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Abstract: We consider stochastic reaction networks modeled by continuous-time Markov chains.
Such reaction networks often contain many reactions, potentially occurring at different time scales,
and have unknown parameters (kinetic rates, total amounts). This makes their analysis complex. We
examine stochastic reaction networks with non-interacting species that often appear in examples of
interest (e.g. in the two-substrate Michaelis Menten mechanism). Non-interacting species typically
appear as intermediate (or transient) chemical complexes that are depleted at a fast rate. We embed
the Markov process of the reaction network into a one-parameter family under a two time-scale ap-
proach, such that molecules of non-interacting species are degraded fast. We derive simplified reaction
networks where the non-interacting species are eliminated and that approximate the scaled Markov
process in the limit as the parameter becomes small. Then, we derive sufficient conditions for such
reductions based on the reaction network structure for both homogeneous and time-varying stochastic
settings, and study examples and properties of the reduction.

Keywords: stochastic reaction networks; mass-action system; Markov process; continuous-time
Markov process; reduction; singular perturbation

1. Introduction

Reaction network theory offers a quantitative framework for biochemistry, systems biology, and
cellular biology, by enabling the modeling of biological systems. Deterministic models have been the
main focus area with contributions going back more than hundred years [1]. However, the increasing
interest in living systems at the cellular level motivates the use of stochastic models to describe the
variation and noise found in systems with low molecule numbers. Typically, stochastic models are
continuous-time Markov chains (CTMCs) on the state space Zn

≥0, where a state represents the vector of
molecule numbers of the n species in the system.

We are here concerned with the transient behavior of such CTMCs, in contrast to the stationary
behavior (the existence of stationary distributions). In practice, variations in molecule numbers and

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022124


2721

reaction rates might yield phenomena that evolve on different time-scales, enabling simplifications [2].
In particular, we are interested in systems with two time-scales, also known as slow-fast systems, where
a set of reactions are fast (in a relative sense) compared to the remaining (slow) reactions. The objective
is to approximate, in a mathematically rigorous way, the dynamics of the original CTMC, with another
CTMC in smaller dimension (with fewer species). This other CTMC should ideally be interpreted as a
reaction network, obtained by reduction of the original reaction network. We will give conditions for
when this can be done.

In the deterministic setting, the heuristic quasi-steady state approximation (QSSA) [3] and singu-
lar perturbation theory in the sense of Tikhonov-Fenichel [4, 5] have been the main means to derive
lower dimensional reduced models, where [5] is the classic reference of Tikhonov, while [4] is from
Fenichel. (See [6] or [7] and references therein for the relationship between the two approaches and
when the QSSA is valid, and [8] for comparison with stochastic QSSA.) A motivation for our work
is the situation for which reactions involving so-called non-interacting species [9] in the reactant has
reaction rate constants scaled by 1/ε, where ε > 0 is a small number [10]. We will consider a similar
situation for stochastic reaction networks and point out differences between the two settings.

Many stochastic studies consider physical or heuristic-based derivations to extract reduced reaction
networks, for example, SDEs or hybrid models, or ad-hoc reductions [11–13]. [11] comments on gen-
eral deterministic approaches, [12] studies heuristics for stochastic single scale reductions, while [13]
reviews practical aspects of deterministic and stochastic reductions. One stream of research eliminates
species using heuristic projection arguments [14, 15], where [14] treats some reversible cases and [15]
irreversible examples. Rigorous simplifications and reductions often follow scaling limits of Markov
processes in a multi-scale setting [16]. These might be applied to concrete examples, if certain con-
ditions are satisfied and the different scaling parameters are balanced (in a specific sense), as done for
specific examples of reaction networks [17], more generally [18], or for spatial reaction networks [19].
Scaling laws for a special class of reaction networks with intermediate species (a special type of non-
interacting species) and their explicit reduction are given in [20]. We extends this work to reaction
networks with non-interacting species on two time-scales.

These two time-scales separate the transition intensities of the CTMC into a fast and a slow com-
ponent such that the Q-matrix has the following form

Qε =
1
ε

Q̃ + Q̂.

The transition intensities of the reactions in the network are divided into two kinds:

• Fast reactions with scaled transition intensity λεy→y′(x) := 1
ε
λy→y′(x).

• Slow reactions with unscaled transition intensity λεy→y′(x) := λy→y′(x).

The fast reactions are determined by non-interacting species. Our work is inspired by previous work on
non-interacting species in deterministic systems that focussed on algebraic reductions [9], applications
to biological examples [21], the connection to singular perturbation [10], and intermediate species in
stochastic models [20]. The technical part is based on singularly perturbed Markov chains [22] and
watched Markov chains [23]. In order to derive the limiting dynamics systematically, we associate a
graph to the reaction network that captures the dynamics of the fast reactions. This enables the defini-
tion of the reduced reaction network and its dynamics. We give limit theorems for the approximation
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of the original CTMC to the reduced CTMC on compact time intervals. Furthermore, we study the
case of time-heterogeneous CTMCs, and show that the same reductions work.

As an example, consider a mass-action reaction network as follows

S 1
κ1
−−−→ U1 + S 2

1
ε κ2
−−−→ S 3, U1

1
ε κ3
−−−→ S 4,

with two fast reactions determined by the presence of the non-interacting species U1, that degrades
fast. The reduced reaction network is given as

S 1 −−−→ S 3, S 1 −−−→ S 2 + S 4,

with transition intensities κ1κ2zS 1 (zS 2 +1)
κ2(zS 2 +1)+κ3

for the first reaction and κ1κ3zS 1
κ2(zS 2 +1)+κ3

for the second. After creation
of a U1 molecule (and a S 2 molecule), then it might be degraded either by consumption of the S 2

molecule, resulting in the net reaction S 1 −−−→ S 3, or without consumption of the S 2 molecule, result-
ing in the net reaction S 1 −−−→ S 2 + S 4. In both cases, the transition intensities reflect that the presence
of S 1 is required for the reactions to take place.

We next outline the content, where in § 2 preliminaries on graph theory and reaction networks are
covered. In § 3, we introduce non-interacting species and introduce a graph that is used to define the
reduced reaction network by elimination of the non-interacting species. In § 4, we study transient
approximations for stochastic reaction networks with non-interacting species via the previously intro-
duced reduction. In § 5, we give realistic examples, study sufficient conditions for reductions and
compare stationary properties of the reduction with the original reaction network. Finally in § 6, we
discuss the results, approach, and elaborate on the relation to the literature. In the Appendices § A, §
B, § C, we give proofs as well as brief introductions to the theory on singularly perturbed CTMCs and
watched CTMCs.

2. Preliminaries

2.1. Notation

Let Rp be the real p-dimensional space, and Rp
>0 (Rp

≥0) the subset of elements of Rp with strictly
positive (non-negative) entries in all components. A vector y ∈ Rp is written as (y1, · · · , yp), where
yi is the i-th component. For vectors y1, · · · , yk ∈ R

p, max(y1, · · · , yk) denotes the component-wise
maximum, and y1 ≥ y2 denotes component-wise inequality. The inner product between y1 and y2 is
denoted 〈y1, y2〉. The cardinality of a set A is denoted |A|.

2.2. Graph theory

G = (V,E) a directed graph consists of the set of verticesV and edge set E. A directed subgraph of
G = (V,E) is a directed graph G′ = (V′,E′) withV′ ⊆ V,E′ ⊆ E with E′ onV′. A walk is a directed
path Vi1 → Vi2 → · · · → Vil−1 → Vil (potentially listed as the corresponding sequence of edges).

A multi-digraph G is a directed graph where multiple edges between the same vertices are allowed.
In particular, a multi-digraph comes with two functions

s : E → V t : E → V.

where the functions s, t are the source and target function, respectively. Both self-edges (edges e with
t(e) = s(e)) and parallel edges are possible.
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2.3. Reaction networks (RNs)

A RN on a finite set S is a digraph N = (C,R), where S is a finite set of species S = {S 1, · · · , S n},
C a potentially infinite set of complexes and R a potentially infinite set of reactions R = {r1, r2 · · · }.
Complexes are non-negative linear combinations of species, y =

∑n
i=1 yiS i, identified with vectors

y = (y1, . . . , yn) in Zn
≥0. Reactions are directed edges between complexes, written as ri : yi → y′i or,

generically, as r : y → y′, potentially omitting ri, r. A reaction is said to consume the reactant y and
create the product y′. An RN is said to be finite if R is finite, and otherwise it is infinite.

We diverge in two ways from the standard definition of RNs: trivial reactions r : y → y (self-
loops) are allowed, and the numbers of complexes and reactions are allowed to be infinite. Both
extensions are useful when dealing with reduced RNs. From a dynamical point of view, trivial reactions
might always be ignored as the dynamics is the same with and without them. Realistic model of
bursty gene expression with infinitely many reactions have been proposed in the literature [24, 25],
where [24] focusses on corresponding theory for extensions of density-dependent Markov processes
and [25] heuristically investigate such models. However, our motivation is not to accommodate such
examples, but rather to ensure that an RN obtained by reduction of a finite RN is also an RN, finite or
infinite. The construction of the reduced RN also holds even if the original RN is infinite.

Definition 2.1. (i) Two species interact if they both appear in a complex of C.
(ii) A subsetU ⊆ S is non-interacting if it contains no pair of interacting species, and the stoichio-

metric coefficients of the species inU in all complexes are either 0 or 1. The species ofU are said to
be non-interacting, and the species in S \ U are said to be core species.

Example 2.2. Consider a two-substrate Michaelis Menten mechanism [26, Section 3.1.2]:

r1 : E + A −−−→ EA, r2 : EA −−−→ E + A, r3 : EA + B −−−→ EAB,

r4 : EAB −−−→ EA + B, r5 : EAB −−−→ E + P + Q,

where E is an enzyme catalyzing the conversion of two substrates A, B into two other substrates P,Q
by means of transient (or intermediate) steps; here EA and EAB are known as intermediate complexes
formed by binding of the molecules in the reactants.

