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Abstract: With the rapid development of online social networks, text-communication has become an 
indispensable part of daily life. Mining the emotion hidden behind the conversation-text is of prime 
significance and application value when it comes to the government public-opinion supervision, 
enterprise decision-making, etc. Therefore, in this paper, we propose a text emotion prediction model 
in a multi-participant text-conversation scenario, which aims to effectively predict the emotion of the 
text to be posted by target speaker in the future. Specifically, first, an affective space mapping is 
constructed, which represents the original conversation-text as an n-dimensional affective vector so as 
to obtain the text representation on different emotion categories. Second, a similar scene search 
mechanism is adopted to seek several sub-sequences which contain similar tendency on emotion shift 
to that of the current conversation scene. Finally, the text emotion prediction model is constructed in a 
two-layer encoder-decoder structure with the emotion fusion and hybrid attention mechanism 
introduced at the encoder and decoder side respectively. According to the experimental results, our 
proposed model can achieve an overall best performance on emotion prediction due to the auxiliary 
features extracted from similar scenes and the adoption of emotion fusion as well as the hybrid attention 
mechanism. At the same time, the prediction efficiency can still be controlled at an acceptable level. 
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1. Introduction  

With the rapid development of Internet, communicating with others on the social network or 
making comments on the given object by text has already become an indispensable part of our daily 
life. As shown in Figure 1, multiple-participants can talk with each other by text. In such the scenario, 
conversation text can implicitly reflect the subjective sentiment or emotion of the publisher. Therefore, 
if the sentiment or emotion hidden behind the conversation text published by the target speaker could 
be predicted in advance, it would bring about more benefit to the supervision on public opinion or the 
adjustment on marketing strategy. 

 

Figure 1. The demonstration of text-conversation in a multi-participant scenario (Note: 
Doug Roberts is the target speaker). 

However, in order to effectively realize the text emotion prediction in a multi-participant 
conversation scenario as shown in Figure 1, several challenges should be overcome. First, different 
from common numeric features, the emotion of the given conversation text is hard to be extracted 
directly. Therefore, an affective space should be established to particularly represent the emotion on 
the given conversation text. Second, as shown in Figure 1, the available conversation text is relatively 
short, which means a single piece of text could only reflect the limited portion of the conversation 
context, let alone the tendency on emotion shift within a given period of time. In other words, it is 
difficult to predict text emotion with high accuracy, only depending on a single piece of conversation 
text and more auxiliary features should be introduced. Third, in a multi-participant conversation 
scenario, there exists interaction on emotions among different participants. Therefore, in order to 
improve the prediction accuracy, it is necessary to introduce additional mechanism to process the 
emotion interaction among participants to provide more critical features to enhance the text emotion 
prediction performance in terms of the target speaker. 

In order to overcome above challenges, in this paper, we propose a text emotion prediction model 
oriented to the multi-participant text conversation scenario, denoted as TEP2MP, with the support of 
emotion fusion and hybrid attention mechanism. Specifically, the proposed model TEP2MP first 
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conducts an “Affective Space Mapping”, which particularly extracts emotion features from the given 
conversation text collection. In this way, all the conversation texts can be converted into n-dimensional 
affective vectors, where each dimension of the affective vector represents the preference to one emotion 
category. Based on the affective vector output by the “Affective Space Mapping”, the proposed model 
TEP2MP assembles all the affective vectors into multiple data-units, according to the order in which 
the conversation text has been published. Here, each data-unit contains the affective vectors of the 
corresponding conversation texts, in the form of <1 Target Speaker, m Other Participants>. In other 
words, one data-unit is a combination of one n-dimensional affective vector corresponding to the text 
published by the target speaker and m n-dimensional affective vectors of the texts published by all the 
other participants. In this way, as shown in Figure 1, the original conversation text collection can be 
converted into a time-series particularly on affective vectors and each element in such the time-series 
is a basic data-unit formed as <1 Target Speaker, m Other Participants>. 

Moreover, due to the fact that in the given time-series, there may exist multiple sub-sequences 
which present the similar tendency on the shift of emotion category occurring at different intervals [1], 
therefore the proposed model TEP2MP takes two adjacent data-units in above time-series as the current 
scene, in the form of [<1 Target Speaker, m Other Participants>t; <1 Target Speaker, m Other 
Participants>t+1]. Obviously, the current scene is a sub-sequence consisting of several n-dimensional 
affective vectors. Then, according to the current scene, multiple similar scenes will be sought across 
the entire conversation history, or the whole time-series, by different time-spans such as day, week and 
month. Here, a similar scene is the sub-sequence having similar change on emotion category compared 
with that of the current scene. In addition, the similar scenes will be considered as auxiliary features 
used to support following text-emotion prediction for target speaker. Finally, the input conversation 
text collection, or the time-series consisting of n-dimensional affective vectors, will be aligned up to 
the similar scenes, both of which will be fed into a two-layer encoder-decoder prediction model 
constructed by Long Short Term Memory (LSTM) [2]. As a result, the emotion of the conversation 
text to be published by target speaker in the future can be predicted in a window-rolling manner, even 
if the specific content of such the conversation text is still unknown. 

More importantly, in terms of the prediction model constructed as the two-layer encoder-decoder, 
emotion fusion mechanism is introduced at the encoder side to merge the n-dimensional affective 
vector of the conversation text published by target speaker and those belonging to other participants, 
both of which are stored in the same data-unit (i.e., <1 Target Speaker, m Other Participants>t). The 
result of emotion fusion will be forced to be “close” to the n-dimensional affective vector of the 
conversation text published by the target speaker in next data-unit. In this way, our proposed prediction 
model can capture the emotion interaction among participants at the encoder side as early as possible. 
Moreover, at the decoder side, a hybrid attention mechanism is adopted to compute two context vectors 
derived from the input conversation text collection and the similar scenes. Such two context vectors 
will be merged by a “gate switcher” before fed into decoder, aiming at obtaining critical features on 
both the current scene (i.e., derived from the input conversation text) and similar scene to improve the 
final performance on text emotion prediction with regard to the target speaker. 

In conclusion, the contribution of this paper is that a text emotion prediction model oriented to 
multi-participant text-conversation scenario has been proposed with the support of emotion fusion and 
hybrid attention mechanism. The proposed model aims at effectively predicting the emotion of the 
conversation text to be published by the target speaker in the future, even if the specific content of the 
corresponding conversation text is still unknown. To achieve above goal, first, “Affective Space 
Mapping” has been constructed to represent each conversation text as an n-dimensional affective vector 
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on particular emotion categories. Second, scenes with similar tendency on emotion category shift have 
been sought across the entire conversation history to provide auxiliary features for the following 
prediction on text emotion. Third, in terms of the emotion interaction among different participants, an 
emotion fusion mechanism is adopted at the encoder side to merge the affective vectors corresponding 
to the conversation texts posted by different participants, and a hybrid attention mechanism is adopted 
at the decoder side to obtain global observation on the current scene and similar scene across the entire 
conversation history. 

2. Related works 

In recent years, text sentiment (emotion) analysis has attracted attention from more and more 
researchers [3]. Particularly, the general process of text sentiment (emotion) analysis can be described 
as: given a collection of texts, the sentiment or emotion category of each text should be recognized 
correctly by a classifier, based on the proper text representation. Such the process can also be 
considered as text sentiment (or emotion) prediction [4]. In addition, the text representation means the 
feature vector of corresponding text which can be obtained by word embedding algorithms (i.e., Skip-
Gram [5]) or other neural components like Auto-Encoder [6]. Moreover, the semantics or syntactics of 
given text should also be incorporated into the corresponding representation. 

More importantly, the term “emotion” refers to the intensive and instant feelings such as 
happiness, anger, sadness, fear and surprise, etc. [7]. However, the term “sentiment” often means a 
feeling or an opinion, especially based on emotions. Typically, in terms of the text sentiment analysis, 
the existing models or algorithms often classify the sentiment of corresponding texts as positive, 
neutral or negative [8]. Cambria E et al. [9] have constructed a commonsense knowledge base 
“SenticNet 6” for sentiment analysis, in which each term has been assigned with a polarity value in 
the range of [-1, 1] with the help of logical reasoning by deep learning architectures. It is worthwhile 
to be mentioned that, since the sentiment is derived from emotion and it is also feasible to categorize 
the specific emotion as “positive” or “negative”, therefore in this paper, we consider the term 
“sentiment” and “emotion” as mutually equivalent. 

