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Abstract: We developed a new mathematical model for yellow fever under three types of intervention
strategies: vaccination, hospitalization, and fumigation. Additionally, the side effects of the yellow
fever vaccine were also considered in our model. To analyze the best intervention strategies, we con-
structed our model as an optimal control model. The stability of the equilibrium points and basic
reproduction number of the model are presented. Our model indicates that when yellow fever becomes
endemic or disappears from the population, it depends on the value of the basic reproduction number,
whether it larger or smaller than one. Using the Pontryagin maximum principle, we characterized our
optimal control problem. From numerical experiments, we show that the optimal levels of each control
must be justified, depending on the strategies chosen to optimally control the spread of yellow fever.
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1. Introduction

Yellow fever is a hemorrhagic fever disease that is transmitted by the Aedes or Haemagogus aegypti
infected mosquito, which contains the yellow fever virus. The virus that causes this disease belongs to
the genus Flavivirus, a large group of RNA viruses. It is one of the most dangerous infectious diseases.
The mortality rate of this disease ranges from 20 to 50%, but in severe cases, it can exceed 50%. There
is no specific treatment for this disease, but it can be reduced through vaccination [1]. Although the
vaccine for yellow fever is lifelong, a booster is needed to guarantee the efficacy of this vaccine to
protect humans from infection.

Various interventions can be performed to suppress the spread of yellow fever. Based on [2],
fumigation is the most recommended form of intervention to control mosquito populations. Even so,
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Figure 1. Type of yellow fever based on the transmission process.

this intervention needs to be carefully considered in its application in the field because it can trig-
ger mosquito resistance to fumigation materials [3]. In addition to fumigation, vaccination is highly
recommended, especially for tourists entering areas where yellow fever is endemic. Although it is
claimed that yellow fever vaccination lasts forever, a vaccine booster must maintain the vaccine’s abil-
ity to protect the individual from infection at maximum levels [4]. Although the yellow fever vaccine
is claimed to reach the maximum protection at 4th week after the injection, the implementation of the
yellow fever vaccine has some side effects for high-risk groups. These groups include infants aged
6–8 months, individuals more than 60 years old, pregnant, and breastfeeding women [3]. Despite the
long history of safety, there are some cases of worsening effect of the use of yellow fever vaccine [1].
The author of [1] expresses more concern about yellow fever vaccine-associated neurotropic disease
(YEL-AND) because it is fatal, despite the low number of reported cases.

Mathematical model have been used by many authors to model the dynamic of disease, whether it
in human [5–9], animals [10], or plants [11, 12].Compared with other vector-borne diseases such as
malaria or dengue, as far as we know, there are a few of mathematical models discussing yellow fever.
The author of [13] introduced a yellow fever transmission model involving two types of hosts, namely,
humans and primates. They found that their basic reproduction number consists of the addition of
reproduction from human-mosquito interaction and primate (monkey)-mosquito interaction. Addition-
ally, [14] introduced a yellow fever model that considers the vaccination of the human population and
aquatic phase of the mosquito. Recently, [15] modified the model by [14] by adding a vertical trans-
mission in the mosquito population to their model. Furthermore, they also involved treated bed nets,
larvicides, and adulticides as alternative means of intervention. They showed that their model exhibits
backward bifurcation phenomena that make the eradication program for yellow fever more difficult.
A mathematical model was used to analyze the impact of vaccination for yellow fever in Angola, as
analyzed by [16].

Based on the above description, we introduce a new mathematical model for yellow fever transmis-
sion, considering vaccination, fumigation, and treatment. We also include the possible side effects of
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the yellow fever vaccine, which may lead to YEL-AND phenomena. Our model includes the aforemen-
tioned strategies as time-dependent variables. We aim to minimize the number of infected individuals
keeping the cost of interaction as low as possible. Hence, the most cost-effective possible strategies are
then analyzed using the cost-effectiveness method [17]. To our knowledge, this work is the first yellow
fever model to consider the side effects of the yellow fever vaccine with a time-dependent intervention.

The remainder of this paper is organized as follows. In Section 2, we develop our model using
time-dependent interventions. Treating the interventions as a constant parameter, we analyze our spe-
cial case model regarding its equilibrium points and local stability criteria in Section 3. The character-
ization of the optimal control problem and its numerical experiments are presented in Section 4. The
conclusions of our study are presented in Section 5.

2. The construction of the yellow fever optimal control model

In this study, we introduced a new mathematical model to describe the spread of yellow fever. Our
model includes vaccination (u1(t)), hospitalization (u2(t)), and fumigation (u3(t)) as time-dependent
control variables. We aimed to understand the impact of the worsening effect of vaccination interven-
tion on the dynamics of yellow fever and determine the best possible combination of cost-effective
strategies in the yellow fever eradication policy effort.

First, we divide the total human population (denoted by N(t)) based on their health and vaccina-
tion status into eight compartments, namely, susceptible humans (S (t)), vaccinated humans (V(t)),
unvaccinated exposed humans (E1(T )), vaccinated exposed humans (E2(t)), infected humans without
vaccination worsening effect (I(t)), infected humans with worsening effect of vaccine (T1(t)), infected
humans who get worsening effect from the vaccine and were hospitalized (T2(t)), and recovered hu-
mans (R(t)). Additionally, we divide the mosquito population into susceptible and infected mosquitoes,
denoted by U(t) and W(t), respectively. Owing to the short life expectancy of mosquitoes, we exclude
the recovered compartments of mosquitoes. This is because once the mosquitoes are infected by the
yellow fever virus, they will stay infected forever. Hence, the total human and mosquito population at
time t is expressed as follows:

N(t) = S (t) + V(t) + E1(t) + E2(t) + I(t) + T1(t) + T2(t) + R(t),
M(t) = U(t) + W(t).

We use the transmission diagram in Figure 2 to construct our yellow fever model, and the description
of the parameters is given in Table 1. For written simplification, we use S ,V, E1, E2, I,T1,T2,R,U, and
W instead of S (t),V(t), E1(t), E2(t), I(t),T1(t),T2(t),R(t),U(t), and W(t).

In our model, we assume that all recruitment rates enter the susceptible population through a con-
stant rate Λh. Owing to a vaccination rate of u1, the susceptible population will be transferred into
compartment V . We assume that after a period of ω−1

h , the effect of the vaccine disappears. Hence, the
vaccinated individual was sent back to S . In our model, we assume that vaccination cannot provide
perfect protection against yellow fever infection. Hence, there is an efficacy level of the vaccine, which
is denoted by 1−ξ. Thus, when a susceptible individual is infected with a success rate of βh, vaccinated
individuals will have a success probability of ξβh.

Susceptible individuals who are already infected will be classified into the exposed compartment
E1, which has no chance of experiencing any worsening vaccine effect. However, vaccinated individ-
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Figure 2. Transmission diagram of yellow fever for model in system (2.1).

uals who are already infected and experienced any worsening vaccine effect will be classified into the
exposed compartment E2. In our model, we assume that a yellow fever vaccine can have side effects
on several types of individuals, including severely immunodeficient individuals, elderly individuals,
pregnant women, newborns under six months of age, and individuals who already have thymic dis-
eases, including thymoma and thymectomy [18]. These side effects can result in severe symptoms of
infection. Because of this worsening effect, after the incubation period of γ−1

2 , an exposed individual
E2 will progress into infected stage I with a proportion of 1 − p, where he/she has no worsening effect
of the vaccine, and a proportion of p will progress to T1 when he/she has the worsening effect of the
vaccine. In contrast, the exposed individual E1 progresses to I after the incubation period of γ−1

1 . Note
that γ−1

1 ≤ γ
−1
2 .

Infected individuals in T1 are assumed to have more severe symptoms than I individuals. Hence,
individuals in T1 must receive more intensive care in hospital. Therefore, we assume that there is a
hospitalization rate of u2 that will bring an individual in T1 to a hospitalized individual in T2. The
infected individuals in I are assumed to recover from yellow fever after δ−1

1 , whereas T1 and T2 are
assumed to recover after δ−1

1 and δ−1
2 , respectively. We assume that yellow fever may cause death in

infected individuals I,T1, and T2 with a constant rate α1, α2, and α3, respectively.
However, the mosquito population will increase because of a constant natural birth rate of Λv and

decrease because of the natural death rate µv and fumigation u3. All newborns in the mosquito popu-
lation were assumed to be susceptible. Additionally, we assume that susceptible mosquitoes may get
infected by biting infected individuals who do not go to the hospital, I and T1, with a constant infection
rate βv.

Our aim is to understand how the spread of yellow fever may be reduced under three types of
intervention: vaccination (u1), hospitalization (u2), and fumigation (u3). In so many realities of disease
eradication in the field, the limited costs of implementing interventions are always an unavoidable
limitation. Therefore, instead of treating the above mentioned interventions as constant parameters, it
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Table 1. Description of parameters in system (2.1).

Par Description Range Ref.
Λh Human recruitment rate 10000

65×365
human

day Assumed
Λv Mosquitoes recruitment rate 20000

30
mosquitoes

day Assumed
u1 Vaccination rate [0, 1] 1

day [19–21]
u2 Hospitalization rate [0, 1] 1

day Assumed
u3 Fumigation rate [0, 1] 1

day [22, 23]
ωh Waning rate of vaccine (0, 1) 1

day [19]
βh Mosquito-human infection rate [0.03, 0.75]10−4 1

mosquito×day [16, 24]
1 − ξ Vaccine efficacy [0.8-0.99] [15, 20, 25]
βv Human-mosquito infection rate [0.15, 1]10−5 1

human×day [16, 24]
µh Natural death rate of human 1

65×365
1

day [26]
µv Natural death rate of mosquito 1

30
1

day [26]
γ1 Progression rate of exposed humans who

are not vaccinated
0.331 1

day [27]

γ2 Progression rate of exposed human who
are already vaccinated

0.31 1
day [27]

p Proportion of exposed individuals who
progressed into infectious but experi-
enced side effects of the vaccine

[0,1] Assumed

δ1/δ2/δ3 Recovery rate of I/T1/T2 [0, 0.143] 1
day [27]

α1/α2/α3 Death rate because of yellow fever in
I/T1/T2

[0.2, 0.5]10−3 1
day Assumed

would be better to make the intervention parameter both time-dependent and adaptive to the number of
infected people and environmental conditions at time t. One approach is to find the optimal value of u1

for each time t. This can be achieved by constructing a model to be discussed using an optimal control
approach. Therefore, we discuss the time-dependent value of ui, namely, u1(t), u2(t), and u3(t).