This RN has species set S = {E, A, B, EA, EAB, P,Q} and complex set C = {E + A, EA, EA +

B, EAB, E + P + Q}.
The setsU1 = {EA, EAB},U2 = {EA, P} andU3 = {EAB} are non-interacting, with corresponding

core species O1 = S \ U1 = {E, A, B, P,Q}, O2 = S \ U2 = {E, A, B, EAB,Q}, and O3 = S \ U3 =

{E, A, EA, B, P,Q}. In particular, a species might be a core or a non-interacting species, depending on
the choice ofU.

In this paper, it is convenient to work with the directed stoichiometric subspace of N = (C,R),
defined as

T =
{ ∑

r : y→y′∈R′
αr(y′ − y)

∣∣∣∣αr > 0, r ∈ R′, where R′ ⊆ R is finite
}
⊆ Rn

(note, this definition allows the RN to be infinite). For v ∈ Rn, the set (v+T )∩Rn
≥0 defines a directed sto-

ichiometric compatibility class ofN . The RN is said to be conservative, respectively, sub-conservative,
if there exists a positive vector c ∈ Rn

>0, such that 〈c, y′ − y〉 = 0, respectively, 〈c, y′ − y〉 ≤ 0 for any

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2720–2749.



2724

reaction r : y → y′ ∈ R. A sub-conservative RN has compact directed stoichiometric compatibility
classes (but not stoichiometric compatibility classes). For a weakly reversible RN, the directed and the
undirected stoichiometric subspaces are the same.

2.4. Stochastic reaction networks (SNRs)

An SRN is an RN together with a CTMC X(t), t ≥ 0, on Zn
≥0, modeling the number of molecules of

each species over time. A reaction r : y→ y′ fires with transition intensity λr(x), in which case the state
jumps from X(t) = x to x + y′ − y [27]. The Markov process with transition intensities λr : Zn

≥0 → R≥0,
r ∈ R, has Q-matrix

Q(x, x + ξ) :=
∑

r : y→y′∈R : y′−y=ξ

λr(x).

For (stochastic) mass-action kinetics, the transition intensity for r : y→ y′ is

λr(x) = κr
(x)!

(x−y)!1{x′ : x′≥y}(x), x ∈ Zn
≥0,

where x! :=
∏n

i=1 xi!, and κr is a positive reaction rate constant [27]. If there are infinitely many
reactions, we assume ∑

r∈R

λr(x) < ∞, for all x ∈ Zn
≥0, (2.1)

such that the corresponding CTMC is well-defined in the sense that it has no instantaneous jumps [28].
When the reactions are indexed, R = {r1, r2, . . .}, we occasionally write λi and κi, i = 1, 2, . . ., for

convenience. The following assumption holds in particular for stochastic mass-action kinetics.

Assumption 1. For all reactions, r : y → y′ ∈ R, the transition intensity λr : Zn
≥0 → R≥0 satisfies the

following
λr(x) > 0 ⇐⇒ x ≥ y.

Under Assumption 1, (X(t))t≥0, stays in Zn
≥0, if X(0) = x ∈ Zn

≥0. In particular, (X(t))t≥0, is confined
to the directed stoichiometric compatibility class (x + T ) ∩ Zn

≥0. Assumption 1 is fundamental and
enforces the reactions to be compatible with the transition intensities of the CTMC.

3. Elimination of non-interacting species through fast reactions

3.1. Notation for non-interacting species

In the following, we focus on RNs and SRNs with non-interacting species. To fix notation, let
U ⊆ S be a non-interacting subset of species. For simplicity, we let U = {U1, . . . ,Um} and O =

S \ U = {S 1, . . . , S p} (p = n − m), such that S = O ∪U = {S 1, . . . , S p,U1, . . . ,Um}. We let

ρO : Rn → Rp, ρU : Rn → Rm

be the projections onto the first p coordinates and last m coordinates of Rn, respectively. Consequently,
we denote a state by x = (z, u) ∈ Zp

≥0 × Z
m
≥0 = Zn

≥0.
Define the following sets of reactions

RU = {r : y→ y′ ∈ R | ρU(y) , 0}, R′U = {r : y→ y′ ∈ R | ρU(y′) , 0},
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such that RU ∪ R′U are the reactions that involve species inU.
We consider a subset of fast (a terminology to be motivated below) reactions F ⊆ RU with the

following structural property.

Definition 3.1. The reactions in F are proper w.r.t. U, that is, any non-interacting species is part of a
sequence of reactions in (R′

U
\ RU) ∪ F of the form

ri0 : yi0 → y′i0 , ri1 : yi1 → y′i1 , · · · ril : yil → y′il ,

with i0, . . . , il ∈ {1, . . . , k}, ρU(yi0) = ρU(y′il) = 0 and ρU(yi j) = ρU(y′i j−1
) , 0 for j = 1, · · · , l. Such a

sequence of reactions is called a fast chain.

Hence, any molecule of a non-interacting species can be degraded through a sequence of fast reac-
tions (provided sufficient molecule numbers of core species).

Example 3.2. Recall Example 2.2. The setU1 = {EA, EAB} is a non-interacting set and F = RU1 is a
set of fast proper reactions. For example, the following is a fast chain:

r1 : E + A→ EA, r3 : EA + B→ EAB, r5 : EAB→ E + P + Q.

Also,U2 = {EA, P} is a non-interacting set of species, but F = RU2 is not a set of fast proper reactions,
as there are no fast reactions with P in the reactant.

3.2. The reduced reaction network

We introduce a labeled multi-digraph to capture the conversion and creation of non-interacting
species through fast chains. This graph is similar to the one introduced in [21]. We later use this graph
to define a reduced RN and a reduced SRN by elimination of non-interacting species.

Definition 3.3. LetN = (C,R) be an RN on S,U ⊆ S a set of non-interacting species, and F ⊆ RU a
set of fast proper reactions. Let GU,F = (VU,F ,EU,F ) be the labeled multi-digraph with vertex set

VU,F := {∗in, ∗out} ∪ {Ui | Ui ∈ U},

and edge set

EU,F := {∗in
r
−−−→ Ui | r : y→ y′ ∈ R′U \ RU, ρU(y′) = Ui}

⋃
{Ui

r
−−−→ U j, | r : y→ y′ ∈ F such that ρU(y) = Ui, ρU(y′γ) = U j}

⋃
{Ui

r
−−−→ ∗out, | r : y→ y′ ∈ F such that ρU(y) = Ui, ρU(y′) = 0}.

Furthermore, let L : EU,F → {1, . . .} be the function that maps γ ∈ EU,F to the corresponding index of
the reaction label, that is, if γ ∈ EU,F has label ri, then L(γ) = i.

The construction of the graph GU,F also makes sense in the case of an infinite RN. The vertex set is
finite, but the number of edges between any two vertices might be infinite.

Example 3.4. Consider Example 2.2 withU = U1 = {EA, EAB} and F = RU. Then GU,F is
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∗in EA ∗out

EAB

r1 r2

r3 r4 r5

.

There are infinitely many walks from ∗in to ∗out, as one might take arbitrary many ‘rounds’ in the loop
before exiting.

By definition, any finite sequence of reactions that corresponds to the reaction labels of a walk in
GU,F with start vertex ∗in and end vertex ∗out is a fast chain. Define the set of such walks by

WU,F := {(γ1, · · · , γl) ∈ (EU,F )l | l ≥ 2, (γ1, · · · , γl) is a walk
in GU,F with s(γ1) = ∗in, t(γl) = ∗out}.

Note that WU,F might be infinite, even for finite RNs, as in Example 3.4 above.
We will consider the situation in which the reactions of F occur fast compared to the remaining

reactions R \ F , in the sense that the transition intensities of the reactions in F are scaled by 1/ε for
small ε. Thus, we consider a fast-slow dynamic regime. In that case, it is natural to expect that when-
ever a non-interacting molecule is created, then it will be degraded almost instantaneously through fast
reactions, before any other non-fast reaction occurs. Such sequences of reactions (creation and degra-
dation) are encoded in the walks of WU,F . To understand the fast dynamics, it is therefore important to
understand the net gain of core species in the walks and their probabilities of occurring.

In preparation for this, consider a walk Γ = (γ1, γ2, . . . , γl) ∈ WU,F , and denote

wi := yL(γi) +

i−1∑
j=1

yL(γ j) − y′L(γ j), i = 1, . . . , l,

where L(γ j) is the reaction index of the edge γ j. Define

r(Γ) := max(w1, . . . ,wl).

Note that r(Γ) depends on the order of the elements of Γ.

Lemma 3.5. Let Γ = (γ1, γ2, . . . , γl) ∈ WU,F . Then the following holds:

• r(Γ) ≥ 0, and p(Γ) := r(Γ) +
∑l

i=1 y′L(γi)
− yL(γi) ≥ 0

• pU(r(Γ)) = 0, pU(p(Γ)) = 0.

Proof. We give complete proofs here for convenience, but note that the results also follow from [29].
The second item follows by definition. As we take the maximum coordinate-wise and w1 ≥ 0, then
r(Γ) has non-negative coordinate in each species. To see that p(Γ) has non-negative coordinate in each
species, we note that by definition yL(γl) +

∑l−1
i=1 yL(γi) − y′L(γi)

≤ r(Γ). Adding
∑l

i=1 y′L(γi)
− yL(γi) to both

sides, we get 0 ≤ y′L(γl)
≤ p(Γ), and the result follows. �

By Lemma 3.5, we might consider r(Γ) and p(Γ) as elements of Zp
≥0, and as reactant and product,

respectively, of the reduced reaction r(Γ) → p(Γ), obtained by contraction along Γ. Lemma 3.7 below
justifies this view, and relates the compatibility requirement in Assumption 1 to the reduced reactions.
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Example 3.6. We continue with Example 3.4. Consider the walk Γ0 of GU,F consisting of the two
edges associated to r1, r2. Then

r(Γ0)→ p(Γ0) = E + A→ E + A,

a trivial reaction. Likewise, the walk ΓA
1 consisting of the edges associated to r1, r3, r4, r2, also results

in a trivial reaction,
r(ΓA

1 )→ p(ΓA
1 ) = E + A + B→ E + A + B.

