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Abstract: As the most diverse, productive but vulnerable marine habitats in the world, coral reefs
are easily affected by the ubiquitous environmental fluctuations, which could change the population
dynamics and induce phase shifts of the ecosystem. In this paper, we consider a coral reef benthic
system, where macroalgae, corals and algal turfs compete for the available space on a given region
of the seabed with grazing intensity and immigrated macroalgae in both deterministic and stochastic
environments. For the deterministic system, we analyze the existence and stability of equilibria, as well
as the existence of bifurcations. For the stochastic system, sufficient conditions for the existence of the
unique ergodic stationary distribution as well as the extinction of corals are obtained, by choosing
suitable Lyapunov functions. Moreover, for the scenario that the system exhibits bistability between a
macroalgal-coral coexistence equilibrium and a coral-free equilibrium in the absence of environmental
fluctuation, we further investigate the irreversible noise-induced transition from macroalgal-coral
coexistence to coral extirpation, and numerically estimate the critical values of noise intensity for
the occurrence of such transition with the aids of the technique of stochastic sensitivity functions.

Keywords: coral reef ecosystems; equilibria and bifurcation; ergodic stationary distribution;
noise-induced state transition

1. Intorduction

Although coral reefs only cover less than 0.2% of ocean, they have close ties with fisheries, humans
as well as the economy. They are the habitats and breeding ground for around 30% of marine life,
including nearly 25% fish species [1]. In addition, they provide millions of employment opportunities
for local fishers, coral reef fishing accounts for at least 6 million metric tons of fish catches around the
world each year [2]. Coral reefs could also create economic value through tourism, with net income
estimated at close to $30 billion annually [3]. However, during the last 50 years, coral reefs around the
world have suffered substantial deterioration due to the anthropogenic impacts such as overfishing and
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excess nutrients input from agriculture and domestic sewage [4], together with an increased severity
and frequency of coral bleaching and mortality associated with climate change [1].

Table 1. Parameters

Para. Description Value
a Macroglgae overgrowth rate on coral 0.1 [5, 6]
g Maximal macroalgae-grazing rate of Parrotfish 0.5 [7]
r Macroglgae vegetative spread rate over algal turfs 0.35 − 1.2 [7, 8]
α Colonization rate of newly immigrated macroalgae on algal turf 0.005 [7]
d1 Macroalgae natural mortality rate 0.1 [8, 9]
b Corals recruitment rate on algal turf 0.01 − 1 [6, 10]
d2 Coral reefs natural mortality rate 0.24 [9, 10]

Considering today’s rapidly varying environmental conditions and increasing human activity, many
researchers investigated the mechanisms of coral reef ecosystems aiming to make efforts in coral reef
conservation [5, 9, 11–18]. For example, Bellwood et al. [11] found out that the degradation of coral
reefs usually manifested by phase shifts between two alternate stable states, specifically, from coral-
dominated state to macroalgae-dominated state, with the decreasing of corals and the increasing of
macroalgae abundance. The phase shift in coral reefs is mainly due to the fact that rapidly growing
macroalgae dominate the competition for light and space by shading and reducing the available space
for successful colonization of coral larvae [9, 12–14]. Based on this mechanism, Mumby et al. [17]
simplified the ecosystem into a three-state analytical model developed in terms of the cover (the fraction
of available seabed in a given area) of macroalgae, corals and algal turfs respectively. Blackwood
et al. [5] extended this model by explicitly including parrotfish grazing dynamics, demonstrated the
effects of varying levels of fishing control measures on coral recovery time. Pal et al. [6] considered
a mathematical model of interactions between coral, toxic seaweeds and herbivores, investigated how
seeweed toxicity and overfishing negatively affect the ecological resilience of coral reefs through the
trophic cascade. In this paper, we assumed a particular region of the seabed is covered entirely by
macroalgae, coral, and algal turfs, the fraction of seabed they occupy is represented as M, C and
T , respectively. Obviously, M + C + T = 1 at any given time. We also suppose macroalgae could
survive in the system irrespective of the abundance of corals. Algal turfs arise as a result of the natural
mortalities of macroalgae and coral, as well as the grazing loss of macroalgae. Then the dynamics of
macroalgae, corals and algal turf competing for available area in the particular region can be established
as follows [5, 6]: 

dM
dt
= aMC −

gM
M + T

+ rMT + αT − d1M,
dC
dt
= bTC − d2C − aMC,

dT
dt
=

gM
M + T

− (rM + bC + α)T + d1M + d2C,

(1.1)

where 0 < M(0),C(0),T (0) < 1. Parrotfishes graze macroalgae and algal turfs without discrimination
at a rate g and M

M+T is the proportion of grazing that affects macroalgae. More details of the parameters
with biologically meaningful values are given in Table 1.

It is essential to take environmental stochasticity into account when investigating the dynamics of
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coral-reef system, since aquatic ecosystems are inevitably influenced by environmental fluctuations
since many physical factors, such as nutrient availability, acidity, water temperature and so on, that
embedded in aquatic ecosystems are usually unpredictable [19–30]. By the sensitivity analysis of
parameters in system (1.1), the vegetative spread rate of macroalgae over algal turfs r and the coral
recruitment rate on turf algae b are highly sensitive and could be easily affected by environmental
stochasticity (more details can be seen in the Appendix). We then let r → r+σ1Ḃ1(t), b→ b+σ2Ḃ2(t),
the stochastic version of system (1.1) can be expressed as follows,

dM =
[
aMC −

gM
M + T

+ rMT + αT − d1M
]
dt + σ1MTdB1(t),

dC = (bTC − d2C − aMC) dt + σ2CTdB2(t),

dT =
[ gM

M + T
− (rM + bC + α)T + d1M + d2C

]
dt − σ1MTdB1(t) − σ2CTdB2(t),

(1.2)

where M(t) + C(t) + T (t) = 1, for any t > 0. σ2
i > 0, i = 1, 2 are the intensities of white noises, B1(t),

B2(t) denote independent standard Brownian motions, which are defined in a complete probability
space (Ω, {Ft}t≥0, P), with a filtration {Ft} satisfying the usual normal conditions (right continuous and
increasing while F0 contains all P-null set). The meaning of the other parameters is consistent with
the deterministic system (1.1).