Based on the above descriptions and formulations, the mathematical model of yellow fever under
vaccination, hospitalization, and fumigation, as well as the worsening effect of vaccination, is given by
the following system of ordinary differential equations:

dS
dt

= Λh + ωhV − βhS W − u1(t)S − µhS ,

dV
dt

= u1(t)S − ξβhVW − µhV − ωhV,

dE1

dt
= βhS W − γ1E1 − µhE1,

dE2

dt
= ξβhVW − (1 − p)γ2E2 − pγ2E2 − µhE2,

dI
dt

= γ1E1 + (1 − p)γ2E2 − (µh + α1)I − δ1I, (2.1)
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dT1

dt
= pγ2E2 − δ2T1 − u2(t)T1 − (µh + α2)T1,

dT2

dt
= u2(t)T1 − δ3T2 − (µh + α3)T2,

dR
dt

= δ1I + δ2T1 + δ3T2 − µhR,

dU
dt

= Λv − βvU(I + T1) − (µv + u3(t))U,

dW
dt

= βvU(I + T1) − (µv + u3(t))W.

Note that the yellow fever model in system (2.1) is completed with non-negative initial conditions.
Additionally, the parameters in system (2.1) are assumed to be non-negative.

This study aimed to minimize the number of infected individuals as much as possible while keeping
the costs of vaccination, hospitalization, and fumigation as low as possible. Because we only want to
minimize the number of infected individuals, we set the weight cost for S ,V,R, and U, denoted by
ω1, ω2, ω8, and ω9, respectively, to zero. Hence, we describe our aim in the following cost function:

J(ui(t)) =

∫ T

0

(
ω3E1 + ω4E2 + ω5I + ω6T1 + ω7T2 + ω10W + ϕ1u2

1 + ϕ2u2
2 + ϕ3u2

3

)
dt, (2.2)

where ϕi for i = 1, 2, 3 denotes the weight cost for the control variables u1, u2,, and u3, respectively.
The interval [0,T ] represents the duration of the simulation time for the intervention that must be
implemented. The total cost for interventions, such as vaccination, hospitalization, and fumigation, is
presented as follows: ∫ T

0

(
ϕ1u2

1 + ϕ2u2
2 + ϕ3u2

3

)
dt.

The quadratic cost function was chosen because of a convex function that ensures the existence of
an optimal solution. On the other hand, the quadratic cost function is biologically interpreted as a
nonlinear cost for intervention. For example, the cost of fumigation in a small area may only require
a cost for buying the fumigation material and hiring an operator. However, when the area that needs
to be fumigated becomes much wider, the cost includes not only the purchase of fumigation material
and the hiring of operator, but also coordination costs, counseling before implementation, etc. Another
quadratic cost function for another type of epidemiological optimal control model can be found in [28,
29]. On the other hand, all costs associated with the high number of infected humans and mosquitoes,
which are not related to vaccination, hospitalization, or fumigation intervention were assumed to be
proportional to the number of infected individuals, which is presented as follows:∫ T

0
(ω3E1 + ω4E2 + ω5I + ω6T1 + ω7T2 + ω10W) dt.

Our model’s aim is to minimize the number of infected individuals in human and mosquito pop-
ulations while keeping the costs of vaccination, hospitalization, and fumigation as low as possible.
Therefore, we seek to optimize the value of ûi for i = 1, 2, 3 such that

J(û1, û2, û3) = min
u1,u2,u3

{J(u1, u2, u3)|ui ∈ U} , (2.3)
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where
U =

{
(u1, u2, u3)|ui : [0,T ]→ [umin

i , umax
i ] is Lebesgue measurable, i = 1, 2, 3, 4

}
is the admissible control set. Note that umin

i and umax
i for i = 1, 2, 3 represent the lower and upper

bounds of each control variable, respectively.

3. Dynamical analysis of autonomous model

In this section, we analyze the autonomous version of system (2.1) regarding its existence and local
stability criteria of equilibrium points, the form of the basic reproduction number, and bifurcation
analysis. To accomplish this, let us assume that all control variables remain constant over time. Hence,
using u1(t) = u1, u2(t) = u2, and u3(t) = u3, the autonomous version of system (2.1) is given by:

dS
dt

= Λh + ωhV − βhS W − u1S − µhS ,

dV
dt

= u1S − ξβhVW − µhV − ωhV,

dE1

dt
= βhS W − γ1E1 − µhE1,

dE2

dt
= ξβhVW − (1 − p)γ2E2 − pγ2E2 − µhE2,

dI
dt

= γ1E1 + (1 − p)γ2E2 − (µh + α1)I − δ1I, (3.1)

dT1

dt
= pγ2E2 − δ2T1 − u2T1 − (µh + α2)T1,

dT2

dt
= u2T1 − δ3T2 − (µh + α3)T2,

dR
dt

= δ1I + δ2T1 + δ3T2 − µhR,

dU
dt

= Λv − βvU(I + T1) − (µv + u3)U,

dW
dt

= βvU(I + T1) − (µv + u3)W.

Hence, the dynamics of the total human population is given by

dN
dt

= Λh − Iα1 − T1α2 − T2α3 − µhN,

and the dynamics of the total mosquito population is given by

dM
dt

= Λv − (µv + u3)M.

3.1. Preliminary analysis

Before we begin analyzing the model in system (3.1) regarding the existence and stability of its
equilibrium points, it is essential to ensure that the model in system (3.1) is well-defined biologically
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and mathematically. That is, the solution in system (3.1) must always be non-negative for all t > 0.
Properties related to these are written in the theorems below, where Theorem 1 deals with the positivity
of the solution of each variable in system (3.1), and Theorem 2 discusses the upper bound of the total
human and mosquito populations.

Theorem 1. Given that the initial values of the system (2.1) are S (0), V(0), E1(0), E2(0), I(0), T1(0),
T2(0), R(0), U(0), and W(0) > 0, the solution of S (t), V(t), E1(t), E2(t), I(t), T1(t), T2(t), R(t), U(t),
and W(t) will always be non-negative for all time t ≥ 0.

Proof. Please see Appendix A for the proof.

Theorem 2. The total human (N) and mosquito (M) population in system (2.1) is eventually bounded
as t → ∞.

Proof. The proof can be found in Appendix B.

Based on Theorems 1 and 2, we can conclude that each variable in system (3.1) is also bounded.

3.2. Yellow fever-free equilibrium point and the basic reproduction number

The purpose of this section is to determine the possible final state of the dynamics of system (3.1),
which at times tends to infinity and is known as the equilibrium point. The equilibrium of system (3.1)
is obtained by setting the right-hand side of system (3.1) to zero and solving this non-linear set of
equations with respect to each variable on human and mosquito populations. The first equilibrium
point of system (3.1) is the trivial point, known as the yellow fever-free equilibrium point (E1). This
equilibrium point represents a situation in which all infected populations in humans and mosquitoes,
as well as a recovered compartment in humans, do not exist. In this study, E1 is given as follows:

E1 = (S †,V†, E†1, E
†

2, I
†,T †1 ,T

†

2 ,R
†,U†,W†),

=

(
Λh(µh + ωh)

µh(µh + ωh + u1)
,

Λhu1

µh(µh + ωh + u1)
, 0, 0, 0, 0, 0, 0,

Λv

µv + u3
, 0

)
. (3.2)

From the expressions of S † and V†, S † + V† = Λh
µh

, which means that the existence of vaccination
does not change the size of the total population at E1. Instead, it depends only on the number of
newborns and the natural death rate. On the other hand, note that S †

V† =
µh+ωh

u1
. Our aim was to avoid

the rapid spread of yellow fever by expecting many vaccinated individuals. In this study, this aim
can be read as minimizing this ratio. To reduce the ratio of S † to V†, we can either increase the
number of vaccinated individuals (increasing the value of u1) or improve vaccine quality by extending
vaccine duration (reducing the value of ωh). Additionally, note that the total number of mosquitoes
at E1 is inversely proportional to the fumigation rate u3. Hence, it is important to provide a large (but
controlled) rate of fumigation to reduce the number of aedes mosquitoes. However, in many reports,
uncontrolled fumigation may trigger a mosquito resistance to some fumigants [30].

Having the yellow fever-free equilibrium point in hand, as shown in Eq (3.2), we can calculate the
basic reproduction number (R0) of system (3.1). In the context of our problem, the basic reproduction
number presents an expected number of secondary yellow fever cases caused by one primary case
during one infection period in a completely susceptible population. Several studies have demonstrated
that basic reproduction numbers play an important role in determining the existence or extinction of
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diseases in many epidemiological models [28,29,31]. These studies demonstrated that the disease will
likely disappear if R0 < 1, and it must appear if R0 > 1. However, it is not always the case that
R0 < 1 will always end in a situation where the disease disappears in the field. One of the causes is the
occurrence of a backward bifurcation phenomenon in the model. When backward bifurcation occurs,
R0 is no longer becomes a sufficient condition for the disappearance of a disease because the condition
R0 < 1 causes a bistability phenomenon to occur. More examples of backward bifurcation phenomena
arising from epidemiological models are available in [32].