Specifically, Basiri M E et al. [10] have extracted features from text segments and constructed a 
deep bi-directional network with attention mechanism to conduct sentiment prediction. Gong C et al. [11] 
have adopted BERT, a pre-trained language model to embed words into vectors, based on which the 
semantical dependency between terms can be analyzed. Similarly, Peng H et al. [12] have projected 
word representation into a sentiment category space and a mapping function like “word 
representation→sentiment category” has been learned. In addition, in order to improve the 
effectiveness to capture critical features from the given text, Yang C et al. [13] and Cai H et al. [14] 
have adopted Co-Attention Network and Graph Convolutional Network to build the projection from 
word embedding to text sentiment category. In terms of the text context, Phan M H et al. [15] have 
considered the document being processed as the local context and the given corpora as the global 
context. Then, a pre-trained BERT language model is adopted to encode the local and the global 
context into vectors, followed by the fusion of above two context vectors via self-attention mechanism, 
based on which the sentiment of the given text will be determined.  

Recently, sentiment or emotion analysis in dialog systems has attracted more and more attention. 
Typically, Ma et al. [16] have concentrated on the literature of empathetic dialogue system whose goal 
is to generate response in a text-conversation scenario with proper sentiment, more adapted to the 
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interaction during conversation. In such the survey, emotion-awareness, personality-awareness and 
knowledge-accessibility have been considered as three critical factors to enhance the perception and 
expression of emotional states. Moreover, Poria S. et al. [17] have also pointed out that the sentiment 
reasoning aiming at digging into the detail that causes sentiment is of prime importance with regard to 
sentiment perception in dialog systems, whose main purpose is to analyze the motivation behind 
sentiment shift via conversation. In order to improve the performance on sentiment analysis in dialog 
systems, Li W et al. [18] have proposed a bidirectional emotional recurrent unit (BiERU) whose main 
innovation is the generalized recurrent tensor block followed by two-channel classifier designed to 
perform context compositionality and sentiment classification simultaneously. In this way, the bi-
directional emotional recurrent unit presents to be fast, compact and parameter-efficient in terms of 
conversational sentiment analysis. Similarly, Lian Z et al. [19] have improved the transformer network, 
making it more adapted to the conversational emotion recognition, where the conversation texts are 
embedded into vectors and the bi-directional recurrent units are utilized to revise above representations 
with the help of multi-head attention mechanism. In this way, an emotion classification model on 
conversation text can be constructed to determine the specific emotion of each conversation text. In 
addition, Zhang Y et al. [20] have utilized the LSTM network, a variant of recurrent-unit-based model, 
to capture the interaction during communication so as to realize more precisely conversational 
sentiment analysis. Finally, Wang J. [21] have introduced the topic-aware mechanism into the 
conversational sentiment analysis, where the sentiment or emotion of each conversation text is 
determined based on the text representation, meanwhile the topic of current conversation context 
should also be recognized correctly. 

Moreover, in a daily communication scenario, texts are published in sequence. Therefore, the 
principle of time-series prediction has offered an inspiration to the task of emotion-prediction in a 
multi-participant text-communication scenario. Typically, representative time-series prediction 
models are listed as follows. First, a time-series prediction model Attn-CNN-LSTM [22] based on 
hybrid neural networks and attention mechanism has been proposed, which conducts “phase 
reconstruction” on given time-series. In terms of the prediction, spatial features are extracted first, 
followed by the extraction of temporal features via LSTM network. Then, the periodic tendency on 
sub-sequence is also mined out, working together with above temporal-spatial features extracted 
from the entire time-series so as to enhance the prediction performance. Similarly, an attention-
mechanism based two-phase bi-directional neural network DSTP-RNN [23] conducts time-series 
prediction by temporal-spatial features as well. Such the temporal-spatial features are extracted from 
the target sequence and the corresponding exogenous sequence across different periods. Besides, the 
time-series prediction model DeepAR [24] constructed by auto-regressive recurrent neural network 
splits the input sequence into main sequence Z, which contains unknown data point to be predicted. 
And, the remaining co-variate sequence X without any unknown data point is taken to assist the 
prediction of Z. Such two sequences are aligned up by time step, formed as (z, x), and merged by 
Recurrent Neural Network to fit a proper distribution, based on which the unknown data point in main 
sequence Z will be predicted. In addition, the Clockwork-RNN network [25] has also been adopted for 
time-series prediction [26]. Specifically, temporal features of given time-series are extracted by 
Clockwork-RNN. Then, dependencies among data points are learned by traditional feed-forward 
neural network with proper distribution fit by Vector Autoregression, based on which a time-series 
prediction model has been constructed according to the principle of Stacking ensemble learning [27]. 
Such the prediction model is required to be fine-tuned by a large amount of high quality data points so 
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as to obtain stable prediction performance. Finally, a time-series prediction method based on fuzzy 
cognitive map, denoted as EMD-HFCM [28] has been proposed which extracts features from the input 
sequence by empirical mode decomposition. The extracted features are used to construct high-order 
fuzzy cognitive map iteratively used for prediction. Similarly, the prediction model CNN-FCM [29] 
adopts residual block to extract features from time-series, and the prediction process is completed by 
Fully Connected Neural Network, as a substitute of the fuzzy cognitive map.  

In conclusion, it can be found that existing methods still have two disadvantages with regard to 
the text emotion prediction problem in a multi-participant conversation scenario. First, most text 
sentiment (emotion) prediction models need to ascertain the text content in advance, then the category 
on text sentiment or emotion can be determined by classification. Such requirement has limitation on 
real-world application, where the content of the text to be published in the future often presents to be 
unknown. Second, the existing time-series prediction model has insufficient consideration on the 
similar sub-sequence of the given time-series, resulting in the requirement on a large amount of training 
instances to provide more critical features [24]. In other words, sub-sequence with similar tendency 
in the given time-series should be analyzed further to provide more auxiliary features available for 
final prediction. 

Consequently, in this paper, we convert the text emotion prediction in a multi-participant 
conversation scenario into the task of time-series prediction. However, current time-series model 
conducts prediction mainly by analyzing the tendency on target variable, not involved with the 
processing on sentiment or emotion interaction among different participants. In other words, existing 
time-series prediction models can not be applied directly. Therefore, effort should be devoted to 
construct more advanced time-series-based text emotion prediction model, making it more adapted to 
the multi-participant text conversation scenario. 

3.  The proposed method 

3.1. Text affective space mapping 

In this paper, we focus on the text-emotion prediction task in a multi-participant conversation 
scenario, whose ultimate goal is to correctly categorize the emotion or sentiment of the conversation-
text to be posted in the future. Consequently, the conversation text should be first represented or 
embedded into vectors so as to be analyzed further [3,4]. However, different from the existing 
embedding algorithms [5,6], whose principle is to “shorten” the vector distance for terms semantically 
related or similar, features on emotion or sentiment should also be incorporated into text representation 
in order to enhance the emotion prediction performance. Therefore, we first turn to “Affective Space 
Mapping”, aiming at obtaining text representation containing details on corresponding emotion or 
sentiment categories. 

It is obvious that, by the time at which the text has been published, the original conversation text 
collection can be converted into a sequence, like D = {d1, d2, ..., di|0 < i + 1 < T}. Here di represents a 
single text published by one participant in the conversation. And, the process of Affective Space 
Mapping on text has been illustrated in Figure 2.  
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Figure 2. The process of Affective Space Mapping. 

First, the sentiment or emotion of the original conversation text sequence D = {d1, d2, ..., di|0 < i 
+ 1 < T} will be annotated like [Target_Flag, Emotion_Index]. Here, Target_Flag (0/1) means if the 
current text is published by the target speaker (i.e., 1 for target speaker) and the Emotion_Index means 
the specific sentiment or emotion category annotated for each conversation text. Based on the text 
sentiment or emotion annotation, the original conversation text sequence D = {d1, d2, ..., di|0 < i + 1 < 
T} can be converted into an Emotion Category Sequence, in which each element is the Emotion_Index 
or the specific emotion category of the corresponding conversation text. 

Second, as shown in Algorithm 1, the global Emotion Interaction Pattern (EIP) [30] of the original 
conversation text sequence D will be computed based on above Emotion Category Sequence. Here, 
the global EIP is used to depict the distribution on n emotion categories in terms of the entire original 
conversation text sequence D = {d1, d2, ..., di|0 < i + 1 < T}. 

In Algorithm 1, at step 1, a global emotion interaction dictionary dict is initialized by n emotion 
categories (e1, e2, ..., en). In terms of such the dict, each emotion category e has its own n-dimensional 
list, initialized as [0, 0, ...0]∈Rn, which represents the co-occurrence frequency with other emotion 
categories when encountering an emotion category e in the original conversation text sequence D. In 
this way, the interaction among different emotion categories can be incorporated in one EIP dictionary. 
At Step 2, a time-window with size 2, stride 1 has been created. Such the time-window is used to scan 
the whole Emotion Category Sequence like (Emotion_Indexi, Emotion_Indexj), based on which the ith 
and jth dimension of the n-dimensional list of emotion category ei is updated (i.e., add 1 frequency 
count) to revise the global EIP dictionary dict. Finally, at Step 3, when the above time-window has 
moved to end of Emotion Category Sequence, “softmax” operation is conducted towards all the n-
dimension list in the global EIP dictionary to obtain the final normalized EIP matrix, which can be 
considered as the emotion distribution on n emotion categories in terms of the given conversation text 
sequence D. Specifically, when selected four emotions such as “happy”, “sad”, “angry” and “other”, 

①Conduct emotion category annotation 

and publisher annotation on the original 

conversation text sequence D. 

