of the system are also
examined numerically. The regions of stable and unstable of the controlled system are determined and
recorded. The influence of the system dynamics with and without controller were explored through
different response curves showing the regions of stable, unstable, saddle-node bifurcation, pitchfork
bifurcation, and Hopf bifurcation. Finally, numerical confirmations for all obtained analytical results
are introduced.

According to the above discussion, the following conclusions can be listed:

1). The measured resonance case is 2=, andw, =2w, as the worst one.

2). The proposed control NSC method is main process for reducing the vibration amplitudes of the
system dramatically.

3). The amplitude for the system reduced near 65.55 % as of its value without NSC. The saturation
occurs for the main system and NSC at (t = 700 sec) and (t = 600 sec) correspondingly.

4). The amplitude of the system is monotonic increasing functions headed for the coefficients f, ,

and monotonic decreasing functions toward the parameters 7,,0,,a,8 andy.

5). Using the saturation controller can avoid the phenomenon of double peaks on the frequency-
response curve of the controlled system. Also, NSC can suppress the transient vibrations, thus shorten
the time to reach a steady state and can also enhance the efficiency of the vibration reduction and
suppress the nonlinear behavior of the system.

6). Both the steady state approximate solutions and the stability analysis based on the integral equation
method are in excellent agreement with numerical simulations.

7). The response curves of the system before and after adding the saturation controller appeared various
bifurcation phenomena.
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