In this paper, we devote our main attention to investigate the dynamics of the coral reef benthic
system with grazing intensity and immigrated macroalgae under the influence of environmental
fluctuations. For the deterministic system (1.1), we investigate the existence and stability of
equilibria, as well as the existence of bifurcations in Section 2. The results show that system (1.1)
could possess more than one positive equilibrium and exhibits saddle-node bifurcation as well as
bistability phenomenon, which implies that even a small environmental fluctuation may destroy the
dynamics of the system. Consequently, we further consider the dynamics of the corresponding
stochastic model (3.5) in Section 3. We investigate the existence of the unique positive solution, the
existence of ergodic stationary distribution of system (3.5), as well as the extinction of corals.
Moreover, the noise-induced transition from a macroalgae-coral coexistence state to one that without
coral is also investigated by using the stochastic sensitivity functions (SSF) method. Finally, a brief
conclusion summarizes our study in Section 4.

2. Dynamics of the deterministic system

Denote
Ω̃ = {(M,C,T ) ∈ R3

+ : M +C + T = 1}. (2.1)

We first show Ω̃ is a positively invariant of system (1.1).

Lemma 2.1. Solutions to system (1.1) with initial conditions in the set Ω̃ will remain there for all
forward times.

Proof. To prove the positive invariance of Ω̃, we need to examine the direction fields on the boundary
of Ω̃. When M = 0, C > 0, T > 0, dM

dt > 0. When C = 0, M > 0, T > 0, dC
dt = 0. When T = 0,

M > 0, C > 0, dT
dt = g + d1M + d2C > 0. Therefore, all orbits starting from Ω̃ cannot escape Ω̃ from

the boundaries. Besides, M + C + T = 1 holds for all t ≥ 0, then Ω̃ is a positively invariant of system
(1.1). This concludes the proof. □
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Without any loss of generality, system (1.1) can be simplified to the following form:
dM
dt
= aMC −

gM
1 −C

+ (rM + α)(1 − M −C) − d1M := MG1(M,C),
dC
dt
= bC(1 − M −C) − d2C − aMC := CG2(M,C),

(2.2)

where G1(M,C) = aC − g
1−C + (r + αM )(1 − M −C) − d1, G2(M,C) = b(1 − M −C) − d2 − aM, and it is

obvious that
Ω = {(M,C) ∈ R2

+ : M +C ≤ 1} (2.3)

is a positively invariant of system (2.2). We always assume that the initial value (M(0),C(0)) ∈ Ω in
the following analysis.

We then investigate the equilibria of system (2.2) and their stabilities. From system (2.2), it is
obvious that M , 0. The equilibrium is the intersection of nullclines, where
M − nullcline: G1(M,C) = 0, where ∂G1(M,C)

∂M < 0 and ∂
2G1(M,C)
∂M2 > 0. Denote l1 : G1(M,C) = 0;

C − nullcline: C = 0 and G2(M,C) = 0. Denote l2 : G2(M,C) = 0.
The curve l1 always has an intersection with C = 0, and its coordinate of the intersection M1 satisfying
rM1 −

α
M1
− (r − α− d1 − g) = 0. l2 is a line whose slop is −a+b

b and the intersection values with M-axis
and C-axis are b−d2

a+b and 1− d2
b , respectively, which are both proportional to the value b. With a small b,

l1 and l2 do not intersect, see Figure 1(a). As the increasing of b, they will have at least one intersection
once b goes beyond a threshold b∗, when b = b∗, the curve l1 is tangent to l2 at E3(M∗3,C

∗
3), and b∗

satisfying f (b∗) = 0, where

f (b) = (a2 + ab − ra)M∗3 −
g(a + b)M∗3
(1 −C∗3)2 +

bα(1 −C∗3)
M∗3

− α(a + b).

Moreover, as b continues to increase, once b−d2
a+b > M1, l1 and l2 has only one intersection, see Figure

1(g). To sum up, system (2.2) possesses the following equilibria:

(i): a coral-free equilibrium E1 = (M1, 0), M1 =
r−α−d1−g+

√
(r−α−d1−g)2+4rα
2r , E1 always exists;

(ii): a unique interior equilibrium E∗1 = (M∗1,C
∗
1), when b > M1a+d2

1−M1
:= b̂;

(iii): two different positive equilibria E∗1 = (M∗1,C
∗
1) and E∗2 = (M∗2,C

∗
2), provided that b∗ < b < b̂;

(iv): a double positive equilibrium E∗3 = (M∗3,C
∗
3) (i.e., E∗1 and E∗2 coincide), if b = b∗. Where

C∗i =
b−d2−(a+b)M∗i

b , M∗i (i = 1, 2, 3) satisfying the following polynomial equation
∑4

j=1 kiM4− j = 0,
k1 = a(a + b)(a + b − r), k2 = −a2α − a2b + 2a2d2 − aαb − ab2 + abd1 + 2abd2 − 2ad2r + b2d1 − bd2r,
k3 = −2aαd2 − abd2 + ad2

2 −αbd2 + b2g+ bd1d2 − d2
2r, k4 = −αd2

2. More details can be seen in Figure 1.
We then investigate the stability of each equilibrium and verify the existence of saddle-node

bifurcation. At E1, the eigenvalues of the Jacobian matrix of system (2.2) are b − d2 − M1(a + b) and
−

√
(r − α − d1 − g)2 + 4rα, then

Lemma 2.2. System (2.2) is locally asymptotically stable at E1, provided that b < b̂. If b > b̂, E1

is unstable. System (2.2) undergoes a transcritical bifurcation at E1, when b crosses b̂, provided that
b̂ , a[α−M1(a−g−r)]√

(r−α−d1−g)2+4rα+M1(a−g−r)−α
.