In contrast, the walk ΓB
1 consisting of the three edges associated to r1, r3 and r5 yields

r(ΓB
1 )→ p(ΓB

1 ) = E + A + B→ E + P + Q.

Any other walk of WU,F consists either of a sequence of edges with labels r1, r3, r4, . . . , r3, r4, r3, r5

or a sequence of edges with labels r1, r3, r4, . . . , r3, r4, r2. As the net gain of core species in the con-
traction of the reactions r3, r4 is zero, the corresponding reduced reactions are the same as that of ΓA

1 ,
respectively, ΓB

1 . Hence, there is only one non-trivial reduced reaction. For future reference, denote the
corresponding walks with n instances of r3 by ΓA

n , respectively, ΓB
n , for n ≥ 1.

Lemma 3.7. Suppose Assumption 1 holds. Let Γ = (γ1, γ1, . . . , γl) ∈ WU,F . Furthermore, let z ∈ Zp
≥0

and x = (z, 0) ∈ Zn
≥0. Then

λL(γ j)

x +

j−1∑
i=1

y′L(γi) − yL(γi)

 > 0, j = 1, · · · , l − 1,

if and only if z ≥ r(Γ).

The lemma implies that the reactions corresponding to a walk in WU,F can fire in succession of each
other (without other non-fast reactions firing in between), if and only if the present molecule counts of
core species is larger or equal to r(Γ). A similar statement appears in [29, Corollary 3.2].

Lemma 3.7 allows us to define transition intensities of the reduced reactions in a natural way. For
Γ = (γ1, γ2, . . . , γl) ∈ WU,F , define the function ΛΓ : Zp

≥0 → R≥0,

ΛΓ(z) := λL(γ1)(z, 0)
l∏

j=2

λL(γ j)((z, 0) +
∑ j−1

i=1 ξi)∑
γ̃∈out(s(γ j)) λL(γ̃)((z, 0) +

∑ j−1
i=1 ξi)

, (3.1)

where ξi := y′L(γi)
− yL(γi), and out(s(γ j)) denotes the set of outgoing edges of s(γ j) in GU,F . Each term

in the product is the probability that the desired reaction is chosen out of all possible fast reactions with
the same non-interacting species in the reactant. The convention 0/0 = 0 is used. Even if the RN is
infinite, then (3.1) is well-defined due to (2.1).

Definition 3.8. Let N = (C,R) be an RN on S, let U ⊆ S be a non-interacting set of species, and
F ⊆ RU a set of proper fast reactions. The reduced RN NU,F = (CU,F ,RU,F ) on O = S \ U, obtained
by elimination of (U,F ) from N , is the possibly infinite RN defined by

RU,F = (R \ (RU ∪ R′U)) ∪ {r(Γ)→ p(Γ) | Γ ∈ WU,F },

and CU,F being the set of vertices of RU,F .
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For r ∈ RU,F , define
WU,F (r) := {Γ ∈ WU,F | r(Γ)→ p(Γ) = r}.

Definition 3.9. Let N = (C,R) be an SRN on S with transition intensities λr(·), r ∈ R, satisfying
Assumption 1. Let U ⊆ S be a set of non-interacting species, and F ⊆ RU a set of proper fast
reactions. Then, the possibly infinite SRN NU,F = (CU,F ,RU,F ) on O = S \ U with transition
intensities τr(·), r ∈ RU,F , given by

τr(z) :=



∑
Γ∈WU,F (r)

ΛΓ(z) if r < R \ (RU ∪ R′U),

λr(z, 0) +
∑

Γ∈WU,F (r)
ΛΓ(z) if r ∈ R \ (RU ∪ R′U),

λr(z, 0) if r ∈ R \ (RU ∪ R′U) and
r < {r(Γ)→ p(Γ) | Γ ∈ WU,F },

is the reduced SRN, obtained by elimination of (U,F ) from N .

As a reduced SRN has species set O = S\U, the associated CTMC lives in Zp
≥0. Even if the reduced

SRN has infinitely many reactions, the associated CTMC is always well-defined, that is, it has no
instantaneous states [28]. IfU consists of intermediate species, then the reduced reaction network and
the corresponding transition intensities are easily found [20, Theorem 3.1]. For intermediate species,
the number of molecules of core species does not change along a walk, in contrast to for instance
Example 3.6. In particular, if the original SRN has mass-action kinetics, then the reduced SRN has
mass-action kinetics as well.

As remarked earlier, one might discard any trivial reaction. However, the transition intensities of
the trivial reactions play a crucial role in Assumption 2 in Section 4.1.

Lemma 3.10. Suppose Assumption 1 holds. Then, the reduced SRN has Q-matrix with all off-diagonal
row sums finite.

Proof. By definition, we need to show that ∑
r∈RU,F

τr(z) < ∞.

For this, we note that ∑
r∈RU,F

τr(z) =
∑

r∈R\(RU∪R′U)

λr(z, 0) +
∑

Γ∈WU,F

ΛΓ(z).

Hence, it is enough to show that the second summand in the second term is finite as the first is finite by
assumption. By construction of the reduced transition intensities,∑

Γ∈WU,F

ΛΓ(z) ≤
∑

r∈R′
U
\RU

λr(z, 0) < ∞.

The left hand side is the sum of all transition intensities of walks (reduced reactions) with initial
reaction in R′

U
\ RU. This sum is at most equal to the right hand side: Let Γ = (γ1, . . . , γl) be a walk

and yL(γ1) be the reactant of the first reaction in the walk. If yL(γ1) ≤ z ≤ r(Γ) and r(Γ) , z, then the first
reaction can fire, but not all reactions in the walk can fire in succession, hence the corresponding ΛΓ(z)
is zero. For a concrete illustration, see Example 5.2.

�
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As a consequence of Lemma 3.7, Assumption 1 holds for a reduced SRN, provided it holds for the
original SRN.

Corollary 3.11. Suppose Assumption 1 holds. Then, for any reaction r : y→ y′ ∈ RU,F of the reduced
SRN, it holds that τr(z) > 0 if and only if z ≥ y.

Proof. It is enough to prove it for ΛΓ(z), where Γ ∈ WU,F and z ∈ Zp
≥0, that is,

ΛΓ(z) > 0 ⇐⇒ z ≥ r(Γ).

Only one direction is not obvious. Assume z ≥ r(Γ). Using the definition of ΛΓ(·), it is sufficient to show
that the numerators in the fraction are all non-zero. This holds by Lemma 3.7, hence ΛΓ(z) > 0. �

Example 3.12. We continue with Examples 3.4, 3.6, assuming stochastic mass-action kinetics. There
are three reduced reactions, the first reaction being non-trivial and the last two trivial,

s1 : E + A + B→ E + P + Q, s2 : E + A→ E + A, s3 : E + A + B→ E + A + B,

with infinitely many walks underlying the first and third reduced reaction. Here, si is used to denote
the reactions of the reduced SRN, rather than ri, to distinguish the reactions of the reduced RN from
those of the original RN. We find

ΛΓ0(z) =
κ1κ2zEzA

k3zB + κ2
,

ΛΓA
n
(z) =

κ1κ2zEzA

k3zB + κ2

(
κ3κ4zB

(κ4 + κ5)(k3zB + κ2)

)n

, n ≥ 1,

ΛΓB
n
(z) =

κ1κ3κ5zEzAzB

(κ3zB + κ2)(κ4 + κ5)

(
κ3κ4zB

(κ4 + κ5)(k3zB + κ2)

)n−1

, n ≥ 1,

such that

τ1(z) =

∞∑
n=1

ΛΓB
n
(z) =

κ1κ3κ5zEzAzB

(κ4 + κ5)(κ3zB + κ2) − κ3κ4zB
.

Analogously, we compute the sums over walks for the trivial reactions. We have τ2(z) = ΛΓ0(z) and

τ3(z) =
κ1κ3κ5zEzAzB

(k3zB + κ2)((κ4 + κ5)(κ3zB + κ2) − κ3κ4zB)
.

Furthermore, a simple calculation gives the following identity for z ∈ Zp
≥0,∑

Γ∈WU,F

ΛΓ(z) = τ1(z) + τ2(z) + τ3(z) = λ1(z, 0).

An interesting observation is that the kinetics is mass-action-like in the sense that the numerator alone
is of mass-action form, while the denominator is positive (for any state). This is, however, not true in
general, see Example 5.2.
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Example 3.13. Consider the RN,

r1 : S 1 −−−→ U1, r2 : U1 −−−→ S 3, r3 : S 2 + U1 −−−→ U1,

withU = {U1} andF = RU proper. Taken with mass-action kinetics with corresponding rate constants,
κ1, κ2, κ3, the reduced SRN has infinitely many reactions, sn : S 1 + nS 2 → S 3, n ≥ 0, with transition
intensities,

τn(x) =
κ1κ2xS 1

κ2 + κ3(xS 2 − n)

n−1∏
i=0

κ3(xS 2 − i)
κ2 + κ3(xS 2 − i)

, n ≥ 0,

where by convention
∏−1

i=0 = 1. On any particular state, at most finitely many reactions can be active,
that is, have non-zero transition intensity.

For examples from the biochemical literature, we refer to § 5.1.

4. Two-scale SRNs

We study transient approximability of the CTMC via the reduced SRNs under appropriate assump-
tions. We cover two settings, the standard time-homogeneous CTMC setting for SRNs, and afterwards
the setting where the transition intensities of the SRN are allowed to be time-dependent.

4.1. Transient approximation

Let N = (C,R) be an SRN on a species set S (of size n) with non-interacting species U ⊆ S, fast
proper reactions F ⊆ RU, and transition intensities λr, r ∈ R. From this SRN, we construct a family
of SNRs, indexed by a parameter ε > 0, with corresponding Q-matrix Qε . In particular, the transition
intensities of the reactions in F consuming non-interacting species are scaled in ε as follows:

• λεr(x) := 1
ε
λr(x), r ∈ F , that is, for small ε the reactions are fast compared to the remaining

reactions,

• λεr(x) := λr(x), r ∈ R \ F , that is, the transition intensities are independent of ε, and the reactions
are slow.