Using the next-generation matrix approach [33], we have the basic reproduction number of the
system (3.1) as follows:

R0 =

√
µh(α2 + δ2 + µh + u2)(γ1 + µh)M1

µh(µh + ωh + u1)(γ2 + µh)(µv + u3)(γ1 + µh)(α2 + δ2 + µh + u2)(α1 + δ1 + µh)
, (3.3)

with

M1 =(γ1µ
3
h + ((ξu1 + γ1)γ2 + γ1(δ2 + ωh + u2 + α2))µ2

h + (((ξu1 + α2 + δ2 + ωh + u2)γ1 + u1(pα1 + pδ1

+ (α2 + δ2 + u2)(1 − p))ξ)γ2 + γ1ωh(α2 + δ2 + u2))µh + γ1γ2(u1(pα1 + pδ1 + (α2 + δ2 + u2)(1 − p))
ξ + ωh(α2 + δ2 + u2)))Λvβv(µh + ωh + u1)(γ2 + µh)βh(α1 + δ1 + µh)Λh.

The derivation of R0 is available in Appendix C. Using Theorem 2 in [34], the local stability criterion
of E1 is given by the following theorem:

Theorem 3. The yellow fev-free equilibrium point of system (3.1) is locally asymptotically stable if
R0 < 1, and unstable if R0 > 1.

Proof. Please see Appendix D for the proof.

3.3. The yellow fever endemic equilibrium

In this section, we analyze the existence of the non-trivial equilibrium point of system (3.1). The
other equilibrium point of system (3.1) besides the yellow fever-free equilibrium point is the yellow
fever endemic equilibrium point, which is given by the following expression:

E2 = (S ‡,V‡, E‡1, E
‡

2, I
‡,T ‡1 ,T

‡

2 ,R
‡,U‡,W‡),
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where

S ‡ =
Λh

(
W‡ξ βh + µh + ωh

)
W‡2

ξ βh
2 + ((ξ + 1) µh + ξ u1 + ωh) W‡βh + µh (µh + ωh + u1)

,

V‡ =
u1Λh

W‡2
ξ βh

2 + ((ξ + 1) µh + ξ u1 + ωh) W‡βh + µh (µh + ωh + u1)
,

E‡1 =
W‡Λhβh

(
W‡ξ βh + µh + ωh

)
(γ1 + µh)

(
µh

2 +
(
W‡ (ξ + 1) βh + ωh + u1

))
µh + W‡βh

(
W‡ξ βh + ξ u1 + ωh

) ,
E‡2 =

u1βhΛhξW‡

(γ2 + µh)
(
W‡2

ξ βh
2 + ((ξ + 1) µh + ξ u1 + ωh)

)
W‡βh + µh (µh + ωh + u1)

,

I‡ =

(
γ1µh

2 +
(
(u1 (1 − p) ξ + γ1) γ2 + γ1

(
W‡ξ βh + ωh

)))
µh + γ1

(
W‡ξ βh + u1 (1 − p) ξ + ωh

)
γ2)βhW‡Λh

(γ1 + µh) (α1 + δ1 + µh) (γ2 + µh)
(
µh

2 +
(
W‡ (ξ + 1) βh + ωh + u1

))
µh + W‡βh

(
W‡ξ βh + ξ u1 + ωh

) ,

T ‡1 =
pγ2u1βhΛhξW‡(

µh
2 +

(
W‡ (ξ + 1) βh + ωh + u1

)
µh + W‡βh

) ((
W‡ξ βh + ξ u1 + ωh

))
(α2 + δ2 + µh + u2) (γ2 + µh)

,

T ‡2 =
W‡pξΛhβhγ2u1u2

(α3 + δ3 + µh)
(
µh

2 +
(
W‡ (ξ + 1) βh + ωh + u1

))
µh + W‡βh

(
W‡ξ βh + ξ u1 + ωh

) ,
R‡ =

δ1I‡ + δ2T ‡1 + δ3T ‡2
µh

,

U‡ =
Λv

I‡βv + T ‡1βv + µv + u3
,

(3.4)

where W‡ is taken from the positive roots of the following quadratic polynomial of W:

F(W) = a2W2 + a1W + a0 = 0, (3.5)

with

a2 =ξ βh
2(µv + u3)(γ2 + µh)(α2 + δ2 + µh + u2)(Λhβvγ1 + α1γ1µv + α1γ1u3 + α1µhµv + α1µhu3 + δ1γ1µv

+ δ1γ1u3 + δ1µhµv + δ1µhu3 + γ1µhµv + γ1µhu3 + µh
2µv + µh

2u3),
a1 =βhβvΛh((((µv + u3)µh

2 + (((µv + u3)u1 − Λvβh)ξ + (µv + u3)(α2 + δ2 + ωh + u2))µh + ((µv + u3)
((1 − p)(α2 + δ2 + u2) + p(α1 + δ1))u1 − Λvβh(α2 + δ2 + u2))ξ + ωh(µv + u3)(α2 + δ2 + u2))γ2 + µh

(α2 + δ2 + µh + u2)((µv + u3)µh − ξ βhΛv + ωh(µv + u3)))γ1 + µh(µv + u3)u1γ2ξ (µh + (1 − p)(α2

+ δ2 + u2) + p(α1 + δ1))),
a0 =µh(µv + u3)2(γ2 + µh)(γ1 + µh)(α2 + δ2 + µh + u2)(u1 + µh + ωh)(α1 + δ1 + µh)(1 −R2

0 ).

Based on the expression of F(W), we have the following theorem regarding the existence criteria of
E2 in R6

+:

Theorem 4. The yellow fever endemic equilibrium (E2) of system (3.1) always exists if R0 > 1, and no
yellow fever endemic equilibrium otherwise.

Proof. Please see Appendix E for the proof.
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3.4. Forward bifurcation

In this section, we analyze the type of bifurcation of the yellow fever model in (3.1). In many clas-
sical models, forward bifurcation in epidemiological models indicates that R0 is a necessary condition
to ensure disease extinction ( [5,31,35–37]). However, in several epidemiological models [28,38–40],
another type of bifurcation, namely, backward bifurcation, may appear. Under these circumstances,
the condition of the basic reproduction number being less than unity is no longer became sufficient to
guarantee the extinction of the disease. This is because when backward bifurcation phenomena arise,
bistability phenomena may appear where stable endemic equilibrium exists together with the stable
disease-free equilibrium.

To analyze the type of bifurcation of our model in (3.1), we use the result of Theorem 11 in [41],
which is commonly known as the Castillo-Song bifurcation theorem. To apply this theorem, let us re-
symbolize our variable from S ,V, E1, E2, I,T1,T2, and R into xi for i = 1, 2 . . . 10, respectively. Hence,
we now have the system (3.1) that reads as follows:

g1 := Λh − βhx1x10 − µhx1 + ωhx2 − u1x1,

g2 := u1x1 − ξ βhx2x10 − µhx2 − ωhx2,

g3 := βhx1x10 − γ1x3 − µhx3,

g4 := ξ βhx2x10 − (1 − p) γ2x4 − pγ2x4 − µhx4,

g5 := γ1x3 + (1 − p) γ2x4 − (µh + α1) x5 − δ1x5,

g6 := pγ2x4 − δ2x6 − u2x6 − (µh + α2) x6,

g7 := u2x6 − δ3x7 − (µh + α3) x7,

g8 := δ1x5 + δ2x6 + δ3x7 − µhx8,

g9 := Λv − βvx9 (x5 + x6) − (µv + u3) x9,

g10 := βvx9 (x5 + x6) − (µv + u3) x10.

(3.6)

Next, we choose βh as the bifurcation parameter. Therefore, solving R2
0 = 1 with respect to βh (an

argument similar to the proof of Theorem 4), we obtain the following:

β∗h =
(α2 + δ2 + µh + u2) (α1 + δ1 + µh) (γ1 + µh) (µh + ωh + u1) µh (γ2 + µh) (µv + u3)2

Z0 − γ1 (µh + ωh) (γ2 + µh) (α2 + δ2 + µh + u2) βvΛvΛh
, (3.7)

where Z0 = u1 (γ1 + µh) (µh + (δ1 − δ2 − u2 + α1 − α2) p + α2 + δ2 + u2) γ2βvΛvΛhξ. Linearization of
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system (3.6) at E2 with βh = β∗h gives

J =



−µh − u1 ωh 0 0 0 0 0 0 0 a110

u1 −µh − ωh 0 0 0 0 0 0 0 a210

0 0 −γ1 − µh 0 0 0 0 0 0 a310

0 0 0 −γ2 − µh 0 0 0 0 0 a410

0 0 γ1 − (p − 1) γ2 a55 0 0 0 0 0

0 0 0 pγ2 0 a66 0 0 0 0

0 0 0 0 0 u2 a77 0 0 0

0 0 0 0 δ1 δ2 δ3 −µh 0 0

0 0 0 0 −
βvΛv
µv+u3

−
βvΛv
µv+u3

0 0 a99 0

0 0 0 0 βvΛv
µv+u3

βvΛv
µv+u3

0 0 0 u3 + µv



,

where

a110 =
(µh + ωh) (α2 + δ2 + µh + u2) (α1 + δ1 + µh) (γ1 + µh) (γ2 + µh) (µv + u3)2

Aγ2 − γ1µh (µh + ωh) (α2 + δ2 + µh + u2)) βvΛv
,

a210 =
ξ (α2 + δ2 + µh + u2) (α1 + δ1 + µh) (γ1 + µh) (γ2 + µh) (µv + u3)2 u1

Aγ2 − γ1µh (µh + ωh) (α2 + δ2 + µh + u2)) βvΛv
,

a310 = −
(µh + ωh) (α2 + δ2 + µh + u2) (α1 + δ1 + µh) (γ1 + µh) (γ2 + µh) (µv + u3)2

Aγ2 − γ1µh (µh + ωh) (α2 + δ2 + µh + u2)) βvΛv
,

a410 = −
ξ (α2 + δ2 + µh + u2) (α1 + δ1 + µh) (γ1 + µh) (γ2 + µh) (µv + u3)2 u1

Aγ2 − γ1µh (µh + ωh) (α2 + δ2 + µh + u2)) βvΛv
,

a55 = −µh − α1 − δ1,

a66 = −δ2 − u2 − µh − α2,

a77 = −δ3 − µh − α3,

a99 = −u3 − µv,

and A = ((−µh
2 + (ξ u1 − α2 − δ2 −ωh − u2)µh + ((δ2 + u2 − α1 + α2 − δ1)p− α2 − δ2 − u2)u1ξ −ωh(α2 +

δ2 + u2))γ1 + (−µh + (δ2 + u2 − α1 + α2 − δ1)p − δ2 − u2 − α2)u1µhξ). From the direct calculation, it can
be shown that J has a simple zero eigenvalue, while the other nine eigenvalues are negative. Hence,
we can use the center manifold theory to analyze the bifurcation of our yellow fever model.