②Compute the global emotion 
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the global EIP output by Algorithm 1 is shown in Figure 3 and the index of the maximum value in each 
line of EIP represents the corresponding emotion category. 

Algorithm 1. The process to compute the global Emotion Interaction Pattern. 

Input: The Emotion Category Sequence corresponding to the original conversation text sequence D 

Output: The global EIP of the original conversation text sequence D 

1. Select n emotion categories (e1, e2, ..., en) and initialize the global EIP dictionary as follows: 

dict = {e1:[0, 0, ..., 0], e2:[0, 0, ..., 0], ..., en:[0, 0, ..., 0]}; 

2. Create a time-window with size=2, stride=1 to scan the entire Emotion Category Sequence. Revise the global EIP 

dictionary according to the pair of emotion category (i.e., e1, e2) in the current time-window, as: 

① (Emotion_Index1, Emotion_Index2) → dict = {e1: [1, 1, ..., 0], e2: [0, 0, ..., 0], ..., en: [0, 0, ..., 0]}; 

② (Emotion_Index2, Emotion_Indexn) → dict = {e1: [1, 1, ..., 0], e2: [0, 1, ..., 1], ..., en: [0, 0, ..., 0]}; 

③ (Emotion_Indexn, Emotion_Index2) → dict = {e1: [1, 1, ..., 0], e2: [0, 1, ..., 1], ..., en: [0, 1, ..., 1]}; 

④ (Emotion_Index2, Emotion_Index1) → dict = {e1: [1, 1, ..., 0], e2: [1, 2, ..., 1], ..., en: [0, 1, ..., 1]}; 

............................. 

3. Repeat Step 2, scanning to the end of Emotion Category Sequence by moving above time window with stride = 1, 

revising the global EIP dictionary according to the pair of emotion category (i.e., e1, e2) in the current time-window 

iteratively; 

4. Normalize the global EIP dictionary by “softmax”, which is output as the final global EIP of the original conversation 

text sequence D; 

 

Figure 3. The example of global EIP. 

Third, in terms of the Affective Space Mapping as shown in Figure 2, the original conversation 
text in sequence D will be tokenized into words, which are then embedded into vectors by Skip-gram [5] 
iteratively. Fourth, based on above word vectors, the original conversation text sequence D will be fed 
into Bi-LSTM [18] to be represented as a sequence of word vectors. Here, the adopted Bi-LSTM works 
as an n emotion category classifier. Then, the trained Bi-LSTM will be reused to compute the emotion 
distribution on n emotion categories (with softmax normalization) for each conversation text in D. In 
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this way, the normalized n-dimension emotion distribution, or affective vector, for each conversation 
text can be obtained. Fifth, for every conversation text in sequence D, the index of the maximum value 
of the n-dimensional affective vector will be checked, ensuring the consistency to the Emotion_Indexi 
annotated at the beginning. If a conflict occurred, then according to the Emotion_Indexi annotated 
before, the corresponding n-dimensional list in EIP as shown in Figure 3 will be extracted, working as 
a substitution of the n-dimensional affective vector of the current conversation text. Finally, the original 
text conversation sequence D can be represented as a sequence of n-dimensional affective vectors, 
denoted as D’ = {E1, E2, ..., Ei, Ei = (e1, e2, ..., en)∈Rn|0 < i + 1 < T, en∈R}, where each Ei = (e1, e2, ..., 
en)∈Rn is an n-dimensional affective vector. 

More importantly, at the final step of Affective Space Mapping as shown in Figure 2, according 
to the Target_Flag (0/1) annotated at the beginning, all the n-dimensional affective vectors 
corresponding to the conversation texts published by the target speaker (Target_Flag = 1) will be 
extracted from D’ = {E1, E2, ..., Ei, Ei = (e1, e2, ..., en)∈Rn |0 < i + 1 < T, en∈R}, denoted as D’target = 
{Etarget_1, Etarget_2,...,Etarget_i|0 < i + 1 < T, Etarget_i∈Rn}. Here, Etarget_i refers to an n-dimensional affective 
vector of the conversation text published by the target speaker at time step i. Moreover, in terms of the 
adjacent time step i and i + 1, all the texts published by other participants between time step i and i + 1 
will be collected and the corresponding n-dimensional affective vector collection between time step i 
and i + 1 is denoted as Eothers_i_i+1. As a result, the n-dimensional affective vector corresponding to the 
conversation text published by target speaker at time step i (i.e., Etarget_i), along with a set of n-
dimensional affective vectors derived from the conversation texts published by all the other participants 
between time step i and i + 1 will be assembled into a basic data-unit altogether, denoted as xi = {Etarget_i, 
Eothers_i_i+1}. 

After Affective Space Mapping illustrated in Figure 2, the original conversation text sequence D 
will be converted into a time-series X = {x1, x2, ..., xi|0 < i + 1 < T}, consisting of multiple n-dimensional 
affective vectors. Each element in time-series X is xi = {Etarget_i, Eothers_i_i+1}, which is a basic data-unit 
containing n-dimensional affective vectors corresponding to the target and other participants between 
the adjacent time step i and i + 1. 

3.2. Similar scene search and attention sequence extraction 

As mentioned above, after Affective Space Mapping, the original conversation text sequence D 
can be represented as a time-series X = {x1, x2, ..., xi|0 < i + 1 < T}, consisting of multiple n-dimensional 
affective vectors. Particularly, every element in the input series X is a basic data-unit, or a sub-sequence, 
like xi = {Etarget_i, Eothers_i_i+1}, which contains one n-dimensional affective vector of the conversation 
text published by the target speaker at time step i and a set of n-dimensional affective vectors of texts 
published by all the other participants between time step i and i + 1.  

Generally, most time series may have pseudo-periodicity, which means several sub-sequences 
may present similar tendency on the change of values, occurring at regular or irregular intervals [31]. 
Such the similar sub-sequence brought about by the pseudo-periodicity can provide extra features for 
the prediction of the given time-series [32]. Consequently, inspired by such principle, when it comes 
to the time-series X = {x1, x2, ..., xi|0 < i + 1 < T} derived from the multi-participant text-conversation 
scenario, although the shift among different sentiment or emotion categories may not present to be 
periodical, yet there may exist several sub-sequences containing similar tendency on the emotion 
category shift to that of the given sub-sequence xi = {Etarget_i, Eothers_i_i+1}. For instance, the emotion of 
the target speaker could shift from “sad” to “angry” at different time steps across the entire 
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conversation history. Therefore, sub-sequences with similar tendency on emotion category shift should 
be collected for the given sub-sequence xi = {Etarget_i, Eothers_i_i+1} for further processing, so that more 
auxiliary features can be collected for analyzing the sub-sequence xi = {Etarget_i, Eothers_i_i+1}. 

Based on above inspiration, as shown in Figure 4, when given the input time-series X = {x1, x2, ..., 
xi|0 < i + 1 < T}, where xi = {Etarget_i, Eothers_i_i+1}, an input sequence },,...,,{

21
TpxxxX tpppP t



spanning pt time steps will be selected from X. Here, each element in Xp can be represented as
},{ 1__  ttotherstarget_tp EEx

t
. Then, a target sequence },,...,,{

21
TpyyyY tpppP t

 , or the ground truth 

to be predicted later, will also be selected from X. It should be noted that the start point of the target 
sequence Yp is the time step of

2px in Xp and the target sequence Yp spans pt time steps as well. In other 

words, for },{ 2_1_1  ttotherstarget_tp EEy
t

, 
21 pp xy  , 

32 pp xy  , ..., 
1


tt pp xy , the target sequence Yp 

is actually obtained by shifting the input sequence Xp one time step forward, in the direction to t+1. 
Finally, as shown in Figure 4, the current scene (or a sub-sequence) can be constructed as the 
combination of one element in Xp and another element in Yp, denoted as },{

ttt ppp yxs  . 

 

Figure 4. The construction of current scene from the given sentimental time-series X. 

In this way, when given the input sequence },,...,,{
21

TpxxxX tpppP t
  and a target sequence 

},,...,,{
21

TpyyyY tpppP t
 , t current scenes (or sub-sequences) in all will be extracted from the entire 

time-series X = {x1, x2, ..., xi|0 < i + 1 < T}, where xi = {Etarget_i, Eothers_i_i+1}. Here, 
},{ 1__  ttotherstarget_tp EEx

t
, },{ 2_1_1  ttotherstarget_tp EEy

t
.  