Thus, we might write the corresponding Q-matrix as as sum of two terms, a fast part Q̃, scaled by 1
ε
,

and a slow part Q̂,

Qε =
1
ε

Q̃ + Q̂.

It follows from Definition 3.9 that the reduced SRN, obtained from the SRN with transition intensities
λεr , r ∈ R, has transition intensities τr, r ∈ RU,F , independent of ε.

Let (Xε(t))t≥0 be Markov chains on Zn
≥0 with generators Qε , ε > 0, respectively. We note that all

Qε , ε > 0, are dynamically equivalent in the sense that the connectivity of the state space and the
decomposition of the state space Zn

≥0 into communicating classes are independent of ε. Furthermore,
let (X0(t))t≥0 be a Markov chain on Zp

≥0 (excluding the m = n−p coordinates for non-interacting species)
with generator Q0, obtained from the transition intensities τr, r ∈ RU,F . In the following, we provide
conditions that guarantee that the dynamics of (Xε(t))t≥0 is similar (in a sense to be made precise) to
the dynamics of (X0(t))t≥0, whenever ε is small. Technically, we will consider the limit as ε → 0.
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We restrict attention to a particular closed set E of (Xε(t))t≥0, such that E ∩ (Zp
≥0 × {0}) , ∅. That is,

there are states in E with no molecules of non-interaction species being present. If the reduced SRN
starts in X0(0) ∈ E0 := ρO(E ∩ (Zp

≥0 × {0})), then by construction of the reduced reactions, X0(t) ∈ E0

for all t > 0. Furthermore, E0 is a closed set of Q0.
We require the following.

Assumption 2. The closed set E is finite, and all z ∈ E0 satisfy the following:∑
Γ∈WU,F

ΛΓ(z) =
∑

r∈R′
U
\RU

λr(z, 0) (4.1)

The sum on the left hand side also includes walks giving rise to trivial reactions, as in Example
3.12. The condition might fail in two ways. Either a walk is blocked because of lack of molecules of
core species (for example r1 : 0→ U, r2 : S + U → 0; if there is no molecules of S , then the fast chain
r1, r2 is blocked and a molecule of U cannot be degraded), or one might be trapped in infinite walks
(for example, r1 : 0→ U, r2 : 2S + U → 3S + U, r3 : U → 0; there is positive probability of an infinite
walk r1, r2, r2, . . . without degradation of the U molecule). The latter cannot occur if E, and hence E0,
are finite as this implies that at most finitely many (reduced) reactions can be active on any state of E
(E0).

For a sub-conservative RN, any closed set of states E (not necessarily a communicating class) in a
directed stoichiometric compatibility class is finite. If Assumption 1 is satisfied, then the conditions
in Assumption 2 do not depend on the transition intensities λr, r ∈ R, but only on the structure of the
underlying RN (together withU and F ). Furthermore, as (2.1) holds by assumption, then Assumption
2 is meaningful even for infinite RNs. In particular, Theorem 4.1 also holds for infinite RNs as E is
finite.

For a subset B ⊆ E ∩ (Zp
≥0 × {0}), we define B0 = ρO(B).

Theorem 4.1. Let N = (C,R) be an SRN on S with transition intensities λr, r ∈ R, U ⊆ S a set of
non-interacting species, and F ⊆ RU a set of fast proper reactions. Suppose Assumptions 1 and 2
hold. Let π be a probability distribution on E ∩ (Zp

≥0 × {0}), and π0 the induced probability distribution
on E0 by omitting the last n− p coordinates of the states of E. Then, the following holds for any 0 < T:

sup
t∈[0,T ]

|Pπ(Xε(t) ∈ B) − Pπ0(X0(t) ∈ B0)| = O(ε) for ε → 0.

In particular, for any B ⊆ E ∩ (Zp
≥0 × {0}) and any 0 < T:

lim
ε→0

sup
t∈[0,T ]

|Pπ(Xε(t) ∈ B) − Pπ0(X0(t) ∈ B0)| = 0.

The proof is in Appendix § B.3. As a consequence of the theorem we have:

Corollary 4.2. Let N = (C,R) be an SRN on S with transition intensities λr, r ∈ R, U ⊆ S a set
of non-interacting species, and F ⊆ RU a set of fast proper reactions. Suppose Assumptions 1 and 2
hold. Let x = (z, 0) ∈ E ∩ (Zp

≥0 × {0}) and B ⊆ E ∩ (Zp
≥0 × {0}). Then, for all t ≥ 0 it holds that:

lim
ε→0

Px(Xε(t) ∈ B) = Pz(X0(t) ∈ B0).

If the initial state Xε(0) has more than one molecule of the non-interacting species, then these will
in general be depleted quickly for small ε. This is however not always the case, see Example 5.2.
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4.2. The case of time-dependent transition intensities

In the previous section, we considered the scaling limit of time-homogeneous SRNs. While time-
constant transition intensities are reasonable in many situations, time-dependence becomes relevant,
for example, in connection with variation in experimental setups, cycle-dependent mechanisms or
temperature changes [30].

The setup is essentially the same as in Section 4.1, except we now allow time-dependent transi-
tion intensities, λr(t, x), r ∈ R, for t in a compact time interval t ∈ [0,T ]. We make the following
assumption.

Assumption 3. The time-dependent transition intensities, λr(t, x), r ∈ R, are such that λr(t, ·) satisfies
Assumption 1 for all t ∈ [0,T ] and such that for all x ∈ Zn

≥0, λr(·, x), r ∈ R, are C1-functions from
[0,T ]→ R≥0 with Lipschitz derivatives.

The transition intensities are scaled as in the homogeneous case. Under Assumption 3, the reach-
ability properties of the CTMC are invariant over time and match the reachability properties of the
homogeneous SRNs under Assumption 1. Assumption 2 holds for all t ∈ [0,T ], provided it holds for
one t, as the assumption is structural.

With these changes and amendments, then Theorem 4.1 and Corollary 4.2 hold as well for the
time-dependent case. A proof is sketched in Appendix C.

5. Examples and properties

We next illustrate the reduction procedure with various examples. Furthermore, we derive sufficient
conditions for Assumption 2 to hold, and compare the long-term behavior of the CTMC of the reduced
SRN with the one of the original SRN.

5.1. Zoo of examples

In this section, we give realistic examples to elaborate on the reduction. All examples are taken with
stochastic mass-action kinetics, hence they satisfy Assumption 1. To indicate mass-action kinetics, we
put the reaction rate constants κi as labels of the reactions, and omit the reaction names ri. A key
source book for realistic examples is [26], that contains reaction networks used in systems biology.
Other useful references are [31], which focuses on enzyme kinetics, and [1], which has examples from
a range of areas in biology.

Example 5.1. We first consider the two-substrate Michaelis-Menten mechanism [26, Section 3.1.2];
also discussed in Examples 2.2, 3.4, 3.6, and 3.12, and repeated here for convenience with reaction
names replaced by their reaction constants:

E + A
κ1
−−−⇀↽−−−
κ2

EA, EA + B
κ3
−−−→ EAB

EAB
κ4
−−−→ EA + B, EAB

κ5
−−−→ E + P + Q.

The mechanism is commonly studied as a deterministic mass-action system, using Tikhonov-Fenichel
singular perturbation theory or the QSSA, with short-lived intermediate complexes (non-interacting
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species) U = {EA, EAB} and fast reactions F = RU = {r2, r3, r4, r5}. Assuming the same in the
stochastic setting gives the reduced RN in Example 3.6or Example 3.12 with one non-trivial reaction,

s1 : E + A + B→ E + P + Q,

with transition intensity
τ1(z) =

κ1κ3κ5zEzAzB

(κ4 + κ5)(κ3zB + κ2) − κ3κ4zB
.

We omit the trivial reactions; further details are given in example 3.12. Assumption 2 is fulfilled for
all z ∈ Z5

≥0 (p = 5, see Example 3.12), in particular the original RN is conservative. Then, Theorem
4.1 applies to any closed set E in a directed stoichiometric compatibility class that intersects Z5

≥0 × {0}
non-trivially.

Example 5.2. Consider the two-substrate Michaelis-Menten mechanism with U = {EA, EAB} as
above, but with set of fast reactions F = {r3, r4, r5} ⊆ RU. We remove r2 from the fast reactions
in the previous example. Then there is only one reduced reaction in contrast to Example 5.1 that
additionally had two trivial reactions, given by

s1 : E + A + B→ E + P + Q,

with transition intensity
τ1(z) = κ1zEzA1{zB : zB≥1}.

Assumption 2 holds for all z = (zA, zB, zE, zP, zQ) ∈ Z5
≥0 with zB > 0:∑

Γ∈WU,F

ΛΓ(z) = τ1(z) = κ1zEzA1{zB : zB≥1} = κ1zEzA = λ1(z, 0).

Also note that for zA ≥ 1, zE ≥ 1 and zB = 0, we have 0 = τ1(z) < κ1zEzA = λ1(z, 0) , 0. This is an
example of the inequality in the proof of Lemma 3.10.

This example does not have mass-action-like kinetics, as τ1(z) cannot be expressed as a fraction
with positive denominator such that the numerator is of mass-action form. Alternatively, we might
extend by multiplication and division by zB.

Example 5.3. Consider a non-competitive inhibition network [26, Section 3.2.2]:

S + E
κ1
−−−⇀↽−−−
κ2

ES
κ3
−−−→ E + P, I + E

κ4
−−−⇀↽−−−
κ5

EI,

I + ES
κ6
−−−⇀↽−−−
κ7

ES I, S + EI
κ8
−−−⇀↽−−−
κ9

ES I,

where E is an enzyme that catalyze the conversion of a substrate S into a substrate P. The conversion
is delayed by an inhibitor I that binds to the enzyme and to the substrate through the intermediate
complex EI. It is non-competitive in the sense that I does not compete with E for substrate binding,
but rather acts on E directly; a phenomenon known as allosteric regulation.