Following the application of the Castillo-Song bifurcation theorem, we must calculate the right and
left eigenvectors related to the zero eigenvalue. The right eigenvector of J at eigenvalue zero is given
as follows:

w = (w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)T

where

w1 = −
(δ3 + µh + α3)(α2 + δ2 + µh + u2)(γ2 + µh)

(
ξ ωhu1 + µh

2 + 2ωhµh + ωh
2
)

µh (µh + ωh + u1) u1
,
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w2 = −
(δ3 + µh + α3)(α2 + δ2 + µh + u2)(γ2 + µh) (ξ µh + ξ u1 + µh + ωh)

(µh + ωh + u1) µh
,

w3 =
(α2 + δ2 + µh + u2) (µh + ωh) (γ2 + µh) (δ3 + µh + α3)

u1 (γ1 + µh)
,

w4 = (δ3 + µh + α3) (α2 + δ2 + µh + u2) ξ,

w5 =
(α2 + δ2 + µh + u2) (δ3 + µh + α3)

(
γ1µh

2 + ((γ2 + ωh) A1)
)

(γ1 + µh) (α1 + δ1 + µh) u1
,

w6 = (δ3 + µh + α3) ξ pγ2,

w7 = ξ u2 pγ2,

w8 =
(α2 + δ2 + µh + u2) γ2 (δ1 (δ3 + µh + α3) (α2 + δ2 + µh + u2) + A2)

µh (α1 + δ1 + µh)
,

w9 = −
Λvβv

(
µh

2 + (ξ u1 + α2 + δ2 + ωh + u2) µh + u1A3

)
u1 (µv + u3)2 (γ1 + µh) (α1 + δ1 + µh)

,

w10 =
Λvβv

(
µh

2 + (ξ u1 + α2 + δ2 + ωh + u2) µh + u1A3

)
u1 (µv + u3)2 (γ1 + µh) (α1 + δ1 + µh)

,

with

A1 =γ1 + ξ u1γ2(−p + 1)µh + γ1(ξ (−p + 1)u1 + ωh)γ2,

A2 =p((δ3 + µh + α3)(µh + α1)δ2 + (−α3α2 − α2δ3 − µhα2 − µhα3 − α3u2 − µhδ3 − µh
2 − µhu2)

δ1 + u2δ3(µh + α1)),
A3 =((1 − p)(u2 + α2 + δ2) + p(α1 + δ1))ξ + ωh(α2 + δ2 + u2)γ1 + (((δ1 − δ2 − u2 + α1 − α2)p

+ µh + α2 + δ2 + u2)µhu1ξ)γ2 + γ1µh(µh + ωh)(α2 + δ2 + µh + u2)(δ3 + µh + α3).

However, the left eigenvector of J for eigenvalue zero is given as follows:

v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)

where

v1 = v2 = v7 = v8 = v9 = 0,
v3 = γ1,

v4 =
(γ1 + µh) (µh + (1 − p) (u2 + α2 + δ2) + p(α1 + δ1)) γ2

(γ2 + µh) (α2 + δ2 + µh + u2)
,

v5 =γ1 + µh,

v6 =
α1γ1 + α1µh + δ1γ1 + δ1µh + γ1µh + µh

2

α2 + δ2 + µh + u2
,

v10 =
(γ1 + µh) (α1 + δ1 + µh) (u3 + µv)

Λvβv
.

Using the formula as follows:

A =

n=10∑
k,i, j=1

vkwiw j
∂2gk

∂xi∂x j
(0, 0), B =

n=10∑
k,i, j=1

vkwi
∂2gk

∂xi∂β∗
(0, 0). (3.8)
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we have the following:

A = −
2 (α3 + δ3 + µh)2(γ1µh

3 + ((ξ u1 + γ1)γ2 + γ1(δ2 + ωh + u2 + α2))µh
2 + M0)

u1
2(µv + u3)2(γ1 + µh)(α1 + δ1 + µh)µh(µh + ωh + u1)

,

B =

(
ξ γ2u1 (γ1 + µh) (δ1 − δ2 − u2 + α1 − α2) p + (α2 + δ2 + µh + u2)2 M1

)
u1(µv + u3)2(γ1 + µh)(α1 + δ1 + µh)µh(µh + ωh + u1)(γ2 + µh)(α2 + δ2 + µh + u2)

,

where M1 =
(
ξ γ1γ2u1 + ξ γ2µhu1 + γ1γ2µh + γ1γ2ωh + γ1µh

2 + γ1µhωh

)
(α3 + δ3 + µh) ΛvΛhβv while

M0 > 0 cannot be shown in this study because of its long expression. Because we always have A < 0
and B > 0, we have the following results.

Theorem 5. The yellow fever model in system (3.1) always exhibits a forward bifurcation at R0 = 1.

Based on Theorem 5, we understand that E2 is locally asymptotically stable when R0 > 1 but is
close to one. Additionally, based on our proposed model, we can conclude that a basic reproduction
number less than unity will always ensure the extinction of yellow fever from the population.

3.5. Sensitivity analysis, bifurcation and autonomous simulation

In this section, we perform some numerical experiments based on our previous results on The-
orems 3, 4, and 5. First, we analyze the elasticity of each parameter in R0 to determine the most
influential parameter for changing the size of R0. Based on this result, we continue our simulation
by showing the level set of R0 with respect to each control variable to understand the sensitivity of
each parameter. The forward bifurcation diagram shows the impact of R0 on the endemic size of
the infected mosquito population. Finally, numerical experiments were conducted to demonstrate the
dynamic behavior of the system (3.1) under certain scenarios.

To conduct the elasticity analysis of R0 with respect to any parameter ρ, we use the following
equation [42]:

ε
ρ

R0
=
∂R0

∂ρ
×

ρ

R0
. (3.9)

To perform these experiments, we use the following parameter values:

Λh =
10000

65 × 365
,Λv =

20000
30

, βh = 10−5, βv = 10−5, ξ = 0.05, ωh = 0.1, µh =
1

65 × 365
, µv =

1
30
,

γ1 = 0.31, γ2 = 0.31, p = 0.1, δ1 = 0.143, δ2 = 0.0715, δ3 = 0.10725,
α1 = 0.00035, α2 = 0.0004375, α3 = 0.0002625, u1 = 0.01, u2 = 0.01, u3 = 0.01,

which gives R0 = 1.504. Using the Eq (3.9), the elasticity of R0 with respect to each parameter
in the system (3.1) with the value of the above parameter is shown in Table 2. Note that because
α3 and δ3 do not appear in the expression of R0, εα3

R0
and εδ3

R0
are both zero. The positive sign of

ε
ρ

R0
means that R0 increases when ρ increases. However, when ε

ρ

R0
is negative, R0 decreases as ρ

increases. Hence, all control variables can reduce the value of R0 whenever these control parameters
increase. The value of ερR0

represents the percentage of increase or decrease of R0 for a 1% increase or
decrease in ρ. For example, because εu3

R0
= −0.2308, a 1% increase in u3 will reduce R0 by 0.2308%.

Additionally, note that |εu3
R0
| = max

{
|εu1

R0
|, |εu2

R0
|, |εu3

R0
|
}
. Hence, we conclude that fumigation is more
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essential in reducing R0 compared to vaccination and hospitalization. These results are in accordance
with the recommendations of the WHO regarding fumigation as one of the most recommended efforts
to overcome yellow fever [3].

Table 2. Elasticity of R0 with respect to each parameter in system (3.1).

εΛh
R0

εΛv
R0

ε
βh
R0

ε
βv
R0

ε
γ1
R0

ε
γ2
R0

0.5 0.5 0.5 0.5 6.7 × 10−5 3.64 × 10−7

εα1
R0

εα2
R0

εδ1
R0

εδ2
R0

εωh
R0

ε
ξ

R0

-0.0012 −2.32 ×

10−6
-0.49 -0.00038 0.043 0.0027

ε
µh
R0

ε
µv
R0

ε
p
R0

εu1
R0

εu2
R0

εu3
R0

-0.5002 -0.77 0.000186 -0.043 -0.000053 -0.2308

In addition to understanding the impact of all parameters in Eq (2.1) to R0, we must understand
the impact of these parameters on the dynamics of all variables in Eq (2.1). Hence, we conducted a
sensitivity analysis using three methods: non-normalization, half normalization, and full normalization
using the SimBiology toolbox for MATLAB [43, 44].