Proof. When b = b̂, the Jacobian matrix J|E1 of system (2.2) at E1 is as follows,

J|E1 =

[
−

√
(r − α − d1 − g)2 + 4rα M1(a − g − r) − α

0 0

]
,
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Figure 1. (a), (c), (e), (g): The nullclines and equilibria of system (2.2) when b =
0.3, 0.318041, 0.32, 0.364, respectively; (b), (d), (f), (h): Phase plot of system (2.2) when
b = 0.3, 0.318041, 0.32, 0.364, respectively. Here r = 0.8 in all panels, other parameters are
given in Table 1.
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which exists a simple zero eigenvalue. Let U1 and W1 be the eigenvectors corresponding to the zero
eigenvalue for J|E1 and J|TE1

, respectively. Then

U1 = (U11,U12)T =

 M1(a − g − r) − α√
(r − α − d1 − g)2 + 4rα

, 1

T

and W1 = (0, 1)T .

Rewrite system (2.2) into a matrix form:

dX
dt
= F(X, b), (2.4)

where X = (M,C)T ∈ R2
+ and

F(X, b) =
(
F1(X)
F2(X)

)
=

(
aMC − gM

1−C + (rM + α)(1 − M −C) − d1M
bC(1 − M −C) − d2C − aMC

)
.

Then WT
1 Fb

(
E1, b̂

)
= 0, which implies that no saddle-node bifurcation occurs at E1.

Also,

DFb

(
E1, b̂

)
U1 =

(
0

1 − M1

)
, then WT

1 (DFb

(
E1, b̂

)
U1) = 1 − M1 > 0;

D2F
(
E1, b̂

)
(U1,U1) =

(
−2rU2

11 + 2(a − g − r)U11U12 + 2gM1

−2(a + b̂)U11 − 2b̂

)
,

then
WT

1

(
D2F

(
E1, b̂

)
(U1,U1)

)
= −2(a + b̂)U11 − 2b̂.

If b̂ , a[α−M1(a−g−r)]√
(r−α−d1−g)2+4rα+M1(a−g−r)−α

, WT
1

(
D2F

(
E1, b̂

)
(U1,U1)

)
, 0, then according to the Sotomayor

theorem [31], system (2.2) undergoes a transcritical bifurcation at E1 when b crosses b̂. □

Lemma 2.3. When b > b̂ holds, E∗1 is locally asymptotically stable provided that A2E∗1
> 0 and unstable

if A2E∗1
< 0. The expression of A2E∗1

can be seen in Eq (2.7).

Proof. The Jacobian J∗1 = J1|E∗1 of the system (2.2) evaluated at the interior equilibrium E∗1 is

J∗1 =

−rM∗1 −
α(1−C∗1)

M∗1
aM∗1 −

gM∗1
(1−C∗1)2 − rM∗1 − α

−C∗1a −C∗1b −C∗1b

 .
The characteristic equation of the Jacobian J∗1 is

λ2 + A1E∗1
λ + A2E∗1

= 0, (2.5)

where

A1E∗1
= rM∗1 + bC∗1 +

α(1 −C∗1)
M∗1

, (2.6)

A2E∗1
= (a2 + ab − ra)M∗1C∗1 −

g(a + b)M∗1C∗1
(1 −C∗1)2 +

αbC∗1(1 −C∗1)
M∗1

− α(a + b)C∗1. (2.7)
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Obviously, A1E∗1
> 0, then Eq (2.5) could not admit a pair of pure imaginary roots, which implies

that Hopf bifurcation does not exists. Besides, Eq (2.5) has at least one root with negative real part. If
A2E∗1
> 0 holds, both two roots have negative real part. Then E∗ is locally asymptotically stable. When

A2E∗1
< 0, Eq (2.5) must has a root with positive real part. The assertion is thus proved. □

Similarly, we have the following conclusion.

Lemma 2.4. When b∗ < b < b̂, E∗1 is locally asymptotically stable provided that A2E∗1
> 0 and unstable

if A2E∗1
< 0. E∗2 is a saddle point.

Lemma 2.5. When b = b∗, system (2.2) undergoes a saddle-node bifurcation at E∗3 when b crosses b∗,
provided the following condition holds:

Θ =
2abr

(a + b)2 +
2gb

(a + b)(1 −C∗3)2 −
2ab

a + b
−

2gM∗3
(1 −C∗3)3 , 0.

Proof. The characteristic equation of the Jacobian J∗3 at E∗3 of the system (2.2) is

λ2 + A1E∗3
λ + A2E∗3

= 0, (2.8)

where

A1E∗3
= rM∗3 + bC∗3 +

α(1 −C∗3)
M∗3

, (2.9)

A2E∗3
= (a2 + ab − ra)M∗3C∗3 −

g(a + b)M∗3C∗3
(1 −C∗3)2 +

αbC∗3(1 −C∗3)
M∗3

− α(a + b)C∗3. (2.10)

Obviously, A1E∗3
> 0, when b = b∗, A2E∗3

= C∗3 f (b∗) = 0, the Jacobian J∗3 of the system (2.2) has a
simple zero eigenvalue. Let U∗ and W∗ are the eigenvectors corresponding to the zero eigenvalue for J∗3

and J∗T3 , respectively. Then we have U∗ =
(
− b∗

a+b∗ , 1
)T

, W∗ =

− (a+b∗)C∗3

rM∗3+
α(1−C∗3)

M∗3

, 1


T

. By simple calculation,

we obtain Fb(E∗3, b
∗) =

(
0, C∗3(1 − M∗3 −C∗3)

)T
and

W∗T Fb(E∗3, b
∗) = C∗3(1 − M∗3 −C∗3) > 0,

thus no transcritical bifurcation and pitchfock bifurcation occur at E∗3 when b crosses b∗. Also,

D2F
(
E∗3, b

∗) (U∗,U∗) =
(
Θ

0

)
,

then when Θ , 0,

W∗T
(
D2F

(
E∗3, b

∗) (U∗,U∗)
)
= −

(a + b)C∗3Θ

rM∗3 +
α(1−C∗3)

M∗3

, 0.