Moreover, in terms of the input time-series X = {x1, x2, ..., xi | 0 < i + 1 < T} where xi = {Etarget_i, 
Eothers_i_i+1}, as shown in Figure 5, a period-offset searching method is adopted to extract multiple 
similar scenes (or several sub-sequences) from the input time-series X by different periods (i.e., day, 
week or month), according to the given current scene (sub-sequence) },{

ttt ppp yxs   . Here, the 

extracted similar scenes must have the similar change on emotion categories compared to that of the 
current scene },{

ttt ppp yxs   . More specifically, when given a current scene },{
ttt ppp yxs   , 

}{ 1__,_arg  ttotherstettp EEx
t

 and },{ 2_1_1  ttotherstarget_tp EEy
t

 , K similar scenes (sub-sequences), 

denoted as },{ ''

jj mmm yxs  ,  j∈[1,K], will be extracted from the input time-series X = {x1, x2, ..., xi 
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|0 < i + 1 < T}, xi = {Etarget_i, Eothers_i_i+1}, satisfying the requirement that },{ 1
'

 others_j_jtarget_jm EEx
j

, 

},{ 211
'

 _jothers_jtarget_jm EEy
j

, and 
tj pm xx ' .     . 

 

Figure 5. The searching of similar scenes according to the given current scene.  

More explicitly, as illustrated in Figure 5, when given a current scene },{
ttt ppp yxs  , the adopted 

period-offset searching method will find a pivot element at first, which is a similar sub-sequence 
nearest to the current scene },{

ttt ppp yxs 
 

across the input time-series X. For instance, in Figure 5, a 

pivot element is first found by week. Then, starting from the pivot element, a searching scope with 
size L/8 will be expanded from left and right respectively, in which an element '

jmx most similar to 

tpx  in },{
ttt ppp yxs   will be determined and the next element '

jmy
  

is taken to construct a similar 

scene (sub-sequence) like },{ ''

jj mmm yxs  . Such the similar scene will be stored in a pool of candidate 

similar scene with capacity K. Repeating above searching process, traversing the entire time-series X 
by different time periods (i.e., day, week and month) until the amount of the candidate similar scenes 
has achieved the threshold K, in this way, K similar scenes (sub-sequences) corresponding to the 
current scene (sub-sequence) },{

ttt ppp yxs   will be obtained by different periods, denoted as 

},{ ''

jj mmm yxs  , j∈[1, K]. In conclusion, for each current scene (sub-sequence) },{
ttt ppp yxs  , where 

}{ 1__,_arg  ttotherstettp EEx
t  

and },{ 2_1_1  ttotherstarget_tp EEy
t

, a set of K similar scenes (sub-sequences) 

},{ ''

jj mmm yxs  , j∈[1, K] will be extracted from the input time-series X by the period-offset searching 

method as shown in Figure 5. Here, },{ 1
'

 others_j_jtarget_jm EEx
j

 , },{ 211
'

 _jothers_jtarget_jm EEy
j

 , and 

tj pm xx ' . 

In addition, when given a current scene },{
ttt ppp yxs 

 
, along with a set of K similar scenes, 

where },{ ''

jj mmm yxs  , j∈[1, K] , an attention vector of the current scene },{
ttt ppp yxs  towards K 

similar scenes will be computed via the element 
tpy in the current scene },{

ttt ppp yxs  and all the 

elements '

jmy , j∈[1, K], in the corresponding K similar scenes, denoted as tppp ayxs
ttt
 },{ in Eq (1). 

Therefore, the attention vector at represents the observation from the element 
tpy
 

in current scene 

},{
ttt ppp yxs 

 
towards all the corresponding elements '

jmy , j∈[1, K] in similar scenes. 
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In this way, as shown in Figure 4, when given an input sequence },,...,,{
21

TpxxxX tpppp t


 
selected from X and the corresponding target sequence },,...,,{

21
TpyyyY tpppp t

  which is the 

ground truth of prediction, t current scenes (i.e., },{
ttt ppp yxs  ) will be created immediately. For each 

current scene, the period-offset searching method as shown in Figure 5 will be adopted to extract K 

similar scenes (i.e., },{ ''

jj mmm yxs   , j∈ [1, K] ) from the input time-series X, followed by the 

observation from 
tpy to '

jmy , j∈[1, K], so as to obtain the attention vector at of the current scene 

},{
ttt ppp yxs 

  
derived from K similar scenes as defined in Eq (1). Furthermore, for the t current 

scenes, an attention-feature sequence can be obtained, denoted as A= {a1, a2, ..., at, t∈T}. Such the 
attention-feature sequence can be considered as the auxiliary feature of the input sequence 

},,...,,{
21

TpxxxX tpppp t
  to support following emotion prediction. Finally, the attention-feature 

sequence A= {a1, a2, ..., at, t∈T}, the input sequence },,...,,{
21

TpxxxX tpppp t
  along with the 

target sequence },,...,,{
21

TpyyyY tpppp t


 
will be aligned up by time step. 

3.3. Two-layer encoder-decoder with emotion fusion and hybrid attention 

Generally, the proposed model TEP2MP conducts text emotion prediction in a multi-participant 
communication scenario by the two-layer encoder-decoder prediction model as shown in Figure 6. 
First, the prediction model in Figure 6 consists of the encoding and decoding phase. Specifically, the 
prediction model encodes the input sequence },,...,,{

21
TpxxxX tpppp t

 and the attention-feature 

sequence A= {a1, a2, ..., at, t∈T} via two-layer bi-directional LSTM. Here, at the encoding stage, the 
input sequence Xp and the attention-feature sequence A have been aligned up by time step. For decoder, 
on the one hand, the two-layer decoder decodes the input sequence Xp step by step to obtain the hidden 
state y

ts at time step t. On the other hand, the hybrid attention mechanism has also been introduced to 

compute the context vector ot corresponding to the attention-feature sequence A= {a1, a2, ..., at, t∈T} 
and the context vector ct corresponding to the input sequence Xp. Such two context vectors will be 
merged by the gate switcher g to obtain another hidden state derived from the hybrid attention 
mechanism at different time steps, denoted as g(ot, ct)→ a

ts  . Finally, the prediction result 

}
~

,
~

{~
2_1_1_arg  ttotherstettp EEy

t
will be output step by step according to the hidden state y

ts  and a
ts . 

Obviously, the predicted n-dimensional affective vector 1_

~
ttargetE   in the prediction result 

}
~

,
~

{~
2_1_1_arg  ttotherstettp EEy

t
  is corresponding to the conversation text published by the target 

speaker at t+1 time step, which should be close to the element Etarget_t+1 in the sub-sequence 
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},{ 2_1_1_arg  ttotherstettp EEy
t

. Here, 
tpy is an element in the target sequence Yp, or the ground truth 

of the predicted 1_

~
ttargetE . 

 

Figure 6. The structure of the two-layer encoder-decoder prediction model. 

Moreover, in Figure 6, a time-window spanning t time steps will be set before prediction, based 
on which the two-layer encoder-decoder will select the corresponding input sequence 

},,...,,{
21

TpxxxX tpppp t
   and target sequence },,...,,{

21
TpyyyY tpppp t

  (the ground truth of 

prediction) from the given time-series X = {x1, x2, ..., xi|0 < i + 1 < T}, where xi = {Etarget_i, Eothers_i_i+1}. 
Here, 

tpy =
1tpx , },{ 2_1_1_arg  ttotherstettp EEy

t
. In other words, the target sequence Yp is obtained by 

shifting the input sequence Xp one time step forward, along the direction to t+1. And, the n-dimensional 
affective vector Etarget_t+1 in },{ 2_1_1_  ttothersttargetp EEy

t
is corresponding to the emotion of the text to 

be published by the target speaker at time step t + 1. Obviously, the target sequence Yp can be 
considered as the ground truth of the predicted sequence },~,...,~,~{

~
21

TpyyyY tpppp t
  output by the 

tow-layer decoder. Furthermore, as shown at the bottom of Figure 6, when the time-window moves 
forward by the fixed stride, the input sequence Xp will move towards the end of the given time-series 
X. As a result, the emotion of the text to be published by the target speaker from time step t + 2 → t + 
N will be predicted in sequence. 