Suppose that the yellow fever model in Eq (2.1) has 10 compartments, xi in i = 1, 2, ..., 10 represents
S ,V, E1, E2, I,T1,T2,R,U, and W, respectively. Furthermore, let k j for j = 1, 2, ..., 20 represent all the
parameters in system (2.1). We assume that the model-balanced equations are expressed as a system
of differential equations as follows:

dxi

dt
= fi(x, k), (3.10)

where x ∈ Rn, k ∈ Rm, and fi(x, k) is the right-hand side of the system (2.1). The non-normalization
sensitivities are given as follows:

S
xi
k j

=
∂xi

∂k j
, (3.11)

where Sxi
k j

is the sensitivity coefficient of each xi with respect to each parameter k j. The half-
normalization sensitivities are also given by the following equation:

S
xi
k j

=
( 1

xi

)(∂xi

∂k j

)
. (3.12)

Furthermore, the full-normalization sensitivities are defined as follows:

S
xi
k j

=
(k j

xi

)(∂xi

∂k j

)
. (3.13)

The results of the sensitivity analysis without normalization are shown in Figure 3. The results
shown in Figure 3 show that the infection parameters βh and βv are very dominant in influencing
changes in the populations of S and E1 in humans, and the populations of U and W on mosquitoes.
This agrees with the results of the analysis in Table 2 regarding the effect of βh and βv, which are also
dominant on R0. Furthermore, it was also observed that the fumigation intervention (u3) was more
dominant in suppressing the number of infected mosquitoes, whereas vaccination (u2) was dominant
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(a) (b)

Figure 3. Local sensitivity analysis with non–normalization technique of all variables with
respect to (a) all parameters in computational simulations and (b) all parameters except βh

and βv.

in determining the dynamics of healthy and vaccinated human populations. The simulation results in
Figure 3 also confirm that hospitalization is the least effective among all control parameters.

We perform a half-normalization of our model in Figure 4. Note that βh and βv are still dominant in
determining the dynamics of the (3.1) model compared to other parameters. Interestingly, fumigation
is not only dominant in regulating population changes in mosquitoes but also in infected human pop-
ulations. Clearly, the presence of fumigation has a significant impact on the population of E1. This is
consistent with the fact that the expected effect of fumigation is a reduction in the number of new in-
fections in the human population. Figure 5 shows the sensitivity analysis using the full normalization
approach. The results indicate the same result as using the non-and half-normalization approaches,
where fumigation is more dominant compared to other control parameters.

(a) (b)

Figure 4. Local sensitivity analysis with half–normalization technique of all variables with
respect to (a) all parameters in computational simulations and (b) all parameters except βh

and βv.

Next, we show the bifurcation diagram of system (3.1) using the same parameter values as in pre-
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Figure 5. Local sensitivity analysis with full–normalization technique of all variables with
respect to all parameters in computational simulations.

vious numerical experiments. We use our results in Theorem 5, which indicates that our proposed
model in system (3.1) always exhibits a forward bifurcation at R0 = 1. The bifurcation diagram is
shown in Figure 6. Note that the yellow fever-free equilibrium is always locally asymptotically stable
when R0 < 1. At R0 = 1, the yellow fever-free equilibrium becomes unstable, while the yellow fever
endemic equilibrium starts to arise and is locally asymptotically stable. Note that a larger value of R0

will increase the size of infected mosquitoes in an endemic equilibrium.

Figure 6. Bifurcation diagram of system (3.1) with respect to R0 and W.

To illustrate the dynamics of infected compartments with respect to the values of R0, we apply the
Runge-Kutta method to solve system (3.1). In the first simulation we set the values of all parameter
similar to the previous simulation, except u1 = 0.03, u2 = 0.01, u3 = 0.03. This setting gives us
R0 < 1. In Figure 7, we can see that all trajectories tend to the yellow fever free equilibrium point
asymptotically, which in this case is given by

(S ,V, E1, E2, I,T1,T2,R,U,W) = (7694, 2306, 0, 0, 0, 0, 0, 0, 10527, 0).

To simulate R0 > 1, we choose the same parameter value as before, except βh = 2 × 10−5, βv =

2 × 10−5, u1 = 0, u2 = 0, u3 = 0. In Figure 8, we can see that all solutions tend to the endemic
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equilibrium point, which is given by

(S ,V, E1, E2, I,T1,T2,R,U,W) = (599, 0, 1.3, 0, 3, 0, 0, 9375, 19967, 33).

Figure 7. Dynamics of total infected human (left) and mosquito (right) for short (top) and
long (bottom) time period which tend to the yellow fever free equilibrium for various initial
conditions.

4. Characterization and simulation of the optimal control problem

4.1. Characterization of the optimal control problem

Optimal control has been used in several epidemiological models to analyze how the best form of
intervention should be chosen to reduce the rate of spread of the disease, where the intervention is
treated as a time-dependent variable [45–48]. In these studies, the optimal condition for the control
variables concludes that the optimal dynamics of the controls depend on the population involved in
the model. These various studies concluded that time-dependent interventions provide more optimal
results in suppressing the spread of disease but at a more optimal cost.

Before we characterize our optimal control problem, we recall all the control variables introduced
in Section 2 as follows:

• u1(t): Vaccination rate
• u2(t): Hospitalization rate
• u3(t): Fumigation rate.

The objective function is expressed using Eq (2.2). Our aim is to minimize the number of infected
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Figure 8. Dynamics of total infected human (left) and mosquito (right) for short (top) and
long (bottom) time period which tend to the yellow fever endemic equilibrium for various
initial conditions.

individuals with optimal interventions, which are read as follows:

J(û1, û2, û3) = min
u1,u2,u3

{J(u1, u2, u3)|ui ∈ U} , (4.1)

whereU is the admissible control set.
We use the Pontryagin maximum principle (PMP) [49] to determine the necessary condition for the

existence of a triplet of our optimal controls. We define the Hamiltonian of the problem as follows:

H =ω3E1 + ω4E2 + ω5I + ω6T1 + ω7T2 + ω10W + ϕ1u2
1 + ϕ2u2

2 + ϕ3u2
3 + λ1(Λh + ωhV − βhS W

− u1S − µhS ) + λ2(u1S − ξβhVW − ωhV) + λ3(βhS W − γ1E1 − µhE1) + λ4(ξβhVW − ξV

− µhV) + λ5(γ1E1 + (1 − p)γ2E2 − δ1I − (µh + α1)I) + λ6(pγ2E2 − δ2T1 − u2T1 − (µh + α2)T1)
+ λ7(u2T1 − δ3T2 − (µh + α3)T2) + λ8(δ1I + δ2T1 + δ3T2 − µhR) + λ9(Λv − βvU(I + T1)−
(µv + u3)U) + λ10(βvU(I + T1) − (µv + u3)W),

(4.2)

where λi for i = 1, 2, . . . 10 are the adjoint variables for the state variables S ,V, E1, E2, I,T1,T2,R,U,
and W, respectively. Hence, the necessary condition of our optimal control problem is given by the
following theorem:

Theorem 6. For the optimal control variables û1, û2,, and û3, and the optimal solutions
Ŝ , V̂ , Ê1, Ê2, Î, T̂1, T̂2, R̂, Û, and Ŵ of system (2.1), the adjoint variables λi for i = 1, 2, . . . 10 that

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1786–1824.



1805

satisfy the following:

λ̇1 = −
∂H

∂S (t)
= λ1(βhW + u1 + µh) − λ2u1 − λ3βhIv,

λ̇2 = −
∂H

∂V(t)
= −λ1ωh + λ2(ξβhW + ωh + µh) − λ4ξβhW,

λ̇3 = −
∂H

∂E1(t)
= −ω3 + λ3(γ1 + µh) − λ5γ1,

λ̇4 = −
∂H

∂E2(t)
= −ω4 + λ4(γ2 + µh) − λ5(1 − p)γ2 − λ6 pγ2,

λ̇5 = −
∂H

∂I(t)
= −ω5 + λ5(δ1 + µh + α1) − λ8δ1 + λ9βvU − λ10βvU,

λ̇6 = −
∂H

∂T1(t)
= −ω6 + λ6(δ2 + u2 + µh + α2) − λ7u2 − λ8δ2 + λ9βvU − λ10βvU,

λ̇7 = −
∂H

∂T2(t)
= −ω7 + λ7(δ3 + µh + α3) − λ8δ3,

λ̇8 = −
∂H

∂R(t)
= λ8µh,

λ̇9 = −
∂H

∂U(t)
= λ9(βvI + βvT1 + µv + u3) − λ10(βvI + βvT1),

λ̇10 = −
∂H

∂W(t)
= −λ10 + λ1βhS + λ2ξβhV − λ3βhS − λ4ξβhV + λ10(µv + u3),

(4.3)

with transversality conditions λi(T ) = 0 for i = 1, 2, . . . 10. Additionally, the controls ûi for i = 1, 2, 3
are given by the following:

û1(t) =


0 ; S (λ1−λ2)

2ϕ1
≤ 0,

1 ; S (λ1−λ2)
2ϕ1

≥ 1,
S (λ1−λ2)

2ϕ1
; others.

û2(t) =


0 ; T1(λ6−λ7)

2ϕ2
≤ 0,

1 ; T1(λ6−λ7)
2ϕ2

≥ 1,
T1(λ6−λ7)

2ϕ2
; others.

û3(t) =


0 ; U(λ9+λ10)

2ϕ3
≤ 0,

1 ; U(λ9+λ10)
2ϕ3

≥ 1,
U(λ9+λ10)

2ϕ3
; others.

(4.4)

Proof. The adjoint system in Eq (4.3) is taken from the following formula

λ̇1 = −
∂H

∂S
, λ̇2 = −

∂H

∂V
, λ̇3 = −

∂H

∂E1
, λ̇4 = −

∂H

∂E2
, λ̇5 = −

∂H

∂I
,

λ̇6 = −
∂H

∂T1
, λ̇7 = −

∂H

∂T2
, λ̇8 = −

∂H

∂R
, λ̇9 = −

∂H

∂U
, λ̇10 = −

∂H

∂W
, (4.5)
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with the transversality condition λi(T ) = 0 for i = 1, 2 . . . 10. To obtain the control characterization,
we first take the derivative ofH with respect to each control variable. Hence, we obtain the following:

∂H

∂u1(t)
=2ϕ1u1 − λ1S + λ2S ,

∂H

∂u2(t)
=2ϕ2u2 − λ6T1 + λ7T1,

∂H

∂u3(t)
=2ϕ2u3 − λ9U − λ10I.