It then follows from Sotomayor’s theorem [31] that system (2.2) undergoes a saddle-node
bifurcation at E∗3 when b crosses b∗. □
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Figure 2. The equilibrium point bifurcation of system (2.2). The blue solid lines are stable,
the blue dashed lines are unstable, “TB” denotes the transcritical bifurcation point and “S-N”
is the saddle-node bifurcation point.

To sum up, except the boundary equilibrium which is always exist, the system also can have one,
two or a degenerated positive equilibrium points, see Figure 2. When system (2.2) has two positive
equilibria, bistability phenomenon between a positive equilibrium and a boundary equilibrium occurs.
At this situation, the eventual dynamics of the system is determined by the initial value. Moreover, once
the two positive equilibria coincide each other and become a degenerated double positive equilibrium,
it is a saddle-node at which the system undergoes a saddle-node bifurcation. At this situation, even
a small fluctuation of the parameters near the bifurcation point may cause substantial changes on the
dynamical behaviors of the system.

3. Dynamics of the stochastic system

In Section (2), we studied the occurrence of the bistability and bifurcation phenomena of the
deterministic system (1.1), which implies that the dynamics of this coral benthic system is highly
sensitive to the parameters, and therefore could be significantly affected by the fluctuation of
environment. Next, we are going to investigate how environmental fluctuations affect the population
dynamics, including the global existence and uniqueness of positive solutions, the existence of the
unique ergodic stationary distribution as well as the extinction of coral population. For starters, we
establish the following lemma to illustrate that the stochastic system system (1.2) admits a unique
global positive solution.

3.1. The existence of the unique positive solution

Lemma 3.1. For any initial value (M(0),C(0),T (0)) ∈ R3
+, there exists a unique solution

(M(t),C(t),T (t)) to model (1.2) on t ≥ 0, and the solution will remain in R3
+ with probability one,

namely, (M(t),C(t),T (t)) ∈ R3
+ for all t ≥ 0 almost surlely (a.s.).

Proof. Since the coefficients of system (1.2) are locally Lipschitz in R3
+, then there exists a unique local

solution (M(t),C(t),T (t)) ∈ R3
+ of system (1.2) on the interval (0, τe), where τe denotes the explosion

time. To show the solution is global, we only need to prove that τe = ∞. By the positivity and
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boundedness of initial value, there is a number n0 > 0 large enough such that M(0),C(0),T (0) ≥ 1
n0

.
For each integer n ≥ n0, define the stopping times as

τn = inf
{

t ∈ [0, τe) : min{M(t),C(t),T (t)} ≤
1
n

}
.

Obviously, τn is increasing as n→ +∞. To show (M(t),C(t),T (t)) ∈ R3
+, we only need to show that

τ∞ = ∞ a.s., then τe = ∞, a.s. We prove it by contradiction. If limn→+∞ τn < ∞, then there exists a pair
of constants T1 > 0 and ε1 ∈ (0, 1) such that P{τn ≤ T1} > ε1. Therefore, there exists an integer n1 ≥ n0

such that for all n ≥ n1,
P{τn ≤ T1} ≥ ε1, n ≥ n1. (3.1)

Let
V1 = − ln(Mm1CT ),

where m1 =
min{d1,d2}

g , then according to the Itô’s formula [32], we have

L V1 = − m1aC +
m1g

M + T
−

m1αT
M
− m1rT + m1d1 +

m1σ
2
1T 2

2
− bT + d2 + aM

+
σ2

2T 2

2
−

gM
T (M + T )

+ rM + bC + α − d1
M
T
− d2

C
T
+
σ2

1

2
M2 +

σ2
2

2
C2

≤
m1g
T
+ m1d1 +

m1σ
2
1T 2

2
+ d2 + aM +

σ2
2T 2

2
+ rM + bC + α

−min{d1, d2}
1 − T

T
+
σ2

1

2
M2 +

σ2
2

2
C2

≤m1d1 +
m1σ

2
1

2
+ d2 + a + r + b + α +min{d1, d2} +

σ2
1

2
+
σ2

2

2
:=D1.

Then,

dV1 ≤ D1dt + σ1(M − m1T )dB1(t) + σ2(C − T )dB2(t).

Integrating the inequality from 0 to τn∧T1 and taking the expectations of the above inequality leads
to

EV1(M(τn ∧ T1)),C(τn ∧ T1)),T (τn ∧ T1))
≤ D1T1 + V1(M(0),C(0),T (0)).

(3.2)

Let Ωn = {ω ∈ Ωn : τn = τn(ω) ≤ T1} for n ≥ n1 and in view of Eq (3.1), we know that P(Ωn) > ε1.
Note that for every ω ∈ Ωn, at least one of M(τn, ω), C(τn, ω), T (τn, ω) equals 1

n . Hence,
V1(M(τn, ω),C(τn, ω),T (τn, ω)) is no less than

ln n
∨

m1 ln n.

It follows from Eq (3.2) that

V1(M(0),C(0),T (0)) + D1T1 ≥ E[IΩn(ω)V1(M(τn, ω),C(τn, ω),T (τn, ω)]

> ε1

[
ln n

∨
m1 ln n

]
,

(3.3)
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where IΩn denotes the indicator function of Ωn. Letting n→ ∞ in Eq (3.2), we have

∞ > V1(M(0),C(0),T (0)) + D1T1 = ∞,

which leads to the contradiction and thus we have limn→+∞ τn = ∞, a.s. This completes the proof. □

Lemma 3.2. The population of macoralgae is weakly persistent, i.e, lim supt→∞ M(t) > 0, a.s.