This example is typically analyzed by means of the QSSA with short-lived species; here U =

{ES , EI, ES I}. In our setting, taking U to be non-interacting species with F = RU, then the reduced
SRN becomes

s1 : S + 2I → S + I + E, s2 : S + I → E + P, s3 : S + 2I → E + I + P
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s4 : I + E + S → I + E + P, s5 : I + E + S → 2I + S ,

with transition intensities

τ1(z) =
κ1κ5κ6κ9zS zI(zI − 1)

(κ2 + κ3)(κ7(κ5 + κ8zS ) + κ5κ9) + κ6κ5κ9(zI − 1)

τ2(z) =
κ1κ3zS zI

κ2 + κ3 + κ6(zI − 1)

τ3(z) = κ1κ3zS zI

(
κ7(κ5 + κ8zS ) + κ5κ9

(κ2 + κ3)(κ7(κ5 + κ8zS ) + κ5κ9) + κ6κ5κ9(zI − 1)
−

1
κ2 + κ3 + κ6(zI − 1)

)
τ4(z) =

κ3κ4κ7κ8(κ7 + κ9)zEzIzS

[κ5(κ7 + κ9) + κ8κ7zS ]((κ2 + κ3)(κ7 + κ9) + κ6κ9zI)) − κ8κ7κ6κ9zIzS

τ5(z) =
κ2κ4κ7κ8(κ7 + κ9)zEzIzS

[κ5(κ7 + κ9) + κ8κ7zS ]((κ2 + κ3)(κ7 + κ9) + κ6κ9zI)) − κ8κ7κ6κ9zIzS
.

For any closed set E in a directed stoichiometric compatibility class that intersects Z4
≥0 × {0} non-

trivially, Assumption 2 is satisfied.

Example 5.4. Consider an example of allosteric activation [26, Problem 3.7.8] that models the regu-
lation of an enzyme by binding of an allosteric activator before the enzyme can bind a substrate:

R + E
κ1
−−−⇀↽−−−
κ2

ER, ER + S
κ3
−−−⇀↽−−−
κ4

ERS
κ5
−−−→ P + ER.

Here, R is the allosteric activator, S the substrate, E the enzyme, and P the product. While the RN is
reminiscent of the the two-substrate example 5.1, the enzyme-activator complex ER stays intact after
the product P dissociates in reaction r5.

To analyze the behavior of the system, often the QSSA is applied to a mass-action ODE system with
short-lived intermediate complexes (non-interacting species) U = {ER, ERS }. Choosing analogously
F = RU in the stochastic case gives a proper set of fast reactions. Then, the reduced RN has infinitely
many reactions, given by:

s2k−1 : E + R + kS → E + R + kP, s2k : E + R + (k + 1)S → E + R + kP + S ,

for k ≥ 1, with transition intensities

τ2k−1(z) =
κ1κ2zRzE

κ2 + κ3(zS − k − 2)

k−1∏
i=0

κ3κ5(zS − i)
κ2κ4 + κ2κ5 + κ3κ5(zS − i)

,

τ2k(z) = τ2k−1(z)
κ3κ4(zS − k)

κ2κ4 + κ2κ5 + κ3κ5(zS − k)
.

All z ∈ Z4
≥0 (p = 4) satisfy (4.1). AsN is sub-conservative, any closed set E of a directed stoichiometric

compatibility class is finite. Hence, for any closed set E in a directed stoichiometric compatibility class
that intersects Z4

≥0 × {0} non-trivially, Assumption 2 is satisfied.
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Example 5.5. As a final example, consider a mechanism-based inhibitor system [1, Section 6.4],

S + E
κ1
−−−⇀↽−−−
κ2

X
κ3
−−−→ Y

κ5
−−−→ E + P, Y

κ4
−−−→ Ei,

where S , P are substrate and product, respectively, X,Y intermediate complexes, E an enzyme in active
form (implying it might bind to the substrate) and Ei, the enzyme in its inactivated form. A main
interest is to know the final ratio of the product to the inactivated enzyme [1, Section 6.4]. For this, often
the QSSA is applied to the short-lived species U = {X,Y}. Analogously, we consider the stochastic
system with F = RU being fast and proper, and study the corresponding stochastic reduction. The
reduced SRN has reactions

s1 : S + E → E + P, s2 : S + E → Ei

with transition intensities:

τ1(z) =
κ1κ3κ5zS zE

(κ2 + κ3)(κ4 + κ5)
, τ2(z) =

κ1κ3κ4zS zE

(κ2 + κ3)(κ4 + κ5)
.

AsU = {X,Y} are intermediate species, all z ∈ Z4
≥0 (p = 4) satisfy (4.1). AsN is sub-conservative, for

any closed sets E of a directed stoichiometric compatibility class Assumption 2 is satisfied.

5.2. Properties enabling sufficient conditions for simplification

While Assumption 1 and F being proper are both easy to check, Assumption 2 is non-trivial in
general. Assumption 2 requires a finite closed set of the CTMC and that molecules of non-interacting
species can be degraded through chains of fast reactions. The following gives sufficient conditions for
this to hold (see Appendix § A for proof).

Proposition 5.6. Assume N is a sub-conservative SRN on a species set S, U ⊆ S is a set of non-
interacting species, and F ⊆ RU is a proper set of reactions. Suppose Assumption 1 holds. Further-
more, assume that one of the following holds:

(a) F ∪ (R′
U
\ RU) is weakly reversible.

(b) F ∩ RU ∩ R′U is weakly reversible, and for any reaction r : y → y′ in ∈ R′
U
\ RU, the reverse

reaction r′ : y′ → y is in F .

(c) N is weakly reversible and F = RU.

Then, for an arbitrary closed set in a (directed) stoichiometric compatibility class, Assumption 2 is
satisfied.

None of the conditions in the theorem are necessary for Assumption 2 to hold. For intermediate
species a stronger result holds.

Lemma 5.7. AssumeN is an SRN on a species set S, and thatU ⊆ S is a set of intermediate species.
Suppose Assumption 1 holds. Then, F ⊆ RU is proper if and only if all z ∈ Zp

≥0 satisfy (4.1) of
Assumption 2.
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We summarize the properties of the examples from § 5.1. In examples 5.1, 5.3 and 5.4 we can
directly conclude by Proposition 5.6 (b) that Assumption 2 holds.

Example N sub-cons (4.1) fulfilled NU,F finite

3.13 X X −

5.1 X X X

5.2 X − X

5.3 X X X

5.4 X X −

5.5 X X X

5.3. Comparison of the original RN and the reduced RN

A natural question following the transient approximability of SRNs with non-interacting species
is whether the reduced SRN approximates the stationary behavior in the limit as ε → 0. First one
might ask whether states x = (z, 0) ∈ Zp

≥0 × {0} and z are of the same type (positive recurrent/null
recurrent/transient) for N and NU,F , respectively. Furthermore, the stationary distribution (if it exists)
for the scaled SRN N as ε → 0 might match the stationary distribution of NU,F . The following
examples show that such correspondences do not hold in general, even for reduction by intermediates.

Example 5.8. Consider the following SRN N with mass-action kinetics,

S 1
κ1
−−−⇀↽−−−
κ2

U1
κ3
−−−→ S 2

κ4
−−−→ S 1, U1

κ5
−−−→ S 3.

Choosing U = {U1}, F = {r3}, then the reduced SRN NU,F is S 1 −−−⇀↽−−− S 2 with transition intensities
satisfying Assumption 1 by Corollary 3.11. Any (a, b, c, 0) with a + b ≥ 1 is transient for N , but
recurrent forNU,F . Reaction r5 inN causes absorption into (0, 0, a + b + c + d, 0). As r5 is not present
in the reduced SRN, this cannot happen in NU,F .

Example 5.9. Consider the SRN N with mass-action kinetics,

S 1
κ1
−−−⇀↽−−−
κ2

U1
κ3
−−−⇀↽−−−
κ4

S 2

ChoosingU = {U1}, F = {r3}, then the reduced SRN NU,F becomes S 1 → S 2. The state (a, b, 0) with
a ≥ 1 is recurrent for N , but transient for NU,F .

The next result follows from [29, Theorem 5.6]. We recall that irreducible components of sub-
conservative RNs are finite [27]. For an irreducible component E ⊆ Zn

≥0, define E0 = ρO(E∩(Zp
≥0×{0})).

Theorem 5.10. LetN = (C,R) be a sub-conservative SRN on S,U ⊆ S a set of intermediate species,
and F = RU a set of proper reactions. Suppose Assumption 1 holds. Then x = (z, 0) ∈ Zp

≥0 × {0} is
transient for N if and only if z is transient for NU,F , and the same holds for positive recurrence. In
particular, if a subset E is an irreducible component for N then E0 is an irreducible component for
NU,F .
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From Theorem 5.10, Lemma 5.7 and [32, Theorem 3], we get convergence of the stationary distri-
bution.

Corollary 5.11. LetN = (C,R) be a sub-conservative SRN on S,U ⊆ S a set of intermediate species,
and F = RU a set of fast proper reactions. Suppose Assumption 1 holds. Let E be an irreducible
component, and let E0 be the corresponding projected set. Furthermore, denote by πε the unique
stationary distribution of Qε on E, and let π0 be the unique stationary distribution of the reduced SRN
on E0. Then, πε((z, 0))→ π0(z), for z ∈ E0, and ε → 0.

6. Relation to previous work and discussion

We compare our setting for reduction of SRNs with non-interacting species to other approaches of
model simplification. Then we discuss assumptions, extensions and examples that are not covered by
our approach.

In our treatment, we consider SRNs with fast reactions consuming non-interacting species, general-
izing earlier settings in three ways: 1) extending from intermediate species to non-interacting species,
2) allowing arbitrary transition intensities satisfying a compatibility condition, and 3) allowing non-
homogeneous Markov dynamics, that is, time-dependent transition intensities. As the set-up is based
mostly on singular perturbation of Markov chains with transient states [33], which is also available in
the book [22], we loose the possibility to study multiple time scales, but are restricted to two scales.