Solve ∂H
∂ui

= 0 for each control variables, we have the following:

u∗1(t) =
S (t)(λ1 − λ2)

2ϕ1
,

u∗2(t) =
T1(t)(λ6 − λ7)

2ϕ2
,

u∗3(t) =
λ9U(t) + λ10U(t)

2ϕ3
.

Hence, based on the standard argument that ûi should be bounded between umin
i and umax

i (in this study,
we choose umin

i = 0, umax
i = 1 for each control variable), we have Eq (4.4).

4.2. Numerical experiments

In this section, we perform numerical simulations for the optimal control problem. To summarize,
we aim to minimize the cost function in Eq (2.2) subject to the yellow fever model in Eq (2.1) as the
state system, and the adjoint system in Eq (4.3) with the terminal condition given, and the optimality
condition in Eq (4.4). We performed numerical simulations using the forward-backward sweep method
[50]. To perform these simulation, we chose the following initial conditions:

S (0) = 8500,V(0) = 0, E1(0) = 800, E2(0) = 0, I(0) = 500,
T1(0) = 0,T2(0) = 0,R(0) = 200,U(0) = 17000,V(0) = 3000. (4.6)

Additionally, to balance each component in the cost function Eq (2.2), we choose ω3 = ω4 = ω5 =

ω6 = ω7 = 1, ω10 = 0.1, ϕ1 = 2500, ϕ2 = 5000, and ϕ3 = 1500. We use the same parameter values as in
the previous section, which gives R0 = 1.504. Hence, without further improvement in the intervention,
yellow fever will be endemic to the population. The autonomous simulation of system (3.1) without
any intervention (u1(t) = u2(t) = u3(t) = 0) is shown as a red curve in Figures 9–13. We called this
simulation as Strategy 0.

For optimal control experiments, we divide our experiments based on the combination of each form
of intervention as follows:

• Strategy 1: Vaccination only (u1(t) ≥ 0, u2(t) = u3(t) = 0).
• Strategy 2: Fumigation only (u1(t) = u2(t) = 0, u3 ≥ 0).
• Strategy 3: Vaccination and hospitalization only (u1(t) ≥ 0, u2(t) ≥ 0, u3(t) = 0).
• Strategy 4: Vaccination and fumigation only (u1(t) ≥ 0, u2(t) = 0, u3(t) ≥ 0).
• Strategy 5: All interventions implemented (u1(t) ≥ 0, u2(t) ≥ 0, u3(t) ≥ 0).
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Strategy 1

In the first simulation, the optimal control simulation used vaccination as the only means of inter-
vention. The results are shown in Figure 9.

Figure 9. Dynamics of total infected human, infected mosquitoes, and control variables for
Strategy 1.

The implementation of vaccination with the greatest effort should be done at the beginning of sim-
ulation. It will reduce the number of infected people, reducing both direct contact between vulnerable
mosquitoes and infected people and the number of infected mosquitoes. Reducing the level of in-
tervention will cause the number of infected people and mosquitoes to increase near the end of the
simulation. Yellow fever vaccines can cause side effects in rare cases; therefore, the total number of
infected people rose immediately after vaccination before slowly decreasing toward the end.

Based on maximum vaccination at the start, this strategy has a cost of 632, 377 and prevents 444, 868
infections, leading to a total of 2, 981, 365 recovered individuals.

Strategy 2

The optimal control strategy for this simulation only uses fumigation to control mosquito popula-
tions with the aim of breaking the yellow fever infection cycle. The results are shown in Figure 10.

This strategy involves maximum fumigation for nearly three months, before drastically decreasing
the rate of fumigation toward the end owing to the rapidly increasing number of infected mosquitoes
since the start. This significantly reduced the number of infected people and mosquitoes. Fumigation
helps control the number of infected mosquitoes that can come into direct contact with susceptible
individuals.

Although this strategy has a cost of 333, 345, which is almost half that of the first strategy, it prevents
784, 547 infections, far more than the first strategy. With this strategy, 1, 819, 666 people will recover
by the end of the period.
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Figure 10. Dynamic of total infected human, infected mosquitoes, and control variables for
Strategy 2.

Strategy 3

The third optimal control simulation combines vaccination and treatment. People in T1 receive
treatment to aid in the recovery process. Treatment is given because yellow fever vaccines may cause
side effects in rare cases. The results are shown in Figure 11.

Figure 11. Dynamic of total infected human, infected mosquitoes, and control variables for
Strategy 3.
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The implementation of vaccination with the greatest effort should be done at the beginning of sim-
ulation. It would be accompanied by the side effects of the yellow fever vaccine. Treatment must
counteract this effect. Treatment continued until day 14. This reduces the number of infected individ-
uals, which without any intervention will increase until the 30th day. Vaccination is reduced because of
the declining number of infected people.

This strategy has a higher cost than the previous two strategies (664, 808) but is only slightly better
at preventing infections (458, 867) and yields a similar number of recovered people (2, 949, 196).

Strategy 4

The fourth optimal control simulation uses both vaccination and fumigation to combat yellow fever.
The results are shown in Figure 12.

Figure 12. Dynamic of total infected human, infected mosquitoes, and control variables for
Strategy 4.

Maximum fumigation and vaccination are given simultaneously for the first 60 days to slow the rise
in the number of infected people and mosquitoes.

Maximum intervention throughout the period is impossible because of cost constraints. Therefore,
vaccination is reduced after the 65th day, and fumigation is reduced after the 81st day. This strategy
causes the number of infected mosquitoes and infected humans to approach zero on the 14th and the
38th days, respectively.

This strategy has the highest cost of all four strategies (1, 933, 426) but yields the same number of
prevented infections as the second strategy (815, 668) and fewer recovered individuals than the second
strategy (1, 551, 319).

Strategy 5

In the last simulation, the optimal control simulation simultaneously involved all interventions (vac-
cination, hospitalization, and fumigation) to control the spread of yellow fever. The simulation results
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are shown in Figure 13. Note that all interventions must be given to the fullest extent possible from
the start of the simulation. Therefore, the number of infected humans and mosquitoes has decreased
significantly since the first day. When the infected population in both human and mosquito populations
stops increasing, the vaccination, hospitalization, and fumigation interventions will gradually decrease
until they reach zero on the final day of the simulation.

With maximum intervention from the beginning of the simulation, the cost function is worth
2694.146, which is much larger than the cost function value in Strategy 4. Nonetheless, when compared
to Strategy 4, the number of infected humans successfully avoided was not significantly different, that
is, 816 individuals. Similarly, the number of successfully recovered people is not significantly different
from Strategy 4, which is 1551 individuals.

Figure 13. Dynamic of total infected human, infected mosquitoes, and control variables for
Strategy 5.

4.3. Cost-effectiveness analysis

It is critical to determine the most cost-effective strategy among the five proposed strategies based on
the results of our optimal control simulations. To accomplish this, we use three methods: the average
cost-effectiveness ratio (ACER), infected averted ratio (IAR), and incremental cost-effectiveness ratio
(ICER) [51–53].

Average cost-effectiveness ratio (ACER)

The ACER method calculates the average cost that should be spent for each number of avoided
infected individuals. The ACER formula is as follows:

ACERStrategy i =
Total cost for intervention with Strategy i

Total number of infection averted with Strategy i
. (4.7)

Therefore, a smaller ACER indicates a better strategy. The results of the ACER values for each strategy
are shown in Figure 14. Note that the best strategy based on the ACER index implemented fumigation
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as a single form of intervention (Strategy 2), followed by Strategies 1, 3, 4, and 5. This means that
using fumigation as a single form of intervention is the cheapest way, on average, to avoid many newly
infected individuals. An interesting result shows that in our numerical experiment, vaccination is not
cost-effective in reducing the expected number of newly infected individuals. This is because in our
simulation, the number of infected individuals is already high (13% in the human population and 15%
in the mosquito population). Furthermore, the simultaneous implementation of all strategies is not
cost-effective because we must increase the already high hospitalization cost further.

Figure 14. The average cost-effectiveness ratio (ACER) of Strategies 1–5.

Infected averted ratio (IAR)

The IAR method calculates the ratio between the number of infected averted individuals and the
number of recovered individuals. The equation for IAR is as follows:

IARStrategy i =
Total number of infection averted with Strategy i

Total recovered individuals with Strategy i
. (4.8)

Based on the above equation, a larger IAR indicates a better strategy. Figure 15 shows that a combina-
tion of all means of interventions (Strategy 5) is the best strategy in terms of IAR, but it is only slightly
different from Strategy 4. This is because when vaccination, hospitalization, and fumigation are im-
plemented together, all means of intervention aim to reduce the endemic situation and avoid newly
infected individuals. However, as we already discussed in the previous section, Strategy 5 comes at a
high cost. The second-best strategy in terms of IAR is Strategy 4, followed by Strategies 2, 3, and 1.
Note that implementing vaccination as a single single form of intervention is the least cost-effective
strategy in the terms of IAR. This is because this type of intervention is more concerned with prevention
rather than endemic reduction.
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Figure 15. The infected averted ratio (IAR) of Strategies 1–5.

Incremental cost-effectiveness ratio (ICER)

The ICER was the final cost-effectiveness analysis method. The ICER compares the cost differences
between two strategies and the number of infected averts. Hence, the equation for ICER is as follows:

ICERi–j =
Difference of cost between Strategy i and Strategy j

Difference of number of infection averted between Strategy i and Strategy j
. (4.9)

Based on the numerical simulation, we rank all strategies in an increasing order based on the total
number of infections averted in Table 3. Strategy 1 (intervention of vaccination only) has the lowest
number of infections averted, while Strategy 5 (all interventions implemented) has the largest number
of infections averted.

Table 3. Strategies 1–5 in increasing order based on the number of infections averted.

Strategy Total infections averted Total cost ICER
Strategy 1 444.868 632.377 1.4215
Strategy 3 458.867 664.808 2.3167
Strategy 2 784.547 333.345 -1.0178
Strategy 4 815.668 1933.426 51.415
Strategy 5 816 2694.146 2285.8173

To compare strategies 1 and 3, the ICER is calculated as follows:

ICER − 1 =
632.377
444.868

= 1.4215,
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ICER − 3 =
664.808 − 632.377
458.867 − 444.868

= 2.3167,

ICER − 2 =
333.345 − 664.808
784.547 − 458.867

= −1.0178,

ICER − 4 =
1933.426 − 333.345
815.668 − 784.547

= 51.415,

ICER − 5 =
2694.146 − 1933.426

816 − 815.668
= 2285.8173.

Note that ICER-3 > ICER-1. Hence, we can exclude ICER-3 from the next calculation because it
is more costly than ICER-3. Next, we continue our calculation by comparing the ICER between
Strategies 1 and 2. The result of calculating ICER using the same method as before is shown in
Table 4.

Table 4. Comparison between Strategies 1 and 2.

Strategy Total infection averted Total cost ICER
Strategy 1 444.868 632.377 1.4215
Strategy 2 784.547 333.345 -.88038
Strategy 4 815.668 1933.426 51.415
Strategy 5 816 2694.146 2285.8173

Table 4 shows that ICER-1>ICER-2, which means that Strategy 1 is more costly than Strategy 2.
Hence, we exclude Strategy 1 from the next calculation. Up to this step, we have three last candidates
for the best strategies, i.e., Strategies 2, 4, and 5. Next, we compare Strategies 2 and 4, the results of
which are shown in Table 5.

Table 5. Comparison between Strategies 2 and 4.

Strategy Total infection averted Total cost ICER
Strategy 2 784.547 333.345 0.4249
Strategy 4 815.668 1933.426 51.415
Strategy 5 816 2694.146 2285.8173

Table 5 shows that Strategy 4 is more costly compared to Strategy 2 because ICER-4 > ICER-2.
Hence, we exclude Strategy 4 from the next comparison. The results are presented in Table 6.

Table 6. Comparison between Strategies 2 and 5.

Strategy Total infection averted Total cost ICER
Strategy 2 784.547 333.345 0.4249
Strategy 5 816 2694.146 75.0564

Table 6 indicates that ICER-5 > ICER-2, which means that Strategy 5 (all interventions imple-
mented) is more costly compared to Strategy 2 (only fumigation strategy implemented) in reducing the
spread of yellow fever. Additionally, Strategy 5 is dominated by Strategy 2, which means that Strat-
egy 5 is less effective compared to Strategy 2. Hence, we can conclude that fumigation, as a single
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intervention to reduce the spread of yellow fever, is the most cost-effective strategy compared to other
possible strategies.

5. Conclusions

Yellow fever is an acute viral hemorrhagic fever caused by the yellow fever virus of the Flavivirus
genus. It is spread by the bite of several types of female mosquitoes (Aedes, Haemagogus) [54]. It is
estimated that more than 100,000 cases occur each year, with Africa accounting for more than 60% of
all cases. There are three types of yellow fever based on species that interact during the transmission
process. The first type is the jungle transmission, where the transmission process involves monkeys
and mosquitoes, while the second type, namely, the urban type, involves mosquitoes and humans.
The last type, namely the intermediate type, which commonly occurs in Africa, involves mosquitoes,
monkeys, and humans in the transmission process [55]. Yellow fever has an incubation period of three
to six days, and the symptoms vary, from headache, backache, vomiting, bleeding, and yellow eyes
to death [56]. Several means of interventions have been implemented to control the spread of yellow
fever, such as vaccination and fumigation. Vaccination for yellow fever is strongly recommended for
individuals planning to travel to the yellow fever endemic area. However, there are a few cases where
yellow fever vaccination has a side effect on some vulnerable individuals, such as the elderly, pregnant
women, etc. [25]. Infected individuals who already have severe symptoms should be hospitalized.

This work introduces a novel optimal control of the yellow fever model based on a ten-dimensional
system of ordinary differential equations with a compartmental model approach. Our model includes
three possible form of interventions: vaccination, hospitalization, and fumigation. We show that our
model is mathematically and biologically well-defined. Our mathematical analysis shows that our
model has two possible equilibriums: the yellow fever-free equilibrium point and the yellow fever en-
demic equilibrium point. We show that the basic reproduction number of our model plays an important
role in determining the existence and stability of our equilibrium points. We discovered that the yellow
fever-free equilibrium is always locally asymptotically stable when the basic reproduction number is
less than one and unstable when it is greater than one. However, the yellow fever endemic equilibrium
never exists when the basic reproduction number is less than one and exists (and is stable) when the
basic reproduction number is greater than one. Additionally, we found that the endemic size in human
and mosquito populations increased rapidly when the basic reproduction number increased. Using the
Castillo-Song bifurcation theorem [41], we demonstrated that our model exhibits a forward bifurcation
phenomenon at a basic reproduction number of one. Hence, we can conclude that our basic repro-
duction number becomes a necessary threshold to determine whether yellow fever will be endemic or
disappear from the population.

An optimal control problem is then developed and characterized using the Pontryagin maximum
principle [49]. We treated our form of interventions (vaccination, hospitalization, and fumigation) as
time-dependent variables. We ran our simulations using a forward-backward method [50] for five types
of strategies, depending on the possible combination of strategies. The simulation results demonstrated
that all means of intervention can eradicate yellow fever. Our sensitivity analysis found that fumigation
was the most elastic parameter for determining the basic reproduction number. A cost-effectiveness
analysis was conducted to determine the best strategies to prevent the spread of yellow fever. Three
types of cost-effectiveness indicators were used: ACER, IAR, and ICER. We found that vaccination
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intervention showed the best ACER results, implying that the vaccination strategy as a single interven-
tion provides the lowest average cost required for an averted infection individual. On the other hand,
the strategy of combining vaccination, hospitalization, and fumigation showed the best IAR results.
Additionally, we found that using fumigation as a single form of intervention shows the best ICER re-
sult, which agrees with the ACER result. Therefore, the results of this study can be used by authorities
to determine the best strategy to implement in the field to control the spread of yellow fever.

This study considers only three form of interventions: fumigation, vaccination, and hospitaliza-
tions. However, some other means of intervention can be chosen as an option, such as using bed nets
or mosquito repellents to reduce the mosquito bite. Furthermore, massive vector control such as fumi-
gation, is a high risk because it can trigger mosquitoes’ resistance to fumigants. Hence, a mathematical
model concerning more means of intervention and the possibility of mosquito resistance could be con-
sidered in future work. Last but not least, it is essential to fit our model to the real-life situation by
estimating the best fit parameter. Hence, incidence data of yellow fever is essential for conducting
parameter estimation into our model.
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Appendix

A. Proof of Theorem 1

From yellow fever model in Eq (3.1), with a non-negative initial conditions on each variables, we
have the following result:

dS
dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1≥0,T2≥0,R≥0,U>0,V≥0

= Λh + ωhV > 0,

dV
dt

∣∣∣∣∣
S>0,V=0,E1≥0,E2≥0,I≥0,T1≥0,T2≥0,R≥0,U>0,V≥0

= u1S ≥ 0,

dE1

dt

∣∣∣∣∣
S>0,V≥0,E1=0,E2≥0,I≥0,T1≥0,T2≥0,R≥0,U>0,V≥0

= βhS W ≥ 0,

dE2

dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2=0,I≥0,T1≥0,T2≥0,R≥0,U>0,V≥0

= ξβhVW ≥ 0,

dI
dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I=0,T1≥0,T2≥0,R≥0,U>0,V≥0

= γ1E1 + (1 − p)γ2E2 ≥ 0, (A.1)

dT1

dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1=0,T2≥0,R≥0,U>0,V≥0

= pγ2E2 ≥ 0,

dT2

dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1≥0,T2=0,R≥0,U>0,V≥0

= u2T1 ≥ 0,

dR
dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1≥0,T2≥0,R=0,U>0,V≥0

= δ1I + δ2T1 + δ3T2 ≥ 0,

dU
dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1≥0,T2≥0,R≥0,U=0,V≥0

= Λv > 0,

dW
dt

∣∣∣∣∣
S>0,V≥0,E1≥0,E2≥0,I≥0,T1≥0,T2≥0,R≥0,U>0,V=0

= βvU(I + T1) ≥ 0.

The above calculation at the boundary of each variable indicates that the rates of each variable are
non-negative on the boundary planes of R10

+ . Hence, we can conclude that all vector fields in the
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boundary are always pointed inward. Therefore, whenever the initial condition is non-negative in R10
+ ,

the solution will always remain non-negative for all times t > 0. Hence, the proof is complete.

B. Proof of Theorem 2

Because dN
dt = Λh − Iα1 − T1α2 − T2α3 − µhN, we have

dN
dt

= Λh − Iα1 − T1α2 − T2α3 − Nµh,

6 Λh − µhN.
(B.1)

Solve the above equation with respect to N(t), we have the following:

N(t) 6 N(0)e−µht +
Λh

µh
(1 − e−µht).

Therefore, for t → ∞, N(t) tends to
Λh

µh
. A similar approach can be used to demonstrate that the total

mosquito population (M(t)) is eventually bounded by
Λv

µv
. Hence, the proof is complete.