Proof. We prove it by contraction. Assume lim supt→∞ M(t) ≤ 0, combining with the fact that
lim inft→∞ M(t) ≥ 0, we have limt→∞ M(t) = 0. Then there exists a sufficient small ε2 and a positive
T2 > 0, such that when t > T2, M(t) ≤ ε2. By using the Itô’s formula to system (1.2) we have,

m1

2
d ln M + d ln T =

[m1aC
2
−

gm1

2(M + T )
+

m1rT
2
+

m1αT
2M

−
m1d1

2
−

m1σ
2
1T 2

4
+

gM
T (M + T )

− rM − bC − α +
d1M + d2C

T
−
σ2

1M2 + σ2
2C

2

2

]
dt + m1σ1TdB1(t)

− σ1MdB1(t) − σ2CdB2(t)

≥

[
−

min{d1, d2}

2T
+

m1αT
2M

−
m1d1

2
−

m1σ
2
1

4
+

min{d1, d2}(1 − T )
T

− r

− b − α −
σ2

1 + σ
2
2

2

]
dt + σ1(m1T − M)dB1(t) − σ2CdB2(t)

=

[m1αT
2M

−
m1d1

2
−

m1σ
2
1

4
+

min{d1, d2}

2T
−min{d1, d2} − r − b − α

−
σ2

1 + σ
2
2

2

]
dt + σ1(m1T − M)dB1(t) − σ2CdB2(t)

≥

[
m1αT

2ε2
+

min{d1, d2}

2T
− D1

]
dt + σ1(m1T − M)dB1(t) − σ2CdB2(t)

≥

[
min{d1, d2}

√
α

gε2
− D1

]
dt + σ1(m1T − M)dB1(t) − σ2CdB2(t).

Let ε2 small enough, such that

min{d1, d2}

√
α

gε2
− D1 ≥ D1 > 0,

then m1

2
d ln M + d ln T ≥D1dt + σ1(T − M)dB1(t) − σ2CdB2(t). (3.4)

Integrating Eq (3.4) from T2 to t and dividing by t on both sides yields,

m1

2t
ln

M(t)
M(T2)

+
1
t

ln
T (t)

T (T2)
≥ D1 +

σ1

∫ t

T2
(m1T (s) − M(s))dB1(s)

t
−
σ2

∫ t

T2
C(s)dB2(s)

t
.

Moreover, from Lemma 3.1 we know that, lim supt→∞
ln M(t)

t ≤ 0 and lim supt→∞
ln T (t)

t ≤ 0. Let
t → ∞ and making use to the strong law of large numbers for martingales [32], we have,

0 ≥ D1 > 0.

This leads to the contradiction and thus we have lim supt→∞ M(t) > 0, a.s. □
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According to Lemma 3.1, Ω̃ as shown in Eq (2.1) is a positive invariant set of the stochastic system
(1.2). Without any loss of generality, we only need to consider the following system in the rest of this
paper, dM =

[
aMC −

gM
1 −C

+ (rM + α)(1 − M −C) − d1M
]
dt + σ1M(1 − M −C)dB1(t),

dC = [b(1 − M −C)C − d2C − aMC] dt + σ2C(1 − M −C)dB2(t).
(3.5)

It is obvious that Ω as shown in Eq (2.3) is a positive invariant set of system (3.5).

3.2. Existence of stationary distribution

Before proving the main result in this subsection, we first present the following lemma from [33].
Suppose that X(t) is a homogeneous Markov process in n-dimension Euclidean space Rn, satisfying the
following stochastic differential equation:

dX(t) = b(X)dt +
k∑

r=1

σr(X)dBr(t), (3.6)

where σr(X) = (σ1
r (X), σ2

r (X) . . . , σn
r (X))T , A(X) = (ai j(X))n×n is the diffusion matrix of X(t) with

ai j(X) =
∑k

r=1 σ
i
r(X)σ j

r(X).

Lemma 3.3. If there exists a bounded open domain U ⊂ Rn with regular boundary, satisfying the
following properties [33]:

(H1) The diffusion matrix A(x) is strictly positive definite for all x ∈ U;

(H2) There exists a non-negative C2-function V(X) and a positive constant ζ such that L V(X) ≤ −ζ
on X ∈ Rn \ U.

Then the Markov process X(t) of the stochastic model (3.6) admits a unique stationary distribution
ν(·), and for any integrable function f (·) with regard to the measure ν, the following equation holds,

P
(
lim
t→∞

1
t

∫ t

0
f (X(t))dt =

∫
Rn

f (x)ν(dx)
)
= 1.

In the following, we will apply Lemma 3.3 to prove the existence of a unique ergodic stationary
distribution for system (3.5). We first make some notations and assumptions as follows:

Denote

λ1 = r + α − d1 − g −
σ2

1

2
, λ2 = b − d2 −

σ2
2

2
.

Assumption 1. λ1, λ2 > 0.

Assumption 2. m2λ1 + λ2 > (m3 + m4)(r + α) + α,

where m2 =
min{d1,d2}

lg , the constant l > 1, m3 =
m2(r+α)+(r−g−d1+

σ2
1

2 )
r+α+d1+g , m4 =

a+b
r+α+d1+g .

Theorem 3.1. If Assumptions 1, 2 hold, then for any initial value (M(0),C(0)) ∈ Ω, the stochastic
system (3.5) admits a unique stationary distribution and it has ergodic property.
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Proof. Define a C2-function V2 : R2
+ → R+ by

V2 = V21 − m2 ln M − ln(1 − M −C) + m3M − V∗2 ,

where V21 = − ln C + m4M, V∗2 is the minimum value point of V2.
By using the Itô’s formula we have,

L V21 = − b(1 − M −C) + d2 + aM +
σ2

2(1 − M −C)2

2
+ m4aMC −

m4gM
1 −C

+ m4(rM + α)(1 − M −C) − m4d1M

≤ − λ2 + (a + b)M + bC + m4(r + α) − m4(r + α + d1 + g)M

− m4(r + α)C + m4aMC

≤ − λ2 + m4(r + α) + bC + m4aMC,

−L ln M = − aC +
g

1 −C
− r(1 − M −C) −

α(1 − M −C)
M

+ d1 +
σ2

1(1 − M −C)2

2

≤
g

1 −C
− g + g − r(1 − M −C) −

α(1 − M −C)
M

+ d1 +
σ2

1

2

=
gC

1 −C
− r(1 − M −C) −

α(1 − M −C)
M

+ g + d1 +
σ2

1

2
,

−L ln(1 − M −C) =
1

(1 − M −C)

[
−

gM
1 −C

+ (rM + bC + α)(1 − M −C) − d1M − d2C
]
dt

+
σ2

1M2(1 − M −C)2 + σ2
2C

2(1 − M −C)2

2(1 − M −C)2

≤ −
gM

(1 −C)(1 − M −C)
+ rM + bC + α −

d1M + d2C
1 − M −C

+
σ2

1M
2
+
σ2

2C
2
.