1_arg11___arg

~
)}),,{((   tett

x
tttotherstettp

x
t EhEExFCLSTMh

t             (2) 

  
t

tetttett EE
t

l
1

2
1_arg1_arg1 )

~
(

1
                           (3) 

In addition, as shown in Figure 6, after selecting the input sequence Xp, the emotion fusion 
mechanism will be incorporated into the first-layer encoder. Here, the first-layer encoder is the LSTM 
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network. And, as defined in Eq (2), the emotion fusion mechanism will merge the n-dimensional 
affective vector Etarget_t and Eothers_t_t+1 in },{ 1___  ttothersttargetp EEx

t
by fully connected layer, after which 

the emotion fusion result will be further processed by LSTM (the second-layer encoder), denoted as 

1_

~
tgettarE  . Here, the emotion fusion result 1_

~
tgettarE  will be forced to approach the n-dimensional 

affective vector Etarget_t+1 (the affective vector of the conversation text to be published by the target 
speaker at next time step t + 1). Finally, the loss l1 defined in Eq (3) will be adopted to measure the 
difference between emotion fusion result and the ground truth of the affective vector input at the next 
time step. In this way, by incorporating the emotion fusion mechanism into the first-layer encoder and 
forcing the emotion fusion result to approach the ground truth of the affective vector corresponding to 
the conversation text published by the target speaker at next time step, the prediction model in Figure 6 
will be guided to learn emotion interaction among the target speaker and all the other participants so 
as to capture the emotion stimulation to the target speaker triggered by the other participants.  

Afterwards, when given the input sequence },,...,,{
21

TpxxxX tpppp t
 , a hidden state sequence 

will be output by the first-layer encoder (i.e., LSTM), denoted as },...,,{ 21
x
t

xxx hhhH  . Similarly, the 

second-layer encoder (i.e., another LSTM) will encode the attention-feature sequence A = {a1, a2, ..., 
at, t∈T}, derived from the similar scene searching process illustrated in Figure 5 so as to obtain the 
corresponding hidden state sequence },...,,{ 21

a
t

aaa hhhH  . 

),,~( 11

xy
tp

y
t HsyLSTMs

t 
                                  (4) 

At the decoding stage, as shown in Figure 6, first, when given the hidden state sequence 
},...,,{ 21

x
t

xxx hhhH  derived from the input sequence Xp, the top-layer decoder (i.e., LSTM) will decode 

the hidden state step by step, denoted as y
ts at time step t as defined in Eq (4). Here, in Eq (4), 

1

~
tpy is 

the prediction result output by the decoder at time step t-1. 



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                            (5) 

Moreover, as shown in Figure 6, a hybrid attention mechanism has been adopted. Specifically, as 
defined in Eq (5), the context vector ot at time step t will be computed based on the attention vector at, 
when given the hidden state sequence },...,,{ 21

a
t

aaa hhhH  derived from the attention-feature sequence 

A={a1, a2, ..., at, t∈T}. Similarly, the context vector ct at time step t will be computed by aggregating 
the hidden state sequence },...,,{ 21

x
t

xxx hhhH  weighted by the attention-weight γ. Such the attention-

weight γ is involved with the hidden state y
ts . In this way, as shown in Figure 6, when decoding at 

time step t, the hidden state a
ts  will be computed by absorbing the context vectors ot and ct via the 

gate switcher g, as defined in Eq (6). And, the emotion prediction result }
~

,
~

{~
2_1_1_  ttothersttargetp EEy

t  
output at time step t will be computed based on the two hidden states y

ts and a
ts .  



2685 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2671-2699. 
















)(~
)1(

)(

y
a
t

a
s

y
t

y
sp

tt
a
t

g
y
t

g
s

a
th

bsWsWy

cgogs

bsWhWg

t




                              (6) 

Finally, as shown in Figure 6, an operation 1_

~
)~(  ttargetp Eyslice

t
 has been defined, where 

}
~

,
~

{~
2_1_1_  ttothersttargetp EEy

t
 . Moreover, similar to Eq (3), the loss l2 is computed to measure the 

difference between the emotion prediction result 1_

~
tgettarE  and the corresponding ground truth 

Etarget_t+1. Consequently, the two-layer encoder-decoder model will be trained by LOSS=λ1l1+λ2l2 to 
enhance the emotion prediction performance. Here, l1 represents the “loss” on emotion fusion (defined 
in Eq (3)), aiming at guiding the two-layer encoder to capture the emotion interaction among multiple 
participants. And, l2 represents the “loss” on emotion prediction of the two-layer decoder, aiming at 
forcing the emotion prediction result decoded at time step t to be “close” to the true n-dimensional 
affective vector corresponding to t + 1 time step. 

4. Experimental results 

In this section, the experimental results on the proposed text emotion prediction model TEP2MP 
will be analyzed. The impact of the time-window size, time-window stride, the searching scope of 
similar scenes, the capacity of the pool to store candidate similar scenes, the hybrid attention and 
emotion fusion mechanism incorporated in the two-layer encoder-decoder prediction model will also 
be discussed. Moreover, the existing time-series models which can be adapted to the text emotion 
prediction problem have also been compared. All the involved experiments are conducted via 5-fold 
cross validation and the average of three times running has been presented. In addition, when it comes 
to the proposed text emotion prediction TEP2MP, a four-layer bidirectional LSTM has been adopted 
to construct the two-layer encoder-decoder prediction model illustrated in Figure 6, and RELU [33] is 
used for neural activation trained by the RMSPropOptimizer [34] with learning rate set as 7 × 10-3. 
The proposed model TEP2MP and the compared methods are all implemented by Python 3.7 and 
Tensorflow 1.15, on GPU, NVIDIA GeForce GTX 1080Ti, 11GB. 

4.1. Dataset and emotion annotation 

In order to reproduce a multi-participant text conversation scenario, four collections of movie 
lines are adopted. In terms of the participants of conversation, we take the main movie character as the 
target speaker and the remaining as other participants. The specific information of the four text 
collections are shown in Table 1. Here, for the following part of this section, “Gump.” is used to 
represent dataset 1, “Shawshank.” for dataset 2, “Scent.” for dataset 3, “Bovary.” for dataset 4 due to 
the limited space. 

In terms of the emotion category, we annotate the emotion of texts contained in above four 
datasets as [Target_Flag (0/1), Emotion_Index (1~6)]. Here, the Emotion_Index (1~6) represents 
“Happy”, “Sad”, “Angry”, “Anxious”, “Surprise” and “Other” respectively. The emotion distribution 
on the involved datasets is shown in Table 2. The annotation processing is completed by five 
researchers with experience in Natural Language Processing and Time-Series Prediction. And, the 
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majority voting mechanism has been adopted to determine the final emotion of each text with the 
agreement from at least three annotators. Based on above annotation, the Affective Space Mapping 
illustrated in Figure 2 has been conducted, in which word embeddings with 256 dimensions have been 
used. In addition, the accuracy of the emotion classifier (i.e., Bi-LSTM) has been maintained by 80% 
and more. The affective vectors classified incorrectly are revised by the global emotion EIP. The 
specific statistics on emotion annotation has been demonstrated in Figure 7. More specifically, Figure 
7(a) represents the annotation distribution on six emotion categories (i.e., Happy, Sad, Angry, Anxious, 
Surprise and Other) in terms of the conversation texts posted by all the participants, while Figure 7(b) 
represents the emotion distribution of the conversation texts particularly posted by the target speaker. 
Correspondingly, Figure 7(c),(d) represent the annotation shift on above six emotion categories with 
regard to Figure 7 (a),(b) respectively. 

Table 1. Experimental datasets for testing TEP2MP. 

No. Movie Name Prediction Target Movie Duration #Total Text #Text of Target Speaker

1 Forrest Gump Forrest Gump 142 min 2054 905 

2 Shawshank Redemption Ellis Boyd Redding 142 min 1729 590 

3 Scent a of Woman Lieutenant Frank 157 min 2226 1165 

4 I Am Not Madame Bovary XueLian Li 138 min 2323 505 

Table 2. Emotion category distribution after annotation of different datasets. 

No. Dataset Statistical Scope Happy (%) Sad (%) Angry (%) Anxious (%) Surprise (%) Other (%)

1 Gump. 

ALL Conversation

Participants 

40.70 17.96 10.81 18.16 1.36 11.00 

2 Shawshank. 42.34 12.78 21.75 12.67 0.29 10.18 

3 Scent. 31.18 12.8 28.26 18.28 1.08 8.40 

4 Bovary. 13.78 6.03 43.65 ------- ------- 36.55 

No. Dataset Statistical Scope Happy (%) Sad (%) Angry (%) Anxious (%) Surprise (%) Other (%)

1 Gump. 

Only Target Speaker 

47.29 22.54 0.88 17.35 0.55 11.38 

2 Shawshank. 58.31 19.83 5.93 7.97 0.51 7.46 

3 Scent. 35.45 18.03 29.18 4.03 0.34 12.96 

4 Bovary. 9.11 7.33 74.06 ------- ------- 9.50 

In terms of the emotion category, we annotate the emotion of texts contained in above four 
datasets as [Target_Flag (0/1), Emotion_Index (1~6)]. Here, the Emotion_Index (1~6) represents 
“Happy”, “Sad”, “Angry”, “Anxious”, “Surprise” and “Other” respectively. The emotion distribution 
on the involved datasets is shown in Table 2. The annotation processing is completed by five 
researchers with experience in Natural Language Processing and Time-Series Prediction. And, the 
majority voting mechanism has been adopted to determine the final emotion of each text with the 
agreement from at least three annotators. Based on above annotation, the Affective Space Mapping 
illustrated in Figure 2 has been conducted, in which word embeddings with 256 dimensions have been 
used. In addition, the accuracy of the emotion classifier (i.e., Bi-LSTM) has been maintained by 80% 
and more. The affective vectors classified incorrectly are revised by the global emotion EIP. The specific 
statistics on emotion annotation has been demonstrated in Figure 7. More specifically, Figure 7 (a) 
represents the annotation distribution on six emotion categories (i.e., Happy, Sad, Angry, Anxious, 
Surprise and Other) in terms of the conversation texts posted by all the participants, while Figure 7 (b) 
represents the emotion distribution of the conversation texts particularly posted by the target speaker. 
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Correspondingly, Figure 7(c),(d) represent the annotation shift on above six emotion categories with 
regard to Figure 7(a),(b) respectively. 