Reductions of SRNs with non-interacting species resembles reduction by intermediate species as
intermediate species form a special class of non-interacting species [20]. In contrast to our setting, [20]
allows a multi-scale setting. Other multi-scale reductions require the parameters to fulfill a balancing
equation between scales of species concentrations and scales of transition intensities [13, 16–18, 36],
where [36] treats the classical scaling for convergence to the ODE. This is not required in our setting
(nor in [20] for the reactions involving intermediate species), in fact such equation will not hold.
Balancing is violated because fast reactions do not have ‘limits’ themselves as ε → 0, but only jointly
through contraction of sequences of reactions. Furthermore, at the process-level, we do not have
convergence in the Skorohod topology, see [20, Example 5.3] or [18, § 6.5], because even for small
ε, molecules of non-interacting species are created and exist for small amounts of time, while this is
not possible in the reduced SRN. Convergence in Skorohod topology typically require that species
abundance is measured in concentrations, rather than in molecule numbers. In contrast, we might have
convergence in the Jakubowski topology from [34], also see [18, Remark A.14] for more in the context
of reaction networks. Whenever, a molecule of a non-interacting species is produced, the Markov
chain (Xε(t))t≥0 will jump a finite number of times (stochastically bounded in ε) in a small time interval
before the molecule is degraded again. This implies the (so-called) up- and downcrossing numbers
of [34] is bounded, a prerequisite for convergence.

The results on the transient dynamics in our two-scale setting could potentially be extended by
allowing general infinite state space (that is, weaken Assumption 2). In so, the transition rates of the
original CTMC become unbounded for mass-action kinetics, and the theory on singular perturbations
for CTMCs are not applicable [22]. Furthermore, the original process might have sample paths that
diverge to infinity in a finite amount of time. Hence, theory applicable to unbounded cases as well as
conditions ensuring non-explositivity would be of interest to develop. We note that even 1-dimensional
CTMCs arising from RNs can have both positive recurrent and explosive irreducible components [35],
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implying that different parts of the state space might have to be analyzed separately.
Another generalization would be to allow many scales rather than two scales. This could be done

using [32] in the finite state space case. However, it becomes difficult to find the reduced reactions,
as these depend on the concrete form of the transition intensities and their scalings. Also, a reduction
might not be interpreted as SRNs fulfilling Assumption 1. As an example, consider

S 1
κ1
−−−→ U1

1
ε κ2
−−−→ S 2, U1 + S 3

1
ε2
κ3

−−−→ S 4

with stochastic mass-action kinetics. The reduction for small ε can be written as two reactions

S 1 −−−→ S 2, S 1 + S 3 −−−→ S 4

with transition intensities κ1zS 11{0}(zS 3) for the first reaction and κ1zS 11N\{0}(zS 3) for the second. In
particular, the first transition intensity invalidates Assumption 1.

In our approach, it is important that non-interacting species are produced and degraded. Consider
the SRN with reactions

U1
κ1
−−−⇀↽−−−
κ2

U2, S 1 + U1
κ3
−−−⇀↽−−−
κ4

S 2 + U2.

Neither U1 nor U2 are produced nor degraded, hence there does not exist a proper set of reactions F
and the example falls outside our setting. As a matter of fact, the scaling parameter ε would apply
uniformly to all reactions as they all transform one non-interacting species into another. Hence, the
distribution of the CTMC approaches the stationary distribution within a short time span (for small ε).
This distribution is not concentrated on the part of the state space without molecules of non-interacting
species. Rescaling time by ε would retrieve the original chain.

A. Complements for sufficient conditions for Assumption 2

The following lemma proves Proposition 5.6 on sufficient conditions for Assumption 2.

Lemma A.1. Assume N = (C,R) is a sub-conservative SRN on a species set S with transition inten-
sities λr, r ∈ R, that U ⊆ S is a set of non-interacting species, and F ⊆ RU is a proper set of fast
reactions. Suppose Assumption 1 holds. Then either of the following are sufficient for Assumption 2 to
be satisfied for an arbitrary closed set in a (directed) stoichiometric compatibility class:

(a) F ∪ (R′
U
\ RU) is weakly reversible.

(b) F ∩ RU ∩ R′U is weakly reversible, and for any reaction r ∈ R′
U
\ RU, the inverse reaction is in

F .

(c) N is weakly reversible and F = RU.

Proof. As N is sub-conservative, any closed set of a directed stoichiometric compatibility class is
finite. Hence, it is enough to show that (4.1) holds for arbitrary x = (z, 0) ∈ Zp

≥0×{0}. As (2.1) holds by
assumption, it is enough to show that for arbitrary r ∈ R′

U
\ RU with λr(z, 0) , 0 the following holds:∑

Γ∈WU,F |Γ starts with r

ΛΓ(z) = λr(z, 0).
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Consider the SRN with species set S and reactions F , denoted N|F , that we take with the same
transition intensities as N . Consider the associated discrete-time Markov chain (DTMC) from the
jump chain of N|F (cf. [28, p. 82]), which is the sequence of states taken by the CTMC. This will be
denoted by (Yn)n∈N. By definition of ΛΓ(·), ΛΓ(z)

λr(z,0) corresponds to the probability that the transitions of
the jump chain (Yn)n∈N when starting from (z, 0) + y′ − y comes from the sequence of reactions in Γ.

Denote the set of reachable states from (z, 0) + y′ − y via N|F by N|F ((z, 0) + y′ − y). As N is sub-
conservative, N|F is sub-conservative and N|F ((z, 0) + y′ − y) is finite. In the following, let ei ∈ Z

n
≥0

denote the vector with Ui-coordinate entry equal to one and all other entries equal to zero.
(a) Assume F ∪ (R′

U
\ RU) is weakly reversible. Then, if (z′, 0) + ei ∈ N|F ((z, 0) + y′ − y), then

also (z, 0) ∈ N|F ((z′, 0) + ei). Hence, any such (z′, 0) + ei is transient in the jump chain (Yn)n∈N of N|F
. On the other hand by definition, any state of the form (z′, 0) is absorbing for the jump chain of N|F .
As the set of reachable states is finite, the time until absorption is a.s. finite. So overall the jump chain
ends in one of the absorbing states after a finite time, and∑

Γ∈WU,F |Γ starts with r

ΛΓ(z)
λr(z, 0)

= 1.

For (b) and (c), the proofs are similar to (a). �

B. Proof of Theorem 4.1

The proof of Theorem 4.1 is based on singularly perturbed and watched Markov chains. We there-
fore first introduce these concepts for the convenience of the reader.

B.1. Singularly perturbed CTMCs

Singular perturbation theory for Markov chains is a well-developed topic in probability theory. For
the convenience of the reader we restate and summarize results of [22, 33] for homogeneous CTMCs
on a finite state space, using their notation. For more on the two-scale setting for CTMCs, we refer
to [22, 37], where [37] is a book more generally treating multiscale methods in mathematics.

The setting we introduce has a Markov chain with fast and slow components subject to so-called
weak and strong interactions, where the fast components consist of absorbing, weakly irreducible or
transient states of the fast dynamics. These cases are treated in detail in [22, § 4.3, § 4.4, § 4.5].

Let a sequence of homogeneous generators of a CTMC be given by

Qε =
1
ε

Q̃ + Q̂, ε > 0,

on a finite state space I. By rearrangement, the states can be divided into blocks of states IA,IW ,IT

according to their role in the Markov chain associated to Q̃, which are absorbing, irreducible, and
transient, respectively. The matrices Q̃, Q̂ are partitioned accordingly into block-matrices and take the
form

Q̃ =


Q̃AA Q̃AW Q̃AT

Q̃WA Q̃WW Q̃WT

Q̃T A Q̃TW Q̃TT

 =


0 0 0
0 Q̃WW 0

Q̃T A Q̃TW Q̃TT

 , (B.1)
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Q̂ =


Q̂AA Q̂AW Q̂AT

Q̂WA Q̂WW Q̂WT

Q̂T A Q̂TW Q̂TT

 .
The states in IA with Q̃AA = 0, Q̃AW = 0, Q̃AT = 0 correspond to absorbing states of Q̃. The

states in IT correspond to transient states of Q̃ (hence Q̃TT is a Hurwitz matrix, furthermore stable and
non-singular see Lemma B.5). Finally, IW consists of the states that are part of (non-trivial) closed
irreducible components, so Q̃WW in (B.1) can further be decomposed as

Q̃WW = diag(Q̃1, Q̃2, · · · , Q̃l) =


Q̃1

Q̃2

. . .

Q̃l

 , (B.2)

where Q̃i is an mi × mi matrix. We denote by νi the stationary distribution of Q̃i for i = 1, . . . , l (which
exist by assumptions on the state space).
Remark B.1. Our presentation differs slightly from [22]. In that work, so-called weakly irreducible
classes is used [22, Definition 2.7a]; classes containing exactly one closed irreducible component
and possibly other states that lead to this component (which are then transient) in the case of time-
homogeneous CTMCs. As we include transient states of Q̃ via IT , this is not a restriction. We note
that our setting is included in [22, § 4.5].

For ε > 0, the forward equation of the CTMC gives an ODE

pε(t)
dt

= p(t)Qε , p(0) = π0,

where π0 is the initial probability distribution.
In [22], they construct sequences of functions that approximate pε(t) in the limit for ε → 0 uniformly

on [0,T ] for different powers of ε. One contribution comes from the so-called outer expansion, that
approximates pε(t) for t > 0. Another part comes from the so-called initial-layer correction, that
approximates pε(t) in a neighborhood of t = 0. This might be ignored as it is zero in our case [22].
Hence, we will focus on the zeroth order outer expansion as this is enough to obtain an approximation
to order O(ε) (see Proposition B.3).