Then

L V2 ≤ − λ2 + (m3 + m4)(r + α) + 2bC + (m3 + m4)aMC +
m2gC
1 −C

− m2r(1 − M −C)

−
m2α(1 − M −C)

M
+ m2g + m2d1 +

m2σ
2
1

2
− gM + rM + α −

d1M + d2C
1 − M −C

+
σ2

1M
2
+
σ2

2C
2
− m3(r + α + d1 + g)M.

Denote

Dk :=
{

(M,C) ∈ R2
+ : M >

1
k2 , C >

1
k
, M +C < 1 −

1
k

}
,

where k > 1 is sufficient large. In the following, we will prove L V2 < −ζ for any (M,C) ∈ Ω\Dk. To
achieve that, we divide DCk = Ω\Dk into the following three parts,

D1
k =

{
M +C ≥ 1 −

1
k

}
, D2

k =

{
M ≤

1
k2 ,M +C < 1 −

1
k

}
, D3

k =

{
C ≤

1
k

}
.

Notice that DCk = Ω\Dk = D1
k ∪D2

k ∪D3
k , then we only need to prove L V2 < −ζ respectively on the

above three domains.
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(1) When (M,C) ∈ D1
k , i.e., M +C ≥ 1 − 1

k , then 1 − M −C ≤ 1
k ,

L V2 ≤(m3 + m4)(r + α) + 2bC + (m3 + m4)aMC +
m2g

1 −C
+ m2g + m2d1 +

m2σ
2
1

2
+ rM

+ α −
min{d1, d2}(M +C)

1 − M −C
+
σ2

1M
2
+
σ2

2C
2

≤ −
min{d1, d2}

1 − M −C
+

min{d1, d2}

l(1 − M −C)
+min{d1, d2} + (m3 + m4 + 1)(r + α) + m2g

+ m2d1 + 2b + (m3 + m4)a +
(m2 + 1)σ2

1 + σ
2
2

2

= −
min{d1, d2}(l − 1)

l(1 − M −C)
+ D2

≤ −
min{d1, d2}(l − 1)

l
k + D2,

where D2 = min{d1, d2} + (m3 + m4 + 1)(r + α) + m2g + m2d1 + 2b + (m3 + m4)a + (m2+1)σ2
1+σ

2
2

2 . It is not
hard to find a sufficiently large k such that L V2 < −ζ for all (M,C) ∈ D1

k .
(2) When (M,C) ∈ D2

k , i.e., M ≤ 1
k2 and M +C ≤ 1 − 1

k , then 1 − M −C ≥ 1
k ,

L V2 ≤(m3 + m4)(r + α) + 2bC + (m3 + m4)aMC +
m2gC
1 −C

−
d1M + d2C
1 − M −C

−
m2α(1 − M −C)

M

+ m2g + m2d1 +
m2σ

2
1

2
+ rM + α +

σ2
1M
2
+
σ2

2C
2

≤min{d1, d2} −
m2α(1 − M −C)

M
+ (m3 + m4 + 1)(r + α) + m2g + m2d1 + 2b

+ (m3 + m4)a +
(m2 + 1)σ2

1 + σ
2
2

2
≤ − m2αk + D2,

then there exists a sufficiently large k, such that L V2 < −ζ for all (M,C) ∈ D2
k .

(3) When (M,C) ∈ D3
k , i.e., C ≤ 1

k ,

L V2 ≤ − λ2 + (m3 + m4)(r + α) + 2bC + (m3 + m4)aMC +
m2gC
1 −C

− m2r(1 − M −C)

−
m2α(1 − M −C)

M
+ m2g + m2d1 +

m2σ
2
1

2
− gM + rM + α −

d1M + d2C
1 − M −C

+
σ2

1M
2
+
σ2

2C
2
− m3(r + α + d1 + g)M

≤ − λ2 + (m3 + m4)(r + α) + 2bC + (m3 + m4)aC +
min{d1, d2}C

l(1 −C)
−

d2C
1 −C

− m2r(1 − M −C) + m2g + m2d1 − m2α(1 − M −C) +
m2σ

2
1

2
− gM + rM

+ α −
d1M

1 − M −C
+
σ2

1M
2
+
σ2

2C
2
− m3(r + α + d1 + g)M
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≤ − λ2 + (m3 + m4)(r + α) +
(
m4a + m3a + 2b + m2r + m2α +

σ2
2

2

)
C − m2λ1

+ m2(r + α)M +
(
r − g − d1 +

σ2
1

2

)
M + α − m3(r + α + d1 + g)M

≤ − m2λ1 − λ2 + (m3 + m4)(r + α) + α +
(
m4a + m3a + 2b + m2r + m2α +

σ2
2

2

)
1
k
.

Since −m2λ1 − λ2 + (m3 + m4)(r + α) + α < 0. Then there exists a sufficiently large k, such that
L V2 < −ζ holds for all (M,C) ∈ D3

k . To sum up, we can conclude that

L V2 < −ζ

for all (M,C) ∈ DCk as long as k is sufficient large. This confirms the condition (H2) in Lemma 3.3.
Moreover, system (3.5) can be rewritten as the following form:

d
(

M
C

)
=

(
aMC − gM

1−C + (rM + α)(1 − M −C) − d1M
b(1 − M −C)C − d2C − aMC

)
dt

+

(
σ1M(1 − M −C)

0

)
dB1(t) +

(
0

σ2C(1 − M −C)

)
dB2(t)

with the diffusion matrix A(X) = diag
(
σ2

1M2(1 − M −C)2, σ2
2C

2(1 − M −C)2). Besides, there exists a

D̄ = min
(M,C)∈Dk

{σ2
1M2(1 − M −C)2, σ2

2C
2(1 − M −C)2} > 0,

such that
2∑

i=1

ai j(X)ξiξ j = σ
2
1M2(1 − M −C)2ξ2

1 + σ
2
2C

2(1 − M −C)2ξ2
2 ≥ D̄∥ξ∥2,

for all (M,C) ∈ Dk, ξ = (ξ1, ξ2) ∈ R2, which shows that condition (H1) of Lemma 3.3 is also satisfied.
Then, based on Lemma 3.3, system (3.5) has a unique stationary distribution and it has ergodic
property.