 

(a)                               (b) 

 
(c) 

 
(d) 

Figure 7. The visualization of emotion distribution after annotation: (a) The emotion 
distribution of the initial text set D. (b) The emotion distribution of target participant. (c) The 
emotion tendency on the initial text set D. (d) The emotion tendency on target participant. 
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4.2. The impact of the similar scene searching to the emotion prediction 

When given the input sequence Xp and the target sequence Yp (the ground truth of prediction), t 
current scenes will be created. After the similar scene searching process illustrated in Figure 4 and 
Figure 5, the period-offset searching method will seek K similar scenes for each current scene. Such 
the K similar scenes will be aggregated into an attention vector at, then an attention-feature sequence 
A= {a1, a2, ..., at, t∈T} will be computed corresponding to the t current scenes. Here, the attention-
feature sequence A= {a1, a2, ..., at, t∈T} will be aligned up to the input sequence Xp by time steps, 
which is further taken as the auxiliary features input into the encoder at the second-layer shown in 
Figure 6. Moreover, for each current scene in Figure 5, the period-offset searching method will expand 
a searching scope L/8 from left and right respectively after a pivot element has been found out by 
different time spans. When it comes to the experiments involved in this section, 5 minute is adopted 
to search K similar scenes according to the timestamp of each text in datasets.  

Table 3. The impact of similar scene search mechanism on the text emotion prediction 
accuracy of TEP2MP model (K = 5, λ1 = λ2= 0.5). 

Dataset 
Optimal Time 

Window 
The Searching Scope L and Optimal Value Accuracy F1-Score 

1-Gump win = 2 

L = win × 0 = 0 (No Similar Scene Search) 0.602039 0.602931 

L = win × 4 = 8 0.652314 0.662319 

L = win × 16 = 32 0.782182 0.783418 

L = win × 64 = 128 0.832741 0.826231 

L = win × 256 = 512 0.801248 0.803583 

The improvement on prediction precision（%） +27.70% +27.03% 

2-Shawshank win = 3 

L = win × 0 = 0 (No Similar Scene Search) 0.623042 0.624617 

L = win × 4 = 12 0.702144 0.704294 

L = win × 16 = 48 0.762024 0.770214 

L = win × 64 = 192 0.849317 0.846003 

L = win × 256 = 768 0.810423 0.814956 

The improvement on prediction precision（%） +26.64% +26.17% 

3-Scent win = 3 

L = win × 0 = 0 (No Similar Scene Search) 0.759301 0.751280 

L = win × 4 = 12 0.810493 0.819203 

L = win × 16 = 48 0.839301 0.830382 

L = win × 64 = 192 0.845665 0.841092 

L = win × 256 = 768 0.823540 0.824765 

The improvement on prediction precision（%） +11.37%  +11.95%  

4-Bovary win = 4 

L = win × 0 = 0 (No Similar Scene Search) 0.798394 0.793829 

L = win × 4 = 16 0.813894 0.812405 

L = win × 16 = 64 0.853919 0.852834 

L = win × 64 = 256 0.866187 0.855451 

L = win × 256 = 1024 0.859301 0.853526 

The improvement on prediction precision（%） +7.83% +7.20% 

In order to measure the impact of L/8 searching scope on the emotion prediction performance, the 
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capacity of the pool to store similar scenes is set as K = 5 and the optimal value of L is selected by grid 
search, stopping at the first option when the prediction performance decreases. More importantly, for 
the LOSS = λ1l1 + λ2l2 used for training the TEP2MP, λ1 and λ2 are set as 0.5. Particularly, when L = 0, 
no similar scene will be searched for each current scene. The specific emotion prediction performance 
is shown in Table 3. 

As shown in Table 3, first, the optimal size of time-window on each dataset is selected by grid 
search. Second, based on the optimal time window size, taking the main character on each dataset as 
the target speaker and the remaining characters as the other participants, the optimal searching scopes 
are listed as 1-Gump, win = 2, L = 128; 2-Shawshank, win = 3, L = 192; 3-Scent, win = 3, L = 192; 4-
Bovary, win = 4, L = 256. Third, compared with the case when L = 0 (i.e., no similar scene has been 
searched), it can be observed that when adopting the similar scene searching mechanism, the precision 
on text-emotion prediction has been improved by approximately 10%~30%. The above phenomenon 
can be ascribed to the reason that the similar scene searched by the period-offset method is assembled 
in the same way as that of current scene, like },{ 1___  ttothersttargetp EEx

t
  and 

},{ 2_1_1_  ttothersttargetp EEy
t

  in },{
ttt ppp yxs 

  
for the current scene, },{ 1

'
 others_j_jtarget_jm EEx

j  
and },{ 211

'
 _jothers_jtarget_jm EEy

j
 in },{ ''

jj mmm yxs 
 
for the similar scene. The current scene and the 

similar scene have the similar tendency on emotion category shift (i.e., sad→angry). Therefore, before 
prediction, the proposed model TEP2MP has additionally collected auxiliary emotion features for the 
input sequence Xp, according to the given current scene (sub-sequence). Moreover, the similar scenes 
have been converted into attention-feature sequence as defined in Eq (1), which are further fed into 
the two-layer encoder shown in Figure 6. Consequently, when adopting the similar scene searching 
mechanism, the text emotion precision has been improved effectively. 

Based on the optimal searching scope L selected in Table 3, the optimal capacity (K) of the pool 
to store similar scenes is also selected in Table 4. For the LOSS = λ1l1 + λ2l2 used for training TEP2MP, 
λ1 and λ2 are set as 0.5. Here, the capacity K represents the amount of similar scenes searched for each 
given current scene. It can be observed that the alteration on the pool capacity K can affect the 
performance on text emotion. In addition, as shown in Table 4, the emotion prediction performance 
can be further enhanced when assigned with the optimal pool capacity K (i.e., presented as font in 
Table 4) compared to that listed in Table 3. Finally, the optimal configuration on each dataset for text 
emotion prediction are listed as: 1-Gump, win = 2, L = 128, K = 7; 2-Shawshank, win = 3, L = 192, K 
= 5; 3-Scent, win = 3, L = 192, K = 7; 4-Bovary, win = 4, L = 256, K = 9. 

4.3. Comparison on the Performance of the Text Emotion Prediction 

Based on the optimal time-window size, window stride, searching scope L/8 and the pool capacity 
K, our proposed text emotion prediction TEP2MP is further compared with other existing time-series 
prediction models which can be adapted to the text emotion prediction problem.  

First, in order to analyze the effectiveness of the similar scene searching, emotion fusion and 
hybrid attention mechanism incorporated into TEP2MP, all the compared methods are considered as 
“black box”, whose inner principle has not been adapted. Second, the compared methods include 
DDAE [35], Restimator_EE [36], DA_RNN [37], R2N2 [38] and CNN_Series [39]. Specifically, 
DDAE [35] contains three hidden layers using “RELU” as neural activation, conducting unsupervised 
learning by Auto-Encoder [40]. Restimator_EE [36] uses the Convolutional Neural Network (CNN) 
and the multi-layer LSTM for time-series prediction. DA_RNN [37] constructs two context vectors by 
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two-layer attention mechanism via encoder-decoder structure. R2N2 [38] computes the residual error 
by multiple LSTM and the time-series prediction is conducted by minimizing the residual error. 
CNN_Series [39] contain three-layer one-dimensional convolution and the “Dilation Rate” in each 
layer is set as 1, 2 and 4 respectively with a receptive field set as 8. 

Table 4. The selection of the optimal pool capacity (K) to store the similar scenes (λ1 = λ2 = 0.5). 