C. Derivation of R0

Taking only the infected compartment in system (3.1), the transmission (T) and the transition (Σ)
matrix, which are evaluated in E1, are given by the following:

T =



0 0 0 0 0
(µh + ωh)Λhβh

µh(µh + ωh + u1)

0 0 0 0 0
ξβhΛhu1

µh(µh + ωh + u1)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0
βvΛv

µv + u3

βvΛv

µv + u3
0 0


,

and

Σ =



−γ1 − µh 0 0 0 0 0

0 a22 0 0 0 0

γ1 (1 − p) γ2 −µh − α1 − δ1 0 0 0

0 pγ2 0 −δ2 − u2 − µh − α2 0 0

0 0 0 u2 −δ3 − µh − α3 0

0 0 0 0 0 −µv − u3


,
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where a22 = −(1− p)γ2− pγ2−µh.Using the formula in [33], the next generation matrix of system (3.1)
is given by K = −EtTΣ−1E, where

E =



1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1


,Et =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 .

Hence, the basic reproduction number of system (3.1) as the spectral radius of K is given by the
following:

R0 = ρ(K) =

√
µh(α2 + δ2 + µh + u2)(γ1 + µh)M1

µh(µh + ωh + u1)(γ2 + µh)(µv + u3)(γ1 + µh)(α2 + δ2 + µh + u2)(α1 + δ1 + µh)
, (C.1)

with

M1 =(γ1µ
3
h + ((ξu1 + γ1)γ2 + γ1(δ2 + ωh + u2 + α2))µ2

h + (((ξu1 + α2 + δ2 + ωh + u2)γ1 + u1(pα1 + pδ1

+ (α2 + δ2 + u2)(1 − p))ξ)γ2 + γ1ωh(α2 + δ2 + u2))µh + γ1γ2(u1(pα1 + pδ1 + (α2 + δ2 + u2)(1 − p))
ξ + ωh(α2 + δ2 + u2)))Λvβv(µh + ωh + u1)(γ2 + µh)βh(α1 + δ1 + µh)Λh.

D. The proof of Theorem 3

Let us simplify the notion of E1, E2, I,T1,T2,W,R, S ,V,U as xi for i = 1, 2, . . . 10, respectively. We
redefine system (3.1) as follows:

f1 :=
dE1

dt
= βhS W − γ1E1 − µhE1,

f2 :=
dE2

dt
= ξβhVW − (1 − p)γ2E2 − pγ2E2 − µhE2,

f3 :=
dI
dt

= γ1E1 + (1 − p)γ2E2 − (µh + α1)I − δ1I,

f4 :=
dT1

dt
= pγ2E2 − δ2T1 − u2T1 − (µh + α2)T1,

f5 :=
dT2

dt
= u2T1 − δ3T2 − (µh + α3)T2,

f6 :=
dW
dt

= βvU(I + T1) − (µv + u3)W, (D.1)

f7 :=
dR
dt

= δ1I + δ2T1 + δ3T2 − µhR,

f8 :=
dS
dt

= Λh + ωhV − βhS W − u1S − µhS ,

f9 :=
dV
dt

= u1S − ξβhVW − µhV − ωhV,

f10 :=
dU
dt

= Λv − βvU(I + T1) − (µv + u3)U.
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Now, we define our yellow-fever free equilibrium as

Xs = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ,

=

(
0, 0, 0, 0, 0, 0, 0,

λh(µh + ωh)
µh(µh + ωh + u1)

,
Λhu1

µh(µh + ωh + u1)
,

Λv

µv + u3

)
. (D.2)

To apply Theorem 2 in [34], we have to show that the system (D.1) satisfies five axioms in [34].
Therefore, we need to separate the infection (F ) and the non-infection (V) term in the symstem (D.1)
as follows:

F =



WS βh

ξβhVW
0
0
0

βvU(I + T1)
0
0
0
0



, V =



(γ1 + µh)E1

(1 − p)γ2E2 + (pγ2 + µh)E2

−γ1E1 − (1 − p)γ2E2 + (µh + α1)I + δ1I
−pγ2E2 + (δ2 + u2)T1 + (µh + α2)T1

−u2T1 + δ3T2 + (µh + α3)T2

(µv + u3)W
µhR − δ1I − δ2T1 − δ3T2

−Λh − ωhV + βhWS + (u1 + µh)S
−u1S + ξβhVW + (µh + ωh)V
−Λv + βvU(I + T1) + (µv + u3)U



. (D.3)

Note that Vi can be decomposed as Vi = V−i − V
+
i , where V−i and V+

i represent the out and in flow
in compartment-i, respectively. Now, we are ready to proof the five axioms in [34].

1. If all compartment (xi, i = 1, 2, . . . 10) are non-negative, then Fi,V
−
i , and V+

i are always non-
negative. By substituting xi ≥ 0 into Fi,V

−
i , and V+

i , we can verify that Fi,V
−
i , and V+

i are
always non-negative.

2. If all compartments are empty, then there is no out-flow rate from each compartment. It is easy to
verify that,V−i = 0 for i = 1, 2, . . . 10 when we set xi = 0 for i = 1, 2, . . . 10.

3. For all non infected compartment (xi, i = 7, 8, 9, 10), we have that Fi = 0. This axiom satisfies
directly by the expression of F at (D.3).(?)

4. If xi ∈ Xs, then Fi = 0 = V+
i = 0 for i = 1, 2, . . . 6. By substituting Xs into Fi, i = 1, 2, . . . 6, we

have that Fi = 0 andV+
i = 0, i = 1, 2, . . . 6.

5. If F (x) = 0, then all the eigenvalues of D f (Xs) have a negative real part, where D f (Xs) is the
Jacobian matrix of (D.1) evaluated at Xs. By substituting Xs into system (D.1), we obtain :

f1 =
dE1

dt
= −γ1E1 − µhE1,

f2 =
dE2

dt
= −(1 − p)γ2E2 − pγ2E2 − µhE2,

f3 =
dI
dt

= γ1E1 + (1 − p)γ2E2 − (µh + α1)I − δ1I,

f4 =
dT1

dt
= γ2E2 − δ2T1 − u2T1 − (µh + α2)T1,

f5 =
dT2

dt
= u2T1 − δ3T2 − (µh + α3)T2, (D.4)
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f6 =
dW
dt

= −(µv + u3)W,

f7 =
dR
dt

= δ1I + δ2T1 + δ3T2 − µhR,

f8 =
dS
dt

= Λh + ωhV − βhS W − u1S − µhS ,

f9 =
dV
dt

= u1S − ξβhVW − µhV − ωhV,

f10 =
dU
dt

= Λv − βvU(I + T1) − (µv + u3)U.

Then, we can evaluate D f (Xs) of system (D.4). By standard calculation, we obtain the eigenvalues
of D f (Xs) as follows:

λ1 = −µh, λ2 = −µh, λ3 = −(µv + u3), λ4 = −(µv + u3), λ5 = −(γ2 + µh),
λ6 = −(γ1 + µh), λ7 = −(α3 + δ3 + µh), λ8 = −(u2 + α2 + δ2 + µh),
λ9 = −(ωh + u1 + µh), λ10 = −(α1 + δ1 + µh).

Since all parameter values are non-negative, we can see that all eigenvalues of D f (Xs) are nega-
tive.

Hence, the proof is completed.

E. The proof of Theorem 4

From the expression of F(W) in Eq (3.5), we can see that a2 is always positive, whereas a0 <

0 ⇐⇒ R2
0 > 1. Using the formula for the multiplication of roots in a second-degree polynomial, we

have W‡

1 ×W‡

2 = a0
a2

, where W‡

1 and W‡

2 is the root of F(W). Hence, if R2
0 > 1, we have W‡

1 ×W‡

2 < 0,
which indicates that there exists one positive root, and the other one is negative. Therefore, we have a
unique yellow fever endemic equilibrium point when R2

0 > 1 ⇐⇒ R0 > 1.
Now, we analyze the possibility of the existence of E2 when R2

0 < 1. To accomplish this, we use
the properties of the second-degree polynomial to have two positive roots, that is, W‡

1 ×W‡

2 = a0
a2
> 0,

W‡

1 + W‡

2 = −a1
a2
> 0, and a2

1 − 4a2a0 ≥ 0. However, because the expressions of a2, a1, and a0 is not
simple, the expression of a2

1 − 4a2a0 is not easy to analyze. Hence, we use another approach to analyze
the existence of E2 when R0 < 1. To accomplish this, we use a gradient analysis of W in R0 = 1 and
W = 0. If we can find a condition such that ∂W

∂R0
< 0, we can have at least one positive root of F(W)

when R0 < 1. Because the expression of R0 contains a square root, and the condition of R0 = 1 is
represented by R2

0 = 1, we will analyze the gradient of W with respect to R2
0 at R2

0 = 1 instead of
R0 = 1.

Solving the expression of R2
0 = 1 in Eq (3.3) with respect to βh, and substituting it with F(W), we

have a2, a1, and a0, which is an expression of R2
0 . Taking the implicit derivative of W with respect to

R2
0 from F(W), we have the following:

∂a2

∂R2
0

(W‡)2 + a2(2W‡)
∂W‡

∂R2
0

+
∂a1

∂R2
0

W‡ + a1
∂W‡

∂R2
0

+
∂a0

∂R2
0

= 0. (E.1)
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substitute W = 0, and solve it with respect to
∂W‡

∂R2
0

, we have the following:

∂W‡

∂R2
0

= −

∂a0

∂R2
0

a1
> 0,

where
∂a0

∂R2
0

= −2 µh(µv + u3)2(γ2 + µh)(γ1 + µh)(α2 + δ2 + µh + u2)(µh + ωh + u1)(α1 + δ1 + µh) < 0

and a1 > 0. Hence, the gradient of W at R2
0 = 1 is always positive without any condition. Therefore,

we can conclude that there is no yellow fever endemic equilibrium when R0 < 1. Hence, the proof is
complete.
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