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Abstract: In this work, we formulate an epidemiological model for studying the spread of Ebola
virus disease in a considered territory. This model includes the effect of various control measures, such
as: vaccination, education campaigns, early detection campaigns, increase of sanitary measures in
hospital, quarantine of infected individuals and restriction of movement between geographical areas.
Using optimal control theory, we determine an optimal control strategy which aims to reduce the
number of infected individuals, according to some operative restrictions (e.g., economical, logistic,
etc.). Furthermore, we study the existence and uniqueness of the optimal control. Finally, we illustrate
the interest of the obtained results by considering numerical experiments based on real data.
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1. Introduction

Describing a phenomenon using mathematical models is useful for understanding the dynamics of
human and animal diseases. Thus, modeling and simulation are important decision tools that can be
used for this purpose [1]. They can be adapted to different diseases according to their characteristics,
and, thus, can be used to handle real situations such as those arising from recent pandemics: Ebola virus
disease in 2014–2016 and SARS-CoV-2 since 2019 [2–5]. From a mathematical point of view, there
exist several studies proposing models to estimate and control the spread of Ebola virus disease, such as
the ones proposed in [3,6,7] and [8]. In February 2021, an outbreak of EVD was declared by the World
Health Organization (WHO) both in Guinea and the Democratic Republic of Congo. Shortly after the
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infections were detected, national health authorities, with support of WHO and partners, mounted a
swift response in fighting these outbreaks. On June 2021, the outbreak was declared over with a total
of 16 confirmed and 7 probable cases reported. Of whom, 12 people died. Recently, in August 17,
2021, WHO confirmed the first EVD case in Ivory Coast. Additionally, another suspect case and 9
contact cases have been identified and followed up. So, it becomes urgent to take imminent measures
to fight against EVD. Many authors focus on this question and propose a large variety of mathematical
models to study the propagation of diseases in human and animal populations [1, 9–11].

Optimal control theory is another part of the mathematics that is used to manage the spread of a
disease allowing to take decisions in complex biological situations [12]. For example, Zaman et al. [13]
applied optimal control to a vector-borne disease (such as, malaria, dengue fever or West Nile virus)
with direct transmission in host population. They proved the existence of the optimal problem and
established some numerical simulations to support theoretical results. Additionally, Yusuf et al. [12]
proposed an optimal control problem based on a SIR model with vaccination and treatment as possible
controls. They studied an optimal combination of vaccination and treatment strategies to minimize the
cost of those control measures.

In a previous work [3], the authors established a deterministic spatial-temporal epidemiological
model called Be-CoDiS (between-countries disease spread) to simulate the spread of human diseases
in a considered area. Be-CoDiS was validated by considering the 2014–2016 West-African Ebola virus
disease (EVD). Ebola is a human and primate virus disease that causes a high mortality rate (between
50% and 90%) [14, 15]. During the period from December 2013 up to March 2016, several important
outbreaks were reported in West Africa (Guinea, Liberia, Sierra Leone and Nigeria). Furthermore,
some isolated cases were detected in other countries such as Mali, Senegal, the USA, the United
Kingdom, Italy and Spain [16]. In another recent paper [17], the authors performed a stability and
sensitivity analysis of Be-CoDiS. They first studied the equilibrium states of simplified versions of this
model, limited to the cases of one or two countries and then determined their basic Reproduction ratios.
Then, they established the global stability of the disease-free equilibrium (DFE) for the two simplified
versions and illustrated the theoretical results by considering numerical simulations based on data from
the 2014–16 West African Ebola virus epidemic.

In this work, we study an optimal control problem based on a simplified version of Be-CoDiS
(limited to the case of one country). To this aim, we first formulate the optimal control problem by
explaining each control variable. The controls represent the measures that can be applied in order to
prevent and treat the disease (such as, prevention campaigns, vaccination, detection, hospitalization or
quarantine). Those measures aim to reduce and eradicate Ebola in the population.Then, we show the
existence and uniqueness of optimal solution and characterize it. We note that, with respect to existing
literature focusing on models for controlling Ebola outbreaks [7, 18], here, we consider at the same
time a large variety of control measures, by using 5 controls terms.