Dataset 
Optimal Time 

Window 

The Searching Scope L and 

Optimal Value 

Candidate Pool 

Capacity K 
Accuracy F1-Score 

1-Gump win = 2 L = win×64 = 128 

1 0.792142 0.799324

3 0.823721 0.810923

5 0.832741 0.826231

7 0.849027 0.841416

9 0.847152 0.821397

2-Shawshank win = 3 L = win×64 = 192 

1 0.823726 0.831795

3 0.839725 0.841782

5 0.849317 0.846003

7 0.812799 0.818972

9 0.773142 0.793372

3-Scent win = 3 L = win×64 = 192 

1 0.821652 0.814601

3 0.832954 0.827952

5 0.845665 0.841092

7 0.861324 0.850179

9 0.856667 0.845873

4-Bovary win = 4 L = win×64 = 256 

1 0.844017 0.835784

3 0.848148 0.845341

5 0.866187 0.855451

7 0.886531 0.886028

9 0.892712 0.894317

Third, in terms of our proposed TEP2MP model, as shown in Figure 6, in the first-layer encoder, 
the affective vectors corresponding to the target speaker and all the other participants are merged 
together, whose result is forced to approach the affective vector of the target speaker input at the next 
time step. However, in terms of the compared methods including DDAE [35], Restimator_EE [36], 
DA_RNN [37], R2N2 [38] and CNN_Series [39], only the affective vector corresponding to the target 
speaker is involved without the introduce of emotion fusion and similar scene searching mechanism. 
In addition, except the CNN_Series [37] which only takes in the emotion category sequence (i.e., like 
[0, 1, 2, 3, 0, 2, ....]), all the other compared methods all require the n-dimensional affective vector 
sequence. Here, the n-dimensional affective vector is provided by the Affective Space Mapping, as 
shown in Figure 2. The specific emotion prediction performance is listed in Table 5. Here, for the 
LOSS=λ1l1+λ2l2 used for training the TEP2MP, λ1 and λ2 are set as 0.5. 

As shown in Table 5, the text emotion prediction performance of our proposed model TEP2MP 
all exceeds that of the other compared prediction models, improved by 4.99, 6.09, 5.18 and 3.94% 
respectively in terms of the prediction accuracy. Such the advantage can be ascribed to the reason that, 
on the one hand, the similar scene searching process has been incorporated into TEP2MP. In other 
words, when given the input sequence Xp, multiple similar scenes, or sub-sequences of affective vectors 
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with similar emotion tendency to that of the current scene },{
ttt ppp yxs  have been extracted across 

the entire conversation history, which are taken as the auxiliary features to support following emotion 
prediction. In addition, the proposed model TEP2MP converts the K similar scenes of the current scene 

},{
ttt ppp yxs    into an attention vector at as defined in Eq (1), which can be considered as the 

observation on the context of emotion category shift across the whole conversation history, so as to 
enrich the features available for predicting the final emotion category. 

Table 5. Comparison on the text emotion prediction performance between TEP2MP and 
other existing sequence prediction methods (λ1 = λ2 = 0.5). 

Dataset Methods 
Window  

Size 

Window 

Stride 

Similar 

Scene 

Emotion 

Fusion 
Accuracy F1-Score 

Test 

Efficiency 

(second) 

1-Gump DDAE 58 41 

× × 

0.804483 0.809076 7.022135 

a 

Restimator_EE 25 5 0.793122 0.764111 47.231311 

DA_RNN 23 1 0.780848 0.774153 12915.61279

R2N2 12 9 0.806690 0.802319 25.42421 

CNN_Series 2 2 0.805897 0.803660 141.690461 

TEP2MP 2 1 √ √ 0.849027 0.841416 84.626693 

The improvement on prediction precision (%) +4.99%  +3.84%   

2-Shawshank 

DDAE 33 19 

× × 

0.751064 0.676932 8.326790 

Restimator_EE 38 33 0.780627 0.787936 39.904229 

DA_RNN 9 1 0.709684 0.700783 1902.978992

R2N2 7 3 0.797596 0.790690 23.530976 

CNN_Series 4 2 0.762712 0.719408 232.465386 

TEP2MP 3 3 √ √ 0.849317 0.846003 80.372754 

The improvement on prediction precision (%) +6.09%  +6.54%   

3-Scent 

DDAE 3 2 

× × 

0.770115 0.714166 8.34821 

Restimator_EE 31 31 0.805665 0.811109 39.66678 

DA_RNN 13 2 0.685516 0.678652 3421.798897

R2N2 54 38 0.816667 0.815873 19.577201 

CNN_Series 4 3 0.808083 0.808417 129.559072 

TEP2MP 3 2 √ √ 0.861324 0.850179 96.475358 

The improvement on prediction precision (%) +5.18%  +4.04%  

4-Bovary 

DDAE 53 34 

× × 

0.836187 0.835451 7.828369 

Restimator_EE 26 2 0.809082 0.741626 132.577562 

DA_RNN 6 2 0.841528 0.844735 595.604229 

R2N2 5 5 0.857500 0.859545 13.721418 

CNN_Series 29 24 0.850000 0.858095 725.085449 

TEP2MP 4 3 √ √ 0.892712 0.894317 86.917757 

The improvement on prediction precision（%） +3.94%  +3.89%  

On the other hand, in Figure 6, at the encoding stage, the affective vectors corresponding to the 
conversation texts published by the target speaker and all the other participants have been merged by 
time step via the emotion fusion mechanism. In this way, the stimulation to the emotion change of the 
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target speaker can be learned. Moreover, as shown in Figure 6, compared with other methods, the 
proposed model TEP2MP uses the hidden state from the input sequence Xp and the counterpart from 
the attention-feature sequence A to decode the prediction result at time step t, with the help of the gate 
switcher g. In other words, the input sequence Xp is decoded at much finer granularity. Moreover, the 
emotion prediction results, including the one output by the emotion fusion mechanism at the encoding 
stage (related to l1) and the counterpart output by the hybrid attention mechanism at the decoding stage 
(related to l2), are all forced to be “close” to the ground truth (i.e., the affective vector input at the next 
time step), based on which the final LOSS=λ1l1+λ2l2 has been adopted to train our proposed text 
emotion prediction model TEP2MP. Consequently, TEP2MP has achieved the best overall text emotion 
prediction performance compared to other methods. 

(a) Prediction Performance on dataset Gump. (b) Prediction Performance on dataset Shawshank. 

(c) Prediction Performance on dataset Scent. (d) Prediction Performance on dataset Bovary. 

Figure 8. The comparison on the tendency of the text emotion prediction performance (λ1 = λ2 = 0.5). 
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In addition, in Table 5, the test efficiency (measured by second) has also been compared. Here, 
the test efficiency means the time spent after data preparation before outputting the final prediction 
result. It can be observed from Table 5 that although extra data processing mechanism including similar 
scene searching, emotion fusion and hybrid attention have been incorporated into TEP2MP, yet the 
time spent on testing is still controlled at an acceptable level, less than that of the DA_RNN and 
CNN_Series. Moreover, the test efficiency of TEP2MP is worse than that of DDAE and R2N2, but the 
corresponding text emotion performance of TEP2MP is better than that of DDAE and R2N2. 

Finally, as shown in Figure 8, our proposed text emotion prediction model TEP2MP has also been 
compared with several classical regression models, including Decision Tree (DT_R), Linear 
Regression (Linear_R), SVM Regression (SVM_R), KNN Regression (KNN_R), and Random Forest 
Regression (RF_R). All the compared regression models are implemented by the high-level AIP in 
Scikit-learn machine learning framework (https://scikit-learn.org/stable). Particularly, due to the 
requirement of the API in Scikit-learn, all the regression models only take in the Emotion_Index 
sequence like [0, 2, 4, 5, 1...] which is obtained by emotion annotation involved in Affective Space 
Mapping. It can be observed in Figure 8 that the proposed text emotion prediction model TEP2MP has 
achieved the best performance (i.e., Accuracy and F1-Score) on all the datasets, which can reflect the 
fact that the n-dimensional affective vectors obtained by the Affective Space Mapping contain more 
features on text emotion when compared with the Emotion_Index sequence. 

4.4. More discussion on TEP2MP 

Finally, in this section, focusing on the dataset Bovary., we delve into the inner processing of the 
proposed text emotion prediction model TEP2MP. First, as demonstrated in Figure 9 (a-i) which takes 
the input basic data-unit < 1_targetE , 2_1_thersoE > as an example, it can be observed that when it comes to 

the encoder in TEP2MP, the trivial features has blurred with the strengthening on more critical ones 
after processed by the fully connected layer, as shown in Figure 9 (a-ii). Then, based on the fully 
connected layer, the first-layer encoder (i.e., the LSTM component) will output the hidden state xh  
which reflects the emotion distribution by considering the target speaker and all the other participants 
simultaneously (i.e., Figure 9 (a-iii)). At last, by Eq (1), the emotion distribution 2_

~
targetE

 
on target 

speaker can be output shown in Figure 9 (a-iv). Compared with the ground truth 2_targetE
 
shown in 

Figure 9 (d), the emotion prediction result 2_

~
targetE in Figure 9 (a-iv) output at the encoder side at time 

step 1 still has evident difference to the ground truth.  
Second, when it comes to the decoder, Figure 9 (b-i) demonstrates the visualization on the hidden 

state sequence },...,,{ 21
x
t

xxx hhhH  computed by the encoder. Figure 9 (b-ii) and Figure 9 (b-iii) present 

the visualization on the hidden state ys1  and as1  at the time Step 1. It can be found that such two 

hidden states concentrate more on the critical features at time step 1. Finally, Figure 9 (b-iv) 
demonstrates the visualization on emotion distribution of target speaker computed via Eq (6) with the 
help of the gate switcher g by merging the context vectors from the input sequence Xp and the attention-
feature sequence A. Obviously, the emotion distribution output by decoder (shown in Figure 9 (b-iv)) 
is close to the ground truth 2_targetE

 
shown in Figure 9 (d), better than the emotion distribution output 

by the encoder at step 1 shown in Figure 9 (a-iv). 
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i) The input of the < 1_targetE , 2_1_thersoE > at encoder side

ii) The fusion result output by FC of < 1_targetE , 2_1_thersoE >

iii) The hidden state xh1  derived from LSTM by Eq (1) 

iv) The 2_

~
targetE  output by encoder at time step 1 

i) The hidden state sequence Hx conveyed to decoder 

 

ii) The hidden state ys1  output at time step 1 in decoder

iii) The hidden state as1  output at time step 1 in decoder

iv) The visualization of 2_

~
targetE  output by the decoder 

at time step 1 
 

(a) Visualization at encoder side. (b) Visualization at decoder side. 

 

(c) The visualization of 2_

~
targetE  output by the decoder at time step 1. 

 

(d) The visualization of the ground truth 2_targetE  at time step 1. 

Figure 9. The visualization of the affective vector and corresponding hidden state in the 
two-layer encoder-decoder of TEP2MP (L = 256, K = 9, λ1 = λ2 = 0.5 on the dataset Bovary.). 

Table 6. The optimal (λ1, λ2) combination selection for the LOSS used for training 
TEP2MP (L = 256, K=9, on the dataset Bovary). 

λ1-Emotion Fusion λ2-Emotion Prediction F1-Score ↑ Accuracy ↑ RMSE ↓ MAE ↓ 

0.1 0.9 0.912319 0.924483 0.179493 0.119514 

0.3 0.7 0.941667 0.942778 0.179313 0.119416 

0.5 0.5 0.892712 0.894317 0.179490 0.119519 

0.7 0.3 0.894281 0.896427 0.179452 0.119502 

0.9 0.1 0.926565 0.938333 0.179448 0.119490 

It is also worthwhile to ascertain the optimal (λ1, λ2) combination in terms of the LOSS used to 
train TEP2MP. As shown in Table 6, the λ1 related to the emotion fusion and the λ2 related to the 
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emotion prediction vary from 0.1 to 0.9. It can be found that when λ1 and λ2 increase, the emotion 
prediction performance (i.e., such as F1-Score and Accuracy) presents to be better, higher than that 
obtained when λ1 = λ2 = 0.5. Moreover, the prediction error (i.e., RMSE [34] and MAE [34]) also 
presents to be lower. Specifically, in Table 6, it can be observed that a higher value the λ2 (related to 
emotion prediction) has, a better emotion prediction performance will be obtained. In addition, the 
(0.3, 0.7) combination presents to be the best combination for training the TEP2MP model. 

In addition, as shown in Figure 6, the proposed model TEP2MP conducts text emotion prediction 
in the multi-participant scenario via two-layer encoder-decoder model. In terms of the encoder-decoder 
structure, two critical mechanisms have been adopted which are beneficial to the improvement of text 
emotion prediction performance. Specifically, the emotion fusion mechanism merges the affective 
vectors corresponding to the target speaker and all the other participants at the first-layer encoder to 
learn emotion interaction among different participants. And, the similar scene search process illustrated 
in Figure 5 extracts sub-sequences with similar emotion tendency to that of the given current scene. 
The similar scenes are then converted into attention-feature sequence A, considered as the auxiliary 
features for decoding. Based on the attention-feature sequence A, the hybrid attention mechanism has 
been adopted to merge the context vectors ot and ct by the switcher gate g. Such two context vectors 
are derived from the hidden state sequence of the attention-feature sequence A and the hidden state 
sequence Hx output by the first-layer encoder, enriching the context information available for decoding. 
Consequently, in Table 7, an ablation study has been conducted on emotion fusion mechanism and 
hybrid attention mechanism, so as to measure the effectiveness of above two mechanisms on the text 
emotion prediction performance.  

Table 7. The ablation study of emotion fusion and hybrid attention on the prediction 
performance of TEP2MP (L = 256, K = 9, on the dataset Bovary.) 

Combo. 

Emotion Fusion 

+ Target & Other 

Participants 

Similar Scene Search 

+ Hybrid Attention 
F1-Score ↑ Accuracy ↑ RMSE ↓ MAE ↓

1 ൈ  ൈ 0.711563 0.716046 0.216359 0.141079

2 √ ൈ 0.828261 0.849913 0.210058 0.136963

3 ൈ √ 0.880690 0.887596 0.179525 0.119538

4 √ √ 0.892712 0.894317 0.179490 0.119519

The improvement rate between Combo. 4 and Combo. 2 (%) +7.22% +4.97% +14.55% +12.74%

Specifically, in Table 7, the Combo. 1 means that above two mechanisms are not adopted. In such 
the situation, TEP2MP only processes the sequence of affective vectors corresponding to the target 
speaker and no consideration on other participants is involved. Combo. 2 means that only the emotion 
fusion mechanism is adopted. In other words, only the first-layer encoder aimed at multi-participants 
exists in TEP2MP and the emotion fusion result output by the first-layer encoder is considered as the 
final prediction result. Combo. 3 means that only the hybrid attention mechanism is adopted. In other 
words, TEP2MP only considers target speaker at the encoder side. In addition, at the decoder side, the 
two context vectors (i.e., ot and ct) are still merged by the gate switch g. Such two context vectors are 
derived from the attention-feature sequence A and the hidden state sequence of the first-layer encoder 
respectively. Combo. 4 is the scheme illustrated in Figure 6, where the emotion fusion and hybrid 
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attention mechanism are all adopted. 
In Table 7, it can be observed that Combo. 1 has achieved the worst performance where both of 

the emotion fusion and hybrid attention mechanism are not adopted. However, for Combo. 2, when 
adopting the emotion fusion mechanism, the emotion prediction performance has increased which 
means that the emotion interaction learned among multiple participants at the encoder side is beneficial 
to enhancing the emotion prediction performance. In addition, when comparing Combo. 1 & 2 with 
Combo. 3 & 4, it can be found that combinations with hybrid attention is better than those without 
hybrid attention mechanism. Specifically, when on other participants are considered, like Combo. 3, 
the emotion prediction performance is worse than the one adapted to the multi-participant scenario, 
like Combo. 4. Finally, the Combo. 4 is the best one among all the combinations. 

5. Conclusions & discussion 

Text can reflect the opinion or attitude of the publisher, therefore analyzing the emotion of the 
conversation text is beneficial to the decision-making and public opinion supervision. In this paper, a 
text emotion prediction model with emotion fusion and hybrid attention enhancement has been 
proposed in a multi-participant conversation scenario. The proposed model computes affective vectors 
of each conversation text via Affective Space Mapping. Then, scenes with similar emotion tendency 
have been searched across the entire conversation history, which are further converted into attention-
feature sequence. Next, a two-layer encoder-decoder prediction model has been constructed where the 
emotion fusion mechanism is introduced at the encoder side to capture emotion interaction among 
multiple participants and the hybrid attention mechanism is introduced at the decoder side to compute 
the context vector used for decoding. According to the experimental results, our proposed model can 
achieve the overall best performance on text emotion prediction due to the auxiliary features extracted 
from similar scenes and the adoption of emotion fusion as well as the hybrid attention mechanism. 
Moreover, the text emotion prediction efficiency of our proposed model can still be controlled at an 
acceptable level. 

However, it can also be observed from the experimental results that compared with other existing 
methods, the emotion prediction performance of our proposed model is merely improved within a 
limited scope. Such the limitation can be ascribed to that, since the affective vectors corresponding to 
the conversation texts posted by all the other participants have been input to the encoder, therefore 
emotions of those irrelevant participants have also been considered when predicting emotion for the 
target speaker. In others words, there may exist an optimal combination of other participants with 
regard to the target speaker, which has not been considered by our work. Second, it is evident that 
different participants may have strong or weak associations with the target speaker, however, when it 
comes to the emotion fusion mechanism adopted by our model, we have not assigned a proper “weight” 
to the corresponding affective vector of each conversation text. Therefore, more effort should be 
devoted to process the emotion of conversation text at much finer granularity. 
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