We then make some numerical simulations to verify our results. Let b = 1, r = 0.8, l = 15,
σ1 = 0.02, σ2 = 0.05, by calculation, λ1 > 0, λ2 > 0 and m2λ1+λ2− (m3+m4)(r+α)−α = 0.0054 > 0,
then the conditions of Theorem 3.1 hold, system (3.5) has a unique stationary distribution and it has
ergodic property, see Figure 3. □

3.3. Extinction of the coral population

According to Theorem 3.1, both macoralgae and coral populations will be persistent in mean,
provided that the environmental fluctuations are small enough such that Assumptions 1 and 2 hold.
Moreover, from Lemma (3.2), we know that the macroalgae population is always weakly persistent,
no matter what the noise intensities are. In this section, we are going to investigate under what
conditions the population of coral will go to extinction. Our main result is as follows.

Theorem 3.2. Let (M(t),C(t)) be the solution of system (3.5) with initial value (M(0),C(0)) ∈ Ω, then
the coral population will go to extinction, i.e., limt→∞C(t) = 0, a.s., provided that one of the following
conditions holds:
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Figure 3. Time series for the stochastic system (3.5) and its histograms of probability density
function,where b = 1, σ1 = 0.02, σ2 = 0.05, other parameters are same as in Figure 1.

(1) σ2
2 >

b2

2d2
.

(2) σ2
2 < b and λ2 < 0.

Proof. (1) We first prove when condition (1) is satisfied, coral population will go to extinction. By
using the Itô’s formula to the second equation of system (3.5) results in

d ln C =
(
b(1 − M −C) − d2 − aM −

σ2
2(1 − M −C)2

2

)
dt + σ2(1 − M −C)dB2(t)

≤

(
−
σ2

2

2
(1 − M −C)2 + b(1 − M −C) − d2

)
dt + σ2(1 − M −C)dB2(t)

≤

(
b2

2σ2
2

− d2

)
dt + σ2(1 − M −C)dB2(t).

(3.7)

When σ2
2 >

b2

2d2
, integrating Eq (3.7) from 0 to t and dividing by t on both sides leads to

lim sup
t→∞

ln
C(t)

t
≤

b2

2σ2
2

− d2 < 0,

i.e., limt→∞C(t) = 0, a.s. This completes the first part of Theorem 3.2.
(2) Now we are going to prove when condition (2) is satisfied, limt→∞C(t) = 0, a.s. also holds.

Again, by using the Itô’s formula we have,

d ln C =
(
b − d2 − bM − bC − aM −

σ2
2(1 − M −C)2

2

)
dt + σ2(1 − M −C)dB2(t)
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≤

(
b − d2 −

σ2
2

2
− b(M +C) + σ2

2(M +C)
)

dt + σ2(1 − M −C)dB2(t)

≤

(
b − d2 −

σ2
2

2

)
dt + σ2(1 − M −C)dB2(t)

=λ2dt + σ2(1 − M −C)dB2(t).

Integrating both sides from 0 to t and dividing by t leads to,

lim sup
t→∞

ln
C(t)

t
≤ λ2 < 0,

i.e., limt→∞C(t) = 0, a.s. This completes the proof. □

From the above analysis, λ1 and λ2 could be approximated as the indicators of net growth rate for
macroalgae and coral population. When m2λ1 + λ2 > (m3 + m4)(r + α) + α, system (3.5) will admit
a unique stationary distribution and it has ergodic property. When λ2 < 0, i.e., when the average
recruitment rate of corals could not overcome the negative influence caused by its natural mortality
and environmental noise, the coral population will go to extinction, see Figure 4.
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Figure 4. Time series for the stochastic system (3.5) and its histograms of probability density
function,where r = 0.8, b = 0.365, σ1 = 0.02, σ2 = 0.51, other parameters are shown in
Table A1.

Moreover, comparing Figure 4 to Figure 1, when b = 0.365 > b̂ = 0.364, the deterministic system
will be persistent in mean, while the existence of environmental fluctuations will cause the extinction
of corals. This implies that, the survival conditions for coral would be more rigorous with the existence
of environmental fluctuations, and corals need to possess a larger recruitment rate to survive in such
stochastic environment.

3.4. Analysis of noise-induced transitions

According to the analysis in Section 2, the deterministic system (2.2) could have two different
stable equilibria, namely, the coral extinction equilibrium E1 and the macroalgae-coral coexistence
equilibrium E∗1. At this scenario, the eventual dynamics of system (2.2) is completely determined by
its initial value. We then use the knowledge of SSF technique [34, 35] to theoretically investigate the
influence of environmental fluctuations in the bistable zone.
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Figure 5. (a): Random states (blue) and equilibrium E∗1 (red) of the stochastic system (3.5)
and confidence ellipse (dark green) forσ = 0.01. (b): Separatrix (red), equilibrium E∗1 (black)
and confidence ellipses (blue) forσ = 0.015 (small), σ = 0.0385 (middle), σ = 0.047 (large).
Other parameters are as same as in Figure 1(e),(f).

Choosing the parameters as in Figure 1(e),(f), and σ1 = σ2 = σ, denote the deterministic
coexistence equilibrium E∗1 = (M∗1,C

∗
1), then applying the methods in [35], the confidence ellipse

equation of E∗1 can be represented by

61.0606(M − M∗1)2 + 54.7606(M − M∗1)(C −C∗1) + 14.5962(C −C∗1)2 = 2σ2 ln
1

1 − P
.