Following [22, Theorem 4.45], the distribution of the CTMC converges to the zeroth order outer
expansion ϕ0(t) for t > 0. In the case we consider, it is given as

ϕ0(t) = (ϕA(t), ϕW(t), ϕT (t)) = (ϕA(t), ϕW(t), 0T ),
= (ϕA(t), ϑ1(t)ν1, · · · , ϑl(t)νl, 0T ),

where ϑi(t) are scalar functions and νi are the stationary distributions from matrix (B.2), and 0T is the
vector of zero-entries. Then, let (with m0 = 0)

1̃ = diag(1̃m1 , · · · , 1̃ml)

where
1̃mi = (0, · · · , 0︸   ︷︷   ︸

m1+···+mi−1

1, · · · , 1︸   ︷︷   ︸
mi

, 0, · · · , 0︸   ︷︷   ︸
mi+1+···+ml

)>, i = 1, . . . , l,
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and define the matrix

Q∗ = diag(1, · · · , 1︸   ︷︷   ︸
|IA |

, ν1, · · · , νl)
( ( Q̂AA Q̂AW

Q̂WA Q̂WW

)
+

(
Q̂AT

Q̂WT

)
Q̃−1

TT

(
Q̃T A Q̃TW

) )
diag(1, · · · , 1︸   ︷︷   ︸

|IA |

, 1̃). (B.3)

Note that Q∗ is not the same as Q0 (which was previously defined for SRNs).

Remark B.2. The matrices in the product above have different dimensions, i.e. diag(1, · · · , 1, ν1, · · · , νl)
is a (|IA| + l) × (|IA| + |IW |) matrix, the middle matrix is a (|IA| + |IW |) × (|IA| + |IW |) matrix whereas
diag(1, · · · , 1, 1̃) is a (|IA| + |IW |) × (|IA| + l) matrix.

Then the zeroth order outer expansion ϕ0(t) (corresponding to [22, (4.86)]) with initial distribution
π0 = (pA, pW , pT ) is determined by the following ODE,

d
dt

(ϕA(t), ϑ1(t), · · · , ϑl(t)) = (ϕA(t), ϑ1(t), · · · , ϑl(t))Q∗,

ϕA(0) = pA + pT (Q̃TT )−1Q̃T A,

(ϑ1(0), · · · , ϑl(0)) =
(
pW + pT (Q̃TT )−1Q̃TW

)
1̃,

(B.4)

which defines the generator of a CTMC that is given by Q∗. This CTMC has reduced state space
IA ∪ {s1, · · · , sl}, where each state si corresponds to the assembled irreducible component, which has
stationary distribution νi from Q̃WW , see (B.2). Then, denoting the projection onto the reduced state
space of the initial value of (B.4) by Pr(π0) := (ϕA(0), ϑ1(0), · · · , ϑl(0)), we get a solution

(ϕA(t), ϑ1(t), · · · , ϑl(t)) = Pr(π0)eQ∗t.

Denote the sequence of CTMCs associated to Qε by Xε(t) and the CTMC from Q∗ by X0(t). Under
these conditions the following holds [22, Theorem 4.45].

Proposition B.3. Let π0 be a probability distribution on IA ∪ IW ∪ IT with support on IA. Then, for
all T > 0 and all B ⊆ IA:

sup
t∈[0,T ]

|Pπ0(Xε(t) ∈ B) − PPr(π0)(X0(t) ∈ B)| = O(ε), for ε → 0.

The contribution of the zeroth order outer expansion is sufficient to approximate the above events
to order O(ε) as the initial-layer corrections are zero [22]. Hence, the CTMC generated by Q∗ can be
seen as the limit CTMC (in the sense of Proposition B.3). The above will be the main reference of this
section for the proof of Theorem 4.1.

Remark B.4. In the inhomogeneous case, the generator of the scaled CTMC of [22] has the form
Qε

t = 1
ε
Q̃t + Q̂t, where Q̃t, Q̂t satisfy some regularity conditions on t ∈ [0,T ]. The conclusions we

have stated are essentially the same in this case. In particular, the error O(ε) for the zeroth order outer
expansion is as in Proposition B.3.

B.2. Watched CTMCs

We introduce watched CTMCs on a finite state space. Watched Markov chains appear as a restric-
tion of a bigger Markov chain, which we observe only if the chain is in a specific subset of the state
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space [38, 39]. For a textbook treatment see [38], and for a review and connections to linear algebra
we refer to [39].

In the following, we consider a CTMC (X(t))t≥0 with generator Q on a finite state space S with
E1 ⊆ S a subset of the state space. Writing the Q-matrix in block-form according to the sets E1 and
E2 = S \ E1, we decompose Q as

Q =

(
QE1E1 QE1E2

QE2E1 QE2E2

)
.

Lemma B.5. If under

Q′ :=
(
QE1E1 QE1E2

0 0

)
all states in E1 are transient, then QE1E1 is stable and non-singular.

Proof. Note that no diagonal entries of QE1E1 are zero. Since all states are transient, then all communi-
cating component of the matrix have a “leak” (the row sum of QE1E1for a least one state in a component
is non-zero) and the result follows from [40]. �

The censored Markov chain on E2 is defined as the process that has sample paths following the
process (X(t))t≥0 as long as it is in E2, and ignoring the parts where X(t) ∈ E1. This so-defined process
is then again a Markov process, where under the assumption above, the transition rates of the watched
Markov chain are given by

Qwatched := QE2E2 − QE2E1 Q−1
E1E1

QE1E2 .

Remark B.6. In the above formula, the second summand catches the contribution from when the orig-
inal CTMC enters E1 until it returns to E2. By definition of the watched CTMC, we have

(QE2E1 Q−1
E1E1

QE1E2)v,w =
∑
x∈E1

qv,xPx(Xτ = w),

where τ = inf{t ≥ 0|X(t) ∈ E2}.

B.3. Proof of Theorem 4.1

The proof consists of several parts. We first show without loss of generality, the following might be
assumed:

- the closed set E has a particular form,

- the initial distribution has support on a special part of the state space,

- the RN N is finite.

Then we apply singularly perturbed CTMCs of § B.1 to the SRN. As a third step, we simplify by
showing, the dynamics can be restricted to a smaller part of the state space. Finally, we connect the
limit CTMC to watched CTMCs of § B.2, which shows how the reduced reactions are derived from
the limit CTMC of the scaled SRNs.
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B.3.1. Preparations

In preparation for the proof, we consider the following. Let N be an SRN with non-interacting
species set U, fast proper reactions F ⊆ RU, and transition intensities λr, r ∈ R. For x ∈ Zn

≥0, denote
byN(x) the set of reachable states from x ofN , and for z ∈ Zp

≥0, denote byNU,F (z) the set of reachable
states from z of NU,F .

We introduce a surrogate modelM that reflects the behavior of the SRN ofN when ε is very small.
Specifically, this model is a CTMC on Zn

≥0 determined by the Q-matrix

Q(x, x + ξ) :=
∑

r : y→y′∈R : y′−y=ξ

λ̃r(x),

with transition intensities,

λ̃r(x) :=

λr(x) if r ∈ F ,

1N0(x)λr(x) if r ∈ R \ F .

Similarly, for x ∈ Zn
≥0, we denote byM(x) the set of reachable states from x ofM.

Let Ni := {x = (z, u) ∈ Zn
≥0|

∑m
j=1 u j = i} for i ≥ 0. Then, we have the following.

Proposition B.7. Suppose Assumption 1 holds, that F is proper, and let x = (z, 0) ∈ N0. Then,
ρO(M(x) ∩ N0)) = NU,F (z) andM(x) ⊆ N(x)

For the proof of Theorem 4.1, the following Lemma will be useful. The proof follows by contradic-
tion and is omitted.

Lemma B.8. Suppose Assumption 1 holds and that F is proper. If Assumption 2 holds for some closed
set E, then for any x ∈ E∩N0, the states inM(x)∩N1 are transient for the CTMC of the SRN obtained
by considering the RN defined by the reaction set F (and taking the same transition intensities as in
N).

Consider the family of scaled CTMCs as in the setting of § 4 with notation introduced in § B.3.1.
Furthermore, consider a finite closed set E ⊆ Zn

≥0. As E is finite, we can assume wlog that N is finite.
For any probability distribution π on E and any state w ∈ E, Pπ(X(t) = w) =

∑
x∈E πxPx(X(t) = w).

Therefore it is enough to prove the statement for:

- a closed set of the form Ẽ := N(x) with x ∈ N0 ∩ E. This follows as E = ∪x′∈E∩N0N(x) by
definition.

- an initial distribution with support onM(x′) ∩ N0 for x′ ∈ Ẽ ∩ N0. This follows as by definition
Ẽ ∩ N0 = (∪x′∈Ẽ∩N0

M(x′)) ∩ N0, see Proposition B.7.

Hence, we might assume thatN is finite, that E := N(x) for some x ∈ N0 and that π has support on
M(x′) ∩ N0 ⊆ E for x′ ∈ E. We denote M :=M(x′).

B.3.2. The proof

With the preparations above, the matrix Q̃ from § B.1 is comprised of the transition intensities from
reactions of F with a non-interacting species of U in the reactant and Q̂ is comprised of the other
reactions R \ F , where we divide the states of E as follows:

IS 1 = M ∩ N0, IS 2 = (E ∩ N0) \ M,
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IF1 = M ∩ N1, IF2 = E \ (N0 ∪ (M ∩ N1)),

where by definition E = IS 1 ∪ IS 2 ∪ IF1 ∪ IF2 . We next illustrate the possible slow transitions (that
is, transitions from Q̂) outgoing from IS 1 in blue on the left and all possible fast transitions (that is,
transitions from Q̃) displayed in red on the right by their transition state diagrams.

IS 1 IS 2

IF1 IF2

IS 1 IS 2

IF1 IF2

Note that there are other possible slow transitions (that is, transitions from Q̂) outgoing from
IS 2 ,IF1 ,IF2 , but the transitions from IS 1 are enough for our considerations.

The transition diagrams above determine the zero/non-zero parts of the corresponding Q-matrices
in block-form as follows.

Lemma B.9. The following holds for the fast and slow parts of the Q-matrices (notation as in § B.1)
divided into blocks:

Q̂|IS 1×S =
(
Q̂S 1S 1 Q̂S 1S 2 Q̂S 1F1 Q̂S 1F2

)
=

(
Q̂S 1S 1 0 Q̂S 1F1 0

)
, (B.5)

Q̃ =


Q̃S 1S 1 Q̃S 1S 2 Q̃S 1F1 Q̃S 1F2

Q̃S 2S 1 Q̃S 2S 2 Q̃S 2F1 Q̃S 2F2

Q̃F1S 1 Q̃F1S 2 Q̃F1F1 Q̃F1F2

Q̃F2S 1 Q̃F2S 2 Q̃F2F1 Q̃F2F2

 =


0 0 0 0
0 0 0 0

Q̃F1S 1 0 Q̃F1F1 0
Q̃F2S 1 Q̃F2S 2 Q̃F2F1 Q̃F2F2


Proof. Recall that the slow transitions come from R \ F and the fast ones from F by assumption. We
go through the slow transitions and then the fast ones.

- By contradiction there are no slow transitions from IS 1 to IS 2 or IF2 .

- By Assumption 1, Q̃ has zero entries on E0 = IS 1∪IS 2 (the coordinates of non-interacting species
are zero). By the definition of the sets IF1 ,IS 2 and IF2 there are no fast transitions from IF1 to
IS 2 or IF2 .

�

Following § B.1 (see also [22]), the distribution of the CTMC converges to the zeroth order outer
expansion ϕ0(t) for t ≥ 0, which we consider as

ϕ0(t) := (ϕS 1(t), ϕS 2(t), ϕF1(t), ϕF2(t)).
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By assumption, the initial distribution π0 has support contained in IS 1 . We next go through the roles
of the states in IS 1 ,IS 2 ,IF1 ,IF2 .

States in IF1 are transient in Q̃ by Assumption 2 and Lemma B.8, and Q̃|IF1×IF1
is non-singular (see

Lemma B.5). States in IS 1 ,IS 2 are absorbing in Q̃. States in IF2 can be transient, absorbing or part of
a closed communicating class in Q̃. Correspondingly, ϕ0(t) is zero on IF1 and on the transient part of
IF2 .

Next, we make the following general observation.
Remark B.10. Let (X(t))t≥0 be a CTMC with generator Q on a state space S . Let π0 be a probability
distribution with supp (π) ⊆ Z ⊆ S , where |Z| < ∞. Assume that there are no x ∈ Z, y ∈ S \ Z such that
x→ y. Then, Q|Z×Z is a Q-matrix, and denoting by Xrestr the corresponding CTMC, we have

Pπ0(X(t) ∈ B) = Pπ0(X
restr(t) ∈ B), for B ⊆ S , t ≥ 0.

Then, it is enough to consider the restricted Q-matrix Q|A×A and Xrestr for computations of such proba-
bilities.

Lemma B.11. The CTMC of the generator Q∗ (see (B.3) of § B.1) in our setting has the property of
Remark B.10 with Z := IS 1 = M ∩ N0.

Proof. First, we decompose IF2 into three different parts F2,t, F2,w and F2,a according to whether a state
is transient, part of a (non-trivial) irreducible component or absorbing in Q̃. Then, writing

A = IS 1 ∪ IS 2 ∪ F2,a, T = IF1 ∪ F2,t, W = F2,w, (B.6)

corresponds to the situation of § B.1.
Let S ′ be the reduced state space of Q∗ (cf., § B.1). Clearly A ⊆ S ′, as these are the absorbing

states in Q̃, and at least the transient states have been eliminated from S ′. Hence IS 1 ⊆ S ′. We next
focus on Q∗|IS 1×S ′ , which contains the possible outgoing transitions from IS 1 . It is enough to show that
Q∗|IS 1×S ′\IS 1

has only zero entries. For this, it suffices to consider the matrices in the middle of (B.3),
which we recall here, ( ( Q̂AA Q̂AW

Q̂WA Q̂WW

)
+

(
Q̂AT

Q̂WT

)
Q̃−1

TT

(
Q̃T A Q̃TW

) )
. (B.7)

We next check the right summand of (B.7), which we denote

R =

(
Q̂AT

Q̂WT

)
Q̃−1

TT

(
Q̃T A Q̃TW

)
=

(
Q̂AT Q̃−1

TT Q̃T A Q̂AT Q̃−1
TT Q̃TW

Q̂WT Q̃−1
TT Q̃T A Q̂WT Q̃−1

TT Q̃TW

)
.

Then, consider the restriction to R|IS 1×S ′ . Keeping the decomposition of A,T,W in (B.6) in mind, the
following hold for the involved matrices Q̂AT , Q̃−1

TT , Q̃T A, Q̃TW by Lemma B.9:

Q̃−1
TT =

(
Q̃F1F1 0
∗ ∗

)−1

=

(
Q̃−1

F1F1
0

∗ ∗

)
, Q̃TW =

(
Q̃F1F2,w

Q̃F2,tF2,w

)
=

(
0
∗

)
,

Q̂AT =


Q̂S 1F1 0
∗ ∗

∗ ∗

 , Q̃T A =

(
Q̃F1S 1 0 0
∗ ∗ ∗

)
,
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and we get that

R|S 1×S \T =
(
RS 1S 1 RS 1S 2 RS 1F2,a RS 1S 2,w

)(
Q̂S 1F1 Q̃−1

F1F1
Q̃F1S 1 0 0 0

)
(B.8)

Hence, the property holds for R, that is, the right hand side of (B.7) has the required property.
Next we look at the left hand side of (B.7), and again restrict to IS 1 × S \ T . By Lemma B.9, the

slow part has only non-zero transitions to IS 1 or IF1 , hence also this matrix has the required property.
As this holds for both summands of (B.7), we have shown that the property holds for Q∗. �

Finally, noting the form of equation (B.5) and equation (B.8) we see that only the slow and fast
parts outgoing from IF1 and IS 1 contribute to Q∗|IS 1×IS 1

. Then we can compute Q∗ for the state space
IF1 ∪ IS 1 (i.e. with restricted Qε , Q̃, Q̂) or for the state space IS 1 ∪ IS 2 ∪ IF1 ∪ IF2 . However, in both
cases the expression we get for Q∗|IS 1×IS 1

is the same, hence the following holds.

Lemma B.12. If the initial distribution has support on IS 1 , for the computation of ϕ0(t), it is enough
to restrict the state space of Qε to IF1 ∪ IS 1 .

We treat the restriction of the state space to IF1 ∪IS 1 in the following. Restricting to IF1 ∪IS 1 , we
have

Q̃ =

(
Q̃S 1S 1 Q̃S 1F1

Q̃F1S 1 Q̃F1F1

)
=

(
0 0

Q̃F1S 1 Q̃F1F1

)
, Q̂ =

(
Q̂S 1S 1 Q̂S 1F1

Q̂F1S 1 Q̂F1F1

)
.

where the states IS 1 are absorbing in Q̃, and the states of IF1 are transient states. Note that this setting
corresponds to the situation of § B.1 where we removed the irreducible part (that is, IW in the notation
of § B.1), IF1 corresponds to T and IS 1 corresponds to A of § B.1.

The scaled CTMC converges to the zeroth order outer expansion ϕ0(t) for t > 0, giving ϕ0(t) :=
(ϕS 1(t), ϕF1(t)) = (ϕS 1(t), 0F1) which satisfies the ODE from § B.1 with ϕ̇S 1(t) = ϕS 1(t)(Q̂S 1S 1 + Q̂S 1F1(Q̃F1F1)

−1Q̃F1S 1),

ϕS 1(0) = pS 1 + pF1(Q̃F1F1)
−1Q̃F1S 1 = Pr(π0),

(B.9)

with initial distribution π0 = (pS 1 , pF1). As the initial distribution has support on IS 1 , we get the
following from Proposition B.3, where again Xε(t) is the CTMC associated to Qε while X0(t) is the
CTMC from C (corresponding to Q∗ from § B.1).

Lemma B.13. Let π0 be a probability distribution with support on IS 1 , and B ⊆ IS 1 . Then the
following holds for all T > 0:

sup
t∈[0,T ]

|Pπ0(Xε(t) ∈ B) − PPr(π0)(X0(t) ∈ B)| = O(ε) for ε → 0.

Finally, observing the form of the matrix Q̂S 1S 1 + Q̂S 1F1(Q̃F1F1)
−1Q̃F1S 1 in (B.9), we can view it as

the watched Markov chain of § B.2, where it is watched when in IS 1 with Q-matrix

Q =

(
Q̂S 1S 1 Q̂S 1F1

Q̃F1S 1 Q̃F1F1

)
.
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By the interpretation of the censored Markov chain available from Remark B.6, the part
Q̂S 1F1(Q̃F1F1)

−1Q̃F1S 1 corresponds to transition intensities given by the rates entering a state in IF1

from IS 1 times the exit probabilities to IS 1 . As Q̃F1S 1 , Q̃F1F1 have the transition intensities from the
reactions F and Q̂S 1F1 from R\F , this corresponds exactly to the transition rates of the defined reduced
RN of § 3.2. Hence Theorem 4.1 follows.

C. Proof of Theorem 4.1 for non-homogeneous SRNs

The proof follows the same steps as the proof of Theorem 4.1, hence it is enough to check that
Assumptions 2 and 3 together with F being proper are sufficient for the assumptions made in [22] to
hold. Recall that since the λy→y′(t, ·) satisfy Assumption 1 for each t ∈ [0,T ], the state space decompo-
sition of the ordinary Markov process for an RN and Qt for t fix agree. Hence, by Assumption 2 and
Lemma B.8, any x ∈ E with one molecule of a non-interacting species is transient in Q̂t. Furthermore
by Assumption 3, Q̃t, Q̂t are once continuous differentiable with Lipschitz derivative ( [22, Assumption
A4.4(respectively, A4.5)]). With these observations we can conclude.
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