This work is organized as follows. In Section 2, we recall the formulation of a simplified version
of Be-CoDiS limited to one country. In Section 3, we first formulate the optimal control problem, then
explain each of the control variable and establish some assumptions regarding the model, known as the
classical regularity hypotheses. In Section 4, we characterize the optimal controls using the Pontryagin
maximum principle [19]. The existence and uniqueness of the optimal solution are discussed in Sec-
tions 5 and 6. In Section 7, we present some numerical experiments that illustrate the pertinence of the
controls on the disease spread.
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2. Considered epidemiological model

The model we are going to study is a compartmental model whose compartments are described
below (see [3, 15, 20–22]):

• Susceptible (denoted by S ): This compartment contains people who are not infected by the dis-
ease pathogen.
• Infected (denoted by E): People in this compartment are infected by the disease pathogen but do

not have visible clinical signs (e.g., fever, hemorrhages, etc.). They cannot infect other people
yet. This period is called the incubation period. At the end of it, people move to the Infectious
compartment.
• Infectious (denoted by I): People start developing clinical signs and can infect other people. After

the infectious period, which is the mean duration of a person in this compartment, infectious
people are placed under sanitary cares by authorities and then classified as Hospitalized.
• Hospitalized (denoted by H): People in this compartment are under treatment, but can still infect

other people. After the hospitalization period, people can either recover (and then pass to the
Recovered compartment) or die (Dead compartment). We precise that compartment H does not
contain hospitalized people who cannot infect other people any more. They are included in the
Recovered compartment explained below.
• Dead (denoted by D): People that died from the disease, who are not buried yet and can still infect

other people due to contacts with their body. After a fixed average time, the body is buried.
• Recovered (denoted by R): Contains people who have survived the disease. People in this com-

partment develop a natural immunity to the disease pathogen and are no longer infectious.

After the hospitalization of infected people, various control measures may be applied by the author-
ities in order to control the propagation of the disease (see [7, 8, 23, 24] and recently [18]).

µτµµµ

Λ

τ τ

Θ

λ

αγβ   + β    + β   

D

RIES H
I H D δ

µ

Figure 1. Diagram of the model (2.1).

Here, we restrict our study to the case of the evolution of the epidemic inside a single country.
This assumption is reasonable according to existing literature studying the evolution of epidemics
within a country and considering similar models (see, e.g., for COVID-19 studies [2,5,25]). Of course
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other alternatives are possible, such as, adding the interaction with more countries (as done in [3]) or
considering smaller areas. For the sake of simplicity, we consider that S , E, I, H, R and D denote the
ratio of people in each compartment in the considered country (rather than the total number of people).

Finally, we assume that the model coefficients are constant.
A diagram of this model for one country is shown in Figure 1.
Under these assumptions, the evolution of the epidemic is modeled by

dS
dt

(t) = Λ(t) − S (t)
(
βI I(t) + βHH(t) + βDD(t)

)
− (µ + τ)S (t),

dE
dt

(t) = S (t)
(
βI I(t) + βHH(t) + βDD(t)

)
− (µ + δ + τ)E(t),

dI
dt

(t) = δE(t) − (µ + γ)I(t),

dH
dt

(t) = γI(t) −
(
µ + λ + α

)
H(t),

dR
dt

(t) = αH(t) − (µ + τ)R(t),

dD
dt

(t) = λH(t) − θD(t),

(2.1)

where

• Λ ∈ R+ is the recruitment rate of persons in state S (person.day−1),
• µ ∈ [0, 1] is the mortality rate (day−1),
• βI , βH, βD ∈ R

+ are the disease effective contact rates (day−1.person−1) of people in compartment
I, H and D respectively,
• δ, γ ∈ R+ denote the transition rates (day−1) from compartment E to I and I to H, respectively.
• λ ∈ [0, 1] is the disease fatality percentage times the transition rate from compartment H to

compartment D.
• α ∈ R+ is the disease survival percentage (1 minus the disease fatality percentage) times the

transition rate from state H to compartment R. For the sake of simplicity, we assume that this
transition rate is the same as the one from H to D.

• θ ∈ R+ is the burial rate (day−1) of people that died from Ebola.

• τ ∈ [0, 1] is the daily rate (%) of the movement of people in states S , E and R (people in other
compartments are not supposed to travel due to their health situation) leaving the country.

As shown in [17], the solutions of Eq (2.1) satisfy that (S (t), E(t), I(t),H(t),R(t),D(t)) ∈ [0, 1]6.
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3. Control problem formulation

Now, we consider the controlled version of model (2.1) given by

dS
dt

(t) = Λ(t) − S (t)
((

1 − cβI u2(t)
)
βI I(t) +

(
1 − cβH u3(t)

)
βHH(t)

+
(
1 − cβDu2(t))βDD(t)

)
−

(
µ +
(
1 − cτu5(t)

)
τ
)
S (t)

−
Nv

N0
φ(S (t))u1(t),

dE
dt

(t) = S (t)
((

1 − cβI u2(t)
)
βI I(t) +

(
1 − cβH u3(t)

)
βHH(t)

+
(
1 − cβDu2(t)

)
βDD(t)

)
− (µ + δ +

(
1 − cτu5(t)

)
τ)E(t),

dI
dt

(t) = δE(t) − (µ + γ + u4(t)ηH)I(t),

dH
dt

(t) = (γ + u4(t)ηH)I(t) −
(
µ + λ + α − u4(t)

(
ηR + ηD

))
H(t),

dR
dt

(t) =
(
α − u4(t)ηR + cλu3(t)λ

)
H(t) −

(
µ +
(
1 − cτu5(t)

)
τ
)
R(t)

+
Nv

N0
φ(S (t))u1(t),

dD
dt

(t) =
((

1 − cλu3(t)
)
λ − u4(t)ηD

)
H(t) − θD(t),

dT
dt

(t) =
(
1 − cτu5(t)

)
τE(t),

(3.1)

where T measures the cumulative number of infected persons (i.e., in state E) leaving the system during
the simulated time interval (and, thus, the considered geographical area). It is used as a measure of the
risk of spreading the disease outside the studied country. We point out that the last equation of system
(3.1) is not coupled with the other equations. Thus, we can solve the six first equations of that system
and then, the solution of the last one can be computed as follows:

T (t) = T (t̂) +
∫ t

t̂

(
1 − cτu5(s)

)
τE(s)ds

for any t, t̂ ≥ 0.
The controls and their associated parameters are defined as follows:

• u1(t) ∈ [0, 1] is the control corresponding to the vaccination campaign. First, this control is

multiplied by
Nv

N0
, which corresponds to a reasonable estimation of the maximum capacity of the
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vaccination campaign, where Nv ∈ N is the maximum number of persons that can be vaccinated
per day and N0 ∈ N denotes the initial size of the population at the beginning of the simulation.
Secondly, u1(t) is also multiplied by the function

φ(x) =



0 , if x ≤ 0,

exp
(
−

(1 − 2N0x)2

1 − (1 − 2N0x)2

)
, if 0 < x <

1
2N0
,

1 , if x ≥
1

2N0
.

It is easy to prove that φ ∈ C∞(R). We point out that φ(S (t)) = 1 when S (t) > 1/(2N0) (in
particular, when there is, at least, one person in the Susceptible compartment) and tends to 0
when S (t) tends to 0. Function φ is a filter used to avoid negative values of S (notice that S (t) = 0

implies that
dS
dt

(t) ≥ 0). Additionally, this function does not alter the maximum capacity
Nv

N0
of

the vaccination campaign u1(t), until reaching the case of less than one person in the Susceptible
compartment.
• u2(t) ∈ [0, 1] is the control corresponding to prevention campaigns. Those campaigns (such as

educational campaign) aim to reduce effective contacts with infected persons and people that died
from Ebola. From a modeling point of view, u2 may reduce the values βI and βD by a maximum
of cβIβI and cβDβD, respectively. Here, cβI , cβD ∈ [0, 1] are the maximum percentage of reduction
for βI and βD respectively.
• u3(t) ∈ [0, 1] is the control corresponding to the increase of sanitary measures in hospital (such as

better treatment and better sanitary conditions). Those measures aim to reduce effective contacts
with infected patients in hospital and to reduce the disease mortality. From a modeling point of
view, u3 may reduce the values βH and λ by a maximum of cβHβH and cλλ, where cβH , cλ ∈ [0, 1]
are the maximum percentage of reduction for βH and λ respectively. Furthermore, u3 is also
used to increase the transition rate from compartment H to compartment R, through the term
cλu3(t)H(t) (corresponding to the increase of the survival rate).
• u4(t) ∈ [0, 1] is the control corresponding to early detection campaigns. Those campaigns aim

reducing the time between the apparition of clinical signs and the hospitalization. From a mod-
eling point of view, u4 is used to increase the transition rate from compartment I to compartment
H (and thus, decreasing the time of a person in state I) through the term u4(t)ηHI(t). Here, ηH

(day−1) corresponds to the maximum value that the transition rate from I to H can be increased.
As a consequence, the time of a person in state H can be increased. Thus, the transition rates
from compartment H to compartment R and from compartment H to compartment D are reduced
through the terms −u4(t)ηRH(t) and −u4(t)ηDH(t), respectively. Here, ηR (day−1) and ηD (day−1)
correspond to the maximum value that the transition rate from H to R and from H to D can be

decreased, respectively. Notice that, ηH can be estimated taking into account that
1

γ + ηH
is the

minimum average number of transition days that one can expect between compartments I and H
(a similar idea can be applied to estimate ηD and ηR).
• u5(t) ∈ [0, 1] is the control corresponding to the application of quarantine measures (movement

between geographical areas are limited). Those control measures aim reducing the risk of spread-
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ing the disease outside the considered country. From a modeling point of view, u5 is used to
decrease the value of τ (i.e., the movement of people leaving the country). More precisely, we
consider the parameter cτ ∈ [0, 1] which corresponds to the maximum percentage of reduction for
τ that can be reached due to the application of those control measures. Then, τ is multiplied by
(1 − cτu5(t)).

A diagram of this controlled model for one country is shown in Figure 2.
Let us denote u = (u1, u2, u3, u4, u5) and x = (S , E, I,H,R,D,T ). Then system (3.1) can be written

as:
x′(t) = f (x(t), u(t)), t ∈ (0, tf), (3.2)

with a suitable function
f : R7 × R5 → R7,

given by:

f (x, u) =



Λ − S
((

1 − cβI u2
)
βI I +

(
1 − cβH u3

)
βHH +

(
1 − cβDu2)βDD

)
−

(
µ +
(
1 − cτu5

)
τ
)
S (t)−

Nv

N0
φ(S )u1

S
((

1 − cβI u2
)
βI I +

(
1 − cβH u3

)
βHH +

(
1 − cβDu2)βDD

)
−(µ + δ +

(
1 − cτu5

)
τ)E

δE − (µ + γ + u4ηH)I

(γ + u4ηH)I −
(
µ + λ + α − u4

(
ηR + ηD

))
H

(
α − u4ηR + cλu3λ

)
H −
(
µ +
(
1 − cτu5

)
τ
)
R(t) +

Nv

N0
φ(S )u1

((
1 − cλu3

)
λ − u4ηD

)
H − θD

(
1 − cτu5

)
τE



.

Considering those controls, we are interested in minimizing the following cost function:

J(x, u) = K1E(tf) + K2D(tf) + K3T (tf) +
∫ tf

0

(
K4E(t) + K5D(t)+

K6T (t) +
1
2

(
c1
(
φ(S (t))u1(t)

)2
+
∑5

i=2 ciui(t)2
))

dt,
(3.3)

where tf > 0 is the considered final time and c1, ..., c5, K1, ...,K6 are weight coefficients. Parameters
c1, ..., c5 correspond to economical costs related to the implementation of the control measures. We
note that we could remove one of the constants ci or K j and get an equivalent problem, but we keep all
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of them for simplicity.

5

u +u 32

u +u3 4

5u

4u +u3
u4

1u

5τu uµ

δDHI

HS E I R

D

β   + β    + β   γ α

λ

Θ

τ

Λ

µ µ µ τ µ

T

Figure 2. Diagram of the controlled model (3.1).

Therefore, we consider the following standard control problem of the form (see p 437 in [19]):


Minimize J(x, u)
Subject to system (3.2),
u(t) ∈ U , t ∈ [0, tf] a.e.,
x(0) = (S 0, E0, I0,H0,R0,D0,T0)T ∈ Ω,

(3.4)

where U = [0, 1]5.

and Ω = {(S , E, I,H,R,D,T ) ∈ [0, 1]7 : S + E + I + H + R + D = 1}.

Following [19], any pair (x, u), with u(t) ∈ U, for all t ∈ [0, tf] and x solution of system (3.2), is
called a process of the underlying control system (3.2).

Remark 1. We could consider J as a function depending only on u, S , E,D,T (i.e., J(u, S , E,D,T ))
and even depending only on u (i.e., J(u)), since once we set x(0), for every control u we assume that
there exists a unique solution x of system (3.2).

We can also rewrite the cost function (see p 436 in [19]), as

J(x, u) = A(x(tf)) +
∫ tf

0
Λ(x(t), u(t))dt, (3.5)

where A(x) = K1E + K2D + K3T is the endpoint cost corresponding to the minimization of E,D and T
at the final time (see also [26, 27] and [28] for more cost functions of this form) and

Λ(x, u) = K4E + K5D + K6T +
1
2

(
c1
(
φ(S )u1

)2
+

5∑
i=2

ciu2
i

)
.

is the running cost.
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It is easy to see that the function A is continuously differentiable. The functions f and Λ are
continuous and admit derivatives relative to x, denoