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Abstract: In the process of spreading infectious diseases, the media accelerates the dissemination of
information, and people have a deeper understanding of the disease, which will significantly change
their behavior and reduce the disease transmission; it is very beneficial for people to prevent and con-
trol diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe
media’s influence in the epidemic transmission process. Our proposed model extends existing mod-
els by introducing a threshold strategy to describe the effects of media coverage once the number
of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua,
boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical be-
haviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In
addition, numerical simulation results show that choosing appropriate thresholds and control intensity
can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks
and shorten the duration of disease eruptions.
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1. Introduction

With the development of human civilization, infectious diseases have emerged gradually. For in-
stance, in the mid-14th century, the Black Death killed 25 million Europeans, or a third of the total
population of Europe at the time [1]. In 2003, the SARS epidemic swept through 32 countries and
regions around the world, and infected 8422 people [2,3]. Regarding COVID-19 at the end of 2019,
it took a great toll on humanity. As of August 20, 2021, according to the latest real-time statistics
from the World Health Organization, the cumulative number of confirmed COVID-19 cases world-
wide was approximately 200 million and the cumulative death toll was approximately 4 million [4-6].
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Therefore, infectious diseases are an important research topic, that have attracted the attention of many
scholars, who have been trying to establish and improve realistic mathematical models of infectious
disease transmission dynamics to increase their knowledge and understanding of infectious diseases.

Based on epidemic transmission dynamics, researchers are increasingly focusing on the effect of
social factors on disease transmission, such as vaccination, lifestyle, and media coverage. The impact
of vaccination on disease control has been studied in the literature [7-9]. At the same time, mass media
(internet, books, newspapers and others) can be effective as an important way to obtain information and
deliver preventive health messages at the beginning of a disease outbreak. A large number of people
can learn the disease, media coverage will have a profound psychological impact on people, which will
greatly change their personal behaviors, and reduce the spread of the disease. It is very beneficial for
people to actively prevent the disease and control it effectively [10,11]. Accordingly, the establishment
of mathematical models related to media coverage and in-depth research are also of great practical
importance for the prevention and control of infectious diseases. The timeliness of the media impact
is also a very important issue in the control of epidemics. Therefore, to further identify the potential
effects of media coverage on the spread of infectious diseases, with the aid of mathematical modeling
methods, we explore and analyze the predicted spread of diseases to provide a rational qualitative
description of disease transmission dynamics [12-14].

The media is regarded as an important factor in disease transmission, and a great number of scholars
have conducted thorough research on this issue. In 2008, Cui and Sun [12] proposed a nonlinear trans-
mission rate as 8 (I) = ue™, where u is a positive number. When parameter m = 0, the transmission
rate is linear, and when m > 0, this reflects the effect of media coverage on contact transmission. In
2008, Liu and Cui [13] proposed the SIR model with the transmission rate 5 (/) = 8 — ((m"ji 1)), which
is a good response to the media’s effect on the disease transmission process. Furthermore , the Filippov
system provides a natural and reasonable framework for many realistic problems, and has been widely
used in the process of various epidemics and the predator-prey relationship, particularly in controlling
epidemics. When the number of infected individuals is less than a certain level, no measures are taken,
and when the number of infected individuals is greater than a certain level, the media begins to report
the disease. Thus, threshold strategies provide a natural description of such systems. For example, in
2012, Xiao et al., [14] proposed the SIR model with a threshold strategy using 5 (1 —f) S/ to reflect
the effect of the media. In 2015, Xiao et al., [15] proposed a Filippov model with the transmission rate
B(I) = exp~M©p, to reflect the impact of media coverage. Additionally, the impact of the media on
infectious diseases has also been thoroughly explored [16, 17].

Based on the aforementioned research, in this study, we present a Filippov epidemic model that re-
lies on the number of infected individuals using a threshold strategy, and include a nonlinear incidence
rate. Our proposed model extends the existing model by introducing a threshold strategy to describe
the effect that is revealed by media coverage once the number of infected individuals exceeds a thresh-
old. We implement an epidemiological model using adaptive switching behavior when the number of
infected individuals exceeds a threshold. We also investigate which threshold levels can be used to
guide the eradication of infectious diseases.

The remainder of the paper is organized as follows: In Section 2, we develop a Filippov epidemic
model with nonliner incidence. In Section 3, we examine the dynamic behaviors of two subsystems:
free system S ! and control system S2. In Section 4, we present the sliding mode dynamics and identify
the pseudo-equilibrium, and show that it exists under certain conditions and is asymptotically stable. In
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Section 5, we discuss the global dynamics analysis of the Filippov system. In Section 6, we perform
boundary equilibrium bifurcation analysis. In Section 7, we investigate the effect of key parameters of
the Filippov system. Finally, we present the conclusion and discussion in the last section.

2. SIR model and preliminaries

2.1. Model establishment

In the classical model of infectious diseases, the transmission rate is bilinear. However, media
reports, vaccination, and population density may directly or indirectly affect it, and the bilinear trans-
mission rate function cannot adequately explain the complex phenomenon of epidemic transmission.
Meanwhile, at the beginning of the disease outbreak, media can be effective as an important way to
obtain information and deliver preventive health messages. A large number of people can learn about
the disease that is prevalent, and simultaneously, media coverage will have a profound psychological
impact on people, which will greatly change their personal behaviors, and reduce the spread and pro-
liferation of the disease. It is very beneficial for people to actively prevent the disease and control it
effectively; hence, we choose fr 22 as the transmission rate. It can be used to explain the ’psychologi-
cal” effect and show the effect of the media.

When the number of infected individuals reaches a critical level I, the media makes relevant reports
and people go out less to avoid being infected, which reduces the effective exposure and transmission
rate. Meanwhile, the government implements control measures to reduce the spread of the disease.
Based on the work in [14, 15], we classify the population into three types, that is, susceptible, infected,
and recovered, and establish a SIR model with a threshold strategy. Let S (¢), I (t) and R (¢) refer to the
proportions of susceptible, infected, and removed individuals at the time # changes, respectively. Thus,
the model is as follows:

B AL —us

511: - BSI 1+eal?
o= T — M=, 2.1)
% =yl — uR,
with
0, 1< Io,
‘9‘{1, 1> 1. (2:2)

System (2.1) with (2.2) is a particular form of Filippov system, where a (constant) recruitment birth
rate A is introduced in the susceptible population, S is the transmission rate, u is the natural death rate,
and v is the recovered rate.

Because the recovered class R in system (2.1) does not affect the dynamics of the first and second
equations, we only consider the first two equations of system (2.1) with (2.2) in the following, which
are easily obtained as:

((S.DeRUO<S +I<A/u}=Q.

For (S,1) € Q, dS/dt|s—o > 0,dI/dt|;—o = 0, and d (S + I)/dt|s+1=rs, < 0. Thus, all solutions are in
the Q region; hence, Q is an attractive domain. Let H(Z) = I — I, be a function with a threshold value
that depends on the number of infected individuals, and & be a segmentation function that depends on
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I — I,,. For convenience, let the vector Z = (S, I)". Then the discontinuous switching surface X can be
defined as
L ={ZeR}H(Z) =0},

we call X the switching manifold, which is the separating boundary of the regions [18-20]. The two
regions represent the free system (S! ) and the control system (S?).

G ={ZeRIH(Z) <0} and G,={ZeR}H(Z)> 0.

Let
_ F11 _ A—ﬁSI—,US
Fl(Z)_[Fu]_[,BSI—,uI—yI ’ (23)
Fy A—&Iz—ﬂs}
F>(Z) = = 1+l . 2.4
@ [Fzz] [ﬁiﬁz—ﬂl—ﬂ =y

Hence, system (2.1) can be rewritten as the Filippov system using the following form:

Z:{Fl(z)v Z€G17

F,(2), Z € G,. 2:5)

For convenience, we present the following definitions of all the types of equilibria of the Filippov
system [21,22].

Definition 2.1. If the equilibrium point Z* of the sliding line region X of system 2.1 satisfies AF (Z*)+
A-DF,(Z)=0,H(Z") =0with0 < A < 1, where
L (HAZ).F, @)
(Hy(Z*), F(Z*) = F\ (Z"))

then Z* is called the pseudo-equilibrium point of the system.

Definition 2.2. If Z € G, and F\ (Z) = 0 or Z € G, and F, (Z) = 0, then Z is the real equilibrium point
of system 2.1. If Z € Gy and F>(Z) = 0 or Z € G, and F(Z) = O, then Z is the virtual equilibrium
point of system 2.1.

Definition 2.3. IfZ € £ and F((Z) = 0 or F,(Z) = 0, then Z is called the boundary point of system 2.1.
Moreover, if F(Z) = 0 is invertible, we say that a boundary equilibrium bifurcation occurs at Z.

These bifurcations are classified as the boundary focus bifurcation and boundary node bifurcation

in [23-25].

Definition 2.4. If Z € X and HF(Z) = 0 or HF,(Z) = 0, then Z is called the tangent point of system

2.1.

3. Dynamics analysis of subsystems

Before analyzing the complete switching system, it is first necessary to determine the dynam-
ical behaviors of the two subsystems. According to the method in [26, 27], the basic reproduc-

tion number is considered as Ry, = (u/i/;)/x in system S'. Meanwhile, according to this equation
pa (u+y) P+ +7y)BI + u(u+7y) — AB= 0, we obtain the basic reproduction number R, = uﬁtm
in system S 2. Therefore, it is obvious that Ry = R. = ﬁ
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3.1. Dynamics for the free system S

In this section, we analyze the stability of the equilibrium point in the free system and define a
suitable Lyapunov function to verify the global stability. The free system has two equilibrium points:

disease-free equilibrium and endemic equilibrium. The disease-free equilibrium point is E, = (A, O)

u
pry A-(iP+uy)
B’ Bty

Lemma 1. The disease-free equilibrium point E, = (%, ()) in system S is globally asymptotically
stable if Ry < 1 and unstable if Ry > 1, whereas the endemic equilibrium point E; = (S, ;) is globally
asymptotically stable if Ry > 1.

and the endemic equilibrium point is E; = (

3.2. Dynamics for the control system S*

For the control system S2, the disease-free equilibrium point is easily obtained as E, = E, = (%, O)
and the endemic equilibrium point is the solution of the following algebraic equation:

{A B us =0,

T 1+al?

L —ul —yI =0,

1+al?

the equation for / is obtained as
AI’+BI + C= 0,

where
A=pa(p+y),
B=(u+7y)p,
C=u+y)[1-Ro].

Then, we can solve the equation with respect to [ to obtain

I;

-B+ VA
— i(i =3,4),
2A

where )
A= B+’ —da(uy + 1) [1 = Rol.
Because parameters u, @, 3,y are non-negative, A > 0 and B > 0. When C < 0, thatis, Ry > 1, a
unique positive solution
_ -B+ VA N

I
3 2A

0

exists; hence, we have the following summary:
1) If Ry < 1, then no positive equilibrium exists.
i1) If Ry > 1, then a unique positive equilibrium E3 = (S 3, I3) exists, which is called the endemic
equilibrium and given by
(+y)(1+aB)
= 3 ,
_—WB+yp) + VA
2ua(u+y)

3

I3
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Lemma 2. If Ry < 1, then the disease-free equilibrium point E, in the system S? is globally
asymptotically stable.

Theorem 1. If Ry > 1, then the endemic equilibrium point Ej is locally asymptotically stable.

proof. The Jacobian matrix of the control system S? at E; is

B n —BS;3 2aﬁS3I§

| 1+en§ 1+al? (1+a1§)2

B Bl3 BS: _ 2epS3 o f°
1+al§ 1+al§ (1+(,1§)2 4

the characteristic equation, for this matrix, becomes
A2 —tr (M) A + det(M) = 0,

where
upSs (o1} — 1)

(1 + alg)z

Bl

1+al3

det(M):( +/,¢)(y+y)+

—B1 S 2085312
Bl; 2+ﬁ3 aB3S;15

tr(M) = - -
1+al} 1 +al} (1+ al%)2

If det(M) > 0, tr(M) < O, that is, Ry > 1, then the endemic equilibrium point E3 is a stable focus or
node.

4. Sliding mode and its dynamics

In this section, we consider the sliding mode and its dynamics. First, we review the definition of
the sliding mode segment, calculate the pseudo-equilibrium point, and provide sufficient conditions for
the existence of the pseudo-equilibrium point. In mathematics, there are two approaches to determine
sufficient conditions for the appearance of sliding mode on discontinuous surfaces: the Filippov con-
vex method [28] and Utkin’s equivalent control method [29]. Then, according to Definition 2.1, we
determine the existence of the sliding mode domain of system 2.1.

Let

0 (Z2) = (Hz(2), F\ (2)) (Hz(2), F> (2))

where (-, -) denotes the standard scalar product and Hz(Z) is the invariant gradient of the smooth scalar
function H(Z) in X. The sliding domain is defined as X; = {Z € Z|o(Z) < 0}, and H (1) = I — I, which
means that H (Z) = (0,1)". Since F, (Z) = (F1, (Z), F12(Z2))", F1(Z) = (F2, (Z), F» (Z))". For more
information about the Filippov system, readers can refer to [30-32].

When

0 (2) = (Hz(2), F1 (2))(HZ(Z), F2 (2)) = F12(Z) F»» (Z) < 0,

then it’s obvious that F'1, (Z) > F, (Z). Hence, we obtain

L =A{(S,DeZlFn(S,1) 20,F»n(S,1) <0}.
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. . wty (wy(1+aly) |
Let the endpoints of the slide segment be A (S, ly) , B(Sk, ly), where §; = =5, S = —————;

B’ B
hence, the sliding domain of the Filippov system is as follows:
T, ={(S.D) € RS, < S < Sp.1 =}
Assuming that the second equation of the system (2.1) is equal to 0, we obtain ; fj;lz = ul + vyl
Substituting I = I and % = ul + I into the first equation of system (2.1), we obtain
dS
i =N—puly—pS =yl = f(S).
t
Let £ (§) = 0. Thus, we obtain
g = A —uly —yly
p - >
7
therefore, the coordinates of the possible pseudo-equilibrium point are given by E,, = (S 2 Io).
When
g _g A-ph—ylh (w+y) AB—u+y)Blo—pu+y)
= SL = - = >0,
H B HB
¢ o _A-ph—yl ) (1+aly)  AB=(u+y)Blo—p(u+y)(1+al)) o
Pt T B B ’

(e w+¥)Blo+p) < AB < (u+y)|Bly+p(1+al?)|). Thus, when S, < S, < Sg, the pseudo-

equilibrium point E, is in sliding mode. Additionally, because f(S p)/ < 0, the pseudo-equilibrium
point E,, is locally asymptotically stable. When §, > S or §, < S, the pseudo-equilibrium point £,
is not in the sliding mode.
To analyze the relationship between the sliding domain and the attraction domain, we solve the
following equation:
u+y A (y+y)(1+ozl2) A

=—-1 and =—-1
B H

It is easy to derive

A _pty s ZHp+ VA
o B O 2ua(u+y)
where

A = (uB)® — 4pa (u+ ) [ (u +7y) — AB].

Regarding the bifurcation set phase diagram of the control intensity @ — I, shown in Figure 1, we
obtain the following: If I < I; (i.e., region I'! in Figure 1), the equilibrium point E; of the free system
S' is virtual, which is denoted by EY, and the equilibrium point E; of the control system S 2 is real,
which is denoted by EX. If I < I; < I, (i.e., region I’ UT" in Figure 1), the endemic equilibria E, and
E; of both system S and system S? are virtual, which are denoted by E [ and E;/ , respectively. At this
moment, E}, E}, and E, coexist. When I, < I (i.e., region I'* UT® U T® in Figure 1), the endemic
equilibrium point E; of the free system S is real, which is denoted by EX. The endemic equilibrium
point E; of the control system S? is virtual, which is denoted by E;’ (see Definition 2.2 for details).
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region I'6

~~ region I’3

2 | To-—

& ==X
15 0T eVl Eooeist ]

region I’y EY,E? coexist

Figure 1. System 2.1 with 2.2 on the branching set of the control intensity @ and the threshold
Iy. Let I'; be the domain bounded by @ = 0, @ = 2, Iy = 0 and the curve [y = I3; I'; is the
domain bounded by « = 2, I = I, the curve [, = 18 and the curve I, = I3; I'; be the domain
bounded by @ = 2, I, = I; and the curve I, = 13; I'4 be the domain bounded by @ = 0, [ = I,
and the curve Iy = I3; T's is the domain bounded by @ = 2, Iy = I, Iy = I; and the curve
Iy = I; Tg is the domain bounded by @ = 0, @ = 2, Iy = I; and I, = 5, which we fix the other
parametersas A = 1; 6= 1; u =0.2;y = 0.3.

5. Global behavior of the Filippov system

In the previous section, we studied the regular equilibrium, virtual equilibrium, and pseudo-
equilibrium. The pseudo-equilibrium point exists and is locally asymptotically stable under certain
conditions. In this section, we discuss the dynamical behaviors of the Filippov system 2.1 with 2.2.
We adjust the parameters and find that the system changed from stable to unstable because of the
change of parameter 8. The phase portrait of system 2.1 shows that S and / eventually tended to a
stable value as time ¢ changed, as shown in Figure 2. The time response of the states of system 2.1 for
different initial values is shown in Figure 3(a),(b). The S-I phase portrait presents the periodic solution,
as shown in Figure 3(c).

Next, we specifically describe the branching phase diagram in (Figure 1). If Ry < 1, the disease is
eradicated; hence, we only consider the dynamical behaviors of the system if Ry > 1.

1) If Iy < I5 (region I'"), the endemic equilibrium point E; is virtual in the free system S', which
is denoted by E}, and the endemic equilibrium point Ej in the control system S 2 is real , which is
denoted by EX. The trajectories of different initial values eventually converge to the real equilibrium
E%, as shown in Figure 4(a),(b).

D) If I3 < Iy < I (region I'? U T?), the endemic equilibrium points E; and Ej; in the free system and
control system are virtual denoted by E} and E;/ , respectively. In this case , the pseudo-equilibrium
point exists and is locally asymptotically stable, as shown in Figure 4(c). The trajectories of different
initial values eventually converge to the pseudo-equilibrium point E,, as shown in Figure 4(c),(d).

3)If I, < Iy (region T* UT® UT®), the endemic equilibrium point E; of the free system S is the real
equilibrium point, which is denoted by E¥, and the endemic equilibrium point Ej3 of the control system
S? is the virtual equilibrium point, which is denoted by E;. The trajectories of different initial values
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Figure 2. The parameters values are A = 100; 8 = 0.0022; u = 0.2;a = 0.3; y = 0.3, at the

moment, the system is stable.

eventually converge to the real equilibrium E¥, as shown in Figure 4(e),(f).

To obtain the richer dynamical behaviors that the system may exhibit, we chose the parameters
a = 0.6 and y = 0.1, and all other parameters remained unchanged. The corresponding simulations
are shown in Figure 5.

In Figure 5, for different initial values, our main results show that the system eventually stabilizes
at the equilibrium points £ and E3, or the pseudo-equilibrium E,, which is strongly related to the
threshold value /. In particular, when we choose a sufficiently small threshold level I (i.e., Iy < I3),
the control policy is always triggered; hence, the solution of the system eventually tends to the endemic
equilibrium or disease-free equilibrium (not labeled in the Figure), as shown in Figure 5(a),(b). Then,
we choose the threshold /; as an intermediate value (i.e., I3 < Iy < I;), the trajectories of different
initial values eventually converge to the pseudo-equilibrium point £, as shown in Figure 5(c). When
we choose a sufficiently large threshold level [, (i.e., Iy > I;), the control strategy is not triggered, and
the solution converges to the endemic equilibrium E¥ of the subsystem at this moment, which depends
on the individual parameter values, as shown in Figure 5(d). Clearly, the trajectories are influenced by
the isoclines and the switching line in Figures 4 and 5.

6. Boundary equilibrium bifurcation analysis

To demonstrate the boundary equilibrium bifurcation of system 2.1, we choose I as the bifurcation
parameter and fix the other parameters. The definitions of the boundary equilibrium point and tangent
point are shown in the Definitions 2.3 and 2.4, respectively. The equations satisfied by the boundary
equilibrium of system 2.1 are as follows:

BSI BSI
“Trer W0 T =0 I=h

To ensure that the boundary equilibrium point exists, for both € = 0 and € = 1, it is necessary to
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Figure 3. (a) and (b) represents the phase diagram of S, I as time #, (c) represents the S-I
phase diagram. In (a) and (b), the parameters are A = 100, 8 = 0.022, u = 0.2, = 0.3,
v = 0.3, while the system 2.1 is unstable and forms a periodic solution.

satisfy

A (1 + ealg)

@y (1 + eal))

Bly + p (1 + eozlg) -

ﬁ B

which indicates that Iy = I (I = I3) for € = 0 (¢ = 1). Thus, there are four possible boundary equilib-

ria:
A

Ell —
b ﬁ]l-i-,u

A

E12 —
’ Bl +

Mathematical Biosciences and Engineering

’Il)’
1)

21 _
E, =

A(1+aﬁ)

A(1+a@)

Bl +,u(1 + alf)’

Bl +p(1+al})

I,

I3

-
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S+I=Alp

2
s %

S+l=Aly

S+l=A/p

Figure 4. The phasé:e )plane S-I for SIR model with the system g)l with respect to S-I,
showing the behaviors of the solution for different parameters and thresholds. The isoclinic
lines(green) g! (g}) and (pink) g2 (g2) are plotted for the free (control) system S '(S?). Param-
eters values are A = 1; 8 = 1; u = 0.2; v = 0.3, where the control intensity and thresholds
are (a) @ = 03,1p =03, c)a =03, 1y =17,(e) a =03, 1) = 3. (b)a =2, 1, = 0.3,
(da=2,1,=1.7, ) a =2, I, = 3, different kinetic behaviors are also obtained.
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Figure 5. The phase plane S-I for SIR model with the system 2.1. The isoclinic lines (green)
g} (g!) and (pink) g% (g2) are plotted for the free (control) system S'(S?). Parameters values
are A = 1; 8 =1, u =02; «a = 0.6; y = 0.1, where the thresholds are (a) I, = 0.3, (b)

Iy=1.7,(c) I =3,() [, =35.
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The equation satisfied by the tangent point is as follows:

BSI

—— —ul—vyI =0, I1=1,,
1 + eal? HE=Y 0

by solving the above equation, we obtain the tangent point as

1 I?
T, :(,u+7,10)’ TZ:[(H“‘?’)’(B +a0),10]‘

When the threshold value [, passes a certain critical value, a boundary equilibrium bifurcation
may occur if the real equilibrium, tangent point, and pseudo-equilibrium (or tangent point and real
equilibrium) collide [14,23,30]. When the threshold value [ passes the first critical value I, = I3, the
equilibrium EX, pseudo-equilibrium point E,,, and tangent point 7 collide, which is denoted by E}, as
shown in Figure 6, where I = 1.2122. In this case, the boundary equilibrium E}, is an attractor. When
the threshold value I, passes the second critical value I, = I, the equilibrium EX, pseudo-equilibrium
point E,, and tangent point 7 collide, which is denoted by E%, where I, = 1.8. In this case, the
boundary equilibrium Ej, is an attractor. Overall, there are two boundary equilibrium bifurcations in
Figure 6.

5 T / =
~
1 /2
S % -9
T1 / zS -
4 Cmmm o, .
~
/ s
[ e
/ Zs 4
31 T @ vadl ,
Iy 4
—_ T1 ﬁTz
/
L b3 1
2 Eg | T2
:ﬁ 1
T1 j\EB
3T
1,T1 / é\ i
/ N\
T, &T S
192 g; \\\\\
0 | I I Rl S I
0 1 2 3 4 5 6
S

Figure 6. Boundary equilibrium bifurcations for system 2.1. The isoclinic lines (green) g;
(g;) and (pink) g7 (g3) are plotted for the free (control) system S '(S?). The parameter values
are A =1;8=1;u=0.2; a =0.3; y = 0.3, where the thresholds are I, = 0.5, I, = 1.2122,
Iy=1.6,1,=1.8,1,=25, Iy = 3, Iy = 4, respectively.

7. The effect of the key parameters of the Filippov system

For system 2.1, our aim is to find an effective strategy to adjust the infected population below
a certain value or to be eliminated. It is important to implement the control strategy by setting an
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Figure 7. The dynamic behaviors of infected in system 2.1 within time. Parameters values
are(Q) A =1;=1,u=02;a =0.2;y =0.3. In (b) and (c), all other parameters are the

same as shown in (a), except @ and y, which are illustrated in each subfigure.
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appropriate threshold I,. We choose control intensity @ and recovery rate y as key parameters and
study how these parameters affect the dynamics of the system.

The red dashed line represents the free system and the blue solid line represents the control system
affected by the media coverage. From Figure 7(a), it can be obtained that the media coverage makes
the peak lower and delays the appearance of the peak. In Figure 7(b), we find that the peak reduces
as the control intensity « increases. A similar trend appears in Figure 7(c), which means that media
coverage and recovery treatment can be helpful in controlling infectious diseases.

8. Conclusions and discussion

In early epidemic models, incidence rates were bilinear, but bilinear incidence rates cannot explain
the spread of epidemics very well under realistic conditions. Meanwhile, the Filippov system pro-
vides a natural and reasonable framework for many realistic problems and has been widely used in the
process of various epidemics and the predator-prey relationship, particularly in controlling epidemics.
Accordingly, we proposed a Filippov epidemic model with nonlinear incidence to describe the influ-
ence of the media on the epidemic transmission process. Our proposed model extends existing models
by introducing a threshold strategy to describe the media effects.

When the number of infected individuals reaches or exceeds threshold /j, another adaptive system
with a nonlinear incidence rate is used, at which time the disease is widely reported immediately and
people become aware of the disease, and thus take certain protective measures to reduce the possibility
of being infected. Thus, the number of new infections per day is reduced to a certain level. This
shows that the typical threshold behavior is completely valid. First, we analyzed the stability of each
equilibrium in system 2.1. Then, we used the theory of the Filippov system [28, 31, 32] to discuss
the existence of sliding regions, the pseudo-equilibrium, and the real and virtual properties of each
equilibrium of the system. Next, we studied the global stability of system 2.1 and boundary equilibrium
bifurcation. Finally, we obtained biological conclusions from the theoretical and numerical simulation
results of the system.

Our main results showed that the system eventually stabilized at the equilibrium points E; or E3
or the pseudo-equilibrium E,, which was strongly related to the threshold value /,. Meanwhile, our
findings indicate that by setting the appropriate threshold I, the relevant health authorities can decide
whether to intervene to effectively control the disease at a relatively low level. Simultaneously, the
media’s real-time coverage of the disease has had a psychological impact on humans that leads them to
change their behavior, which results in a decrease in the number of infections. In Figure 7, we find that
media coverage decreases the peak of the disease outbreak and delays its occurrence. Meanwhile, to
a certain extent, the peak of the disease outbreak decreases with the increase of media coverage. This
implies that media coverage is effective in controlling infectious diseases. We further demonstrated
that media coverage is important for disease prevention and control.

Although we determined meaningful implications for disease control in this study, it still has some
drawbacks. For example, we only considered the relationship between the number of infected indi-
viduals and a certain threshold to construct the switching condition. Actual disease-control strategies
depend on more than the number of infected individuals. We did not take rapid growth rates into
account, and this will be our next step in future work.
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