When σ = 0.005, the random states of system (3.5) fluctuate around the coexistence equilibrium
E∗1 of the corresponding deterministic system, and they will locate in the interior of the confidence
ellipse with probability P = 0.95, see Figure 5(a) and Figure 6(a),(b). As the noise intensity increases,
the confidence ellipse starts to grow and once the noise intensity goes beyond a threshold value
σ∗ ≈ 0.0385, which can be seen as the intensity corresponding to the confidence ellipse intersects the
separatrix, it ultimately arrives the attraction basin of the coral extinction equilibrium E1, see Figure
5(b) and Figure 6(c),(d).

4. Conclusions

In this paper, we investigated a coral reef benthic system in which macroalgae and corals compete
to occupy algae turfs with grazing intensity and immigrated macroalgae in both deterministic and
stochastic environments. In deterministic environment, besides the coral-free equilibrium, system
(2.2) can also have one, two or a degenerated macroalgae-coral coexistence equilibria, whose
existence and stability have been clearly investigated. When system (2.2) exists two different
coexistence equilibria, bistability between a macroalgae-coral coexistence equilibrium and the
coral-free equilibrium occurs. Once the two macroalgae-coral coexistence coincide each other and
become a degenerated double coexistence equilibrium, it becomes a saddle-node at which the model
undergoes a saddle-node bifurcation. The complex dynamics of the deterministic system illustrate
that the dynamics of the model could be highly sensitive to the parameters, and therefore can be
significantly affected by the fluctuation of environment.

We then formulate the stochastic system (1.2), by adding environmental stochasticity into two
highly sensitive parameters which are selected by the sensitivity analysis of system (1.1). By
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Figure 6. (a): Time series of M(t) and C(t) of system (2.2) when σ = 0.01. (b): Phase
trajectory for stochastic model (2.2) when σ = 0.01. (c): Time series of M(t) and C(t) of
system (2.2) when σ = 0.05. (d): Phase trajectory for stochastic model (2.2) when σ = 0.05.
Other parameters are as same as in Figure 1(f).

investigating the dynamics of the stochastic system (3.5), we obtained the conditions for the existence
of the unique ergodic stationary distribution as well as coral extinction. Our results reveal that when
λ2 < 0, i.e., the average recruitment rate of corals on turf algae could not overcome its own natural
loss and the negative impact of environmental noises on its populations, it will go to extinction. When
the average net growth indicators of coral and macroalgae populations, λ1 and λ2, both go beyond
certain levels such that Assumptions 1, 2 hold, then system (3.5) would be persistent in mean and
admits a unique ergodic stationary distribution. Moreover, the existence of environmental fluctuation
makes the survival conditions for coral more harsher. Coral population that could survive in the
deterministic system might be driven to extinction due to the existence of environmental fluctuation,
and they need to possess larger recruitment rate to survive in such stochastic environment. For the
bistable scenario between a coexistence equilibrium and the coral-free equilibrium in the absence of
environmental fluctuations, the existence of environmental noises could cause state transition from
macroalgae-coral coexistence to coral-extinction, and this transition is irreversible. Moreover, we can
observe from Figure 1 and Figure 3 that, when coral and macroalgae could coexist, the persistent
levels of coral are usually much higher than the corresponding levels of macroalgae. This could
explain the phenomenon that coral reefs are widely exhibit at least two common stable states in the
species-poor Caribbean [11], one such state corresponds to high levels of coral cover, and the other
state corresponds to coral depletion [5].

As a summary, ignoring the impact of environmental stochasticity may lead to bias in the
prediction and management of coral reef ecosystem status, and our analysis in this paper may provide
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theoretical help for reef managers to face the changing environment. There are other factors that we
have not explicitly included that could clearly affect the coral reef dynamics. For example, coral reefs
are occasionally suffered from hurricane [11], which could also significantly affect the coral reef
ecosystem but can not be described by Gaussian white noise that introduced in this paper. Therefore,
it is meaningful to further consider the influence of other type noises, for example, Lévy noise [36,37]
in coral reef ecosystem. Furthermore, macroalgae are highly seasonal in their occurrence, growth, and
reproduction [38, 39], it will be more reasonable to further include the seasonal influence on
bioactivity of macroalgae in coral reefs. We leave these for future investigation.
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Appendix: Sensitivity analysis of parameters in system (1.1)

In order to measure the relative changes of state variables when model parameter changes, we then
perform the sensitivity analyses on system (1.1) at the interior equilibrium. The normalized forward
sensitivity index of variable µ about parameter ρ is as follows:

Υµρ =
∂µ

∂ρ
×

∣∣∣∣∣ρµ
∣∣∣∣∣ .

The higher the sensitivity index value, the more sensitive the variable is to the parameter.

Take b = 0.365, other parameters are same as in Figure 1. At this situation, system (1.1) exists
a unique stable interior equilibrium E∗ ≈ (0.0117, 0.3276, 0.6607). Applying the implicit function
derivative rule, the values of the sensitivity indices for each component at E∗ are presented in Table A1
and Figure A1. Our result shows that the sensitivity index sign of the parameters for M∗ and T ∗ remain
consistent, while the sign for C∗ is opposite. Specifically, the overgrowth rate of macroglgae on coral a,
the vegetative spread rate of macroalgae over algal turfs r , the colonization rate of newly immigrated
macroalgae on algal turf α and natural mortality rate of coral reefs d2 have positive impact on M∗ and
T ∗, and have negative impact on C∗. Other parameters have opposite effects on each component of
E∗. Moreover, the most sensitive parameter for M∗, is coral recruitment rate on turf algae b and coral
reefs natural mortality rate d2, other important parameters are the maximal macroalgae-grazing rate of
parrotfish on macroalgae g and the vegetative spread of macroglgae over algal turfs rate r. For T ∗ and
C∗, the most sensitive parameter is b, other important parameter is d2.
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Figure A1. The sensitivity indices for each component of the internal equilibrium.
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Table A1. Sensitivity indices

a b r g d1 d2 α

M 0.1516 –5.6039 2.008 –2.8243 –0.3798 5.5767 1.072
C –0.0167 2.2724 –0.0914 0.1286 0.0173 –2.2613 –0.049
T 0.0056 –1.0272 0.0097 –0.0137 –0.0018 1.0222 0.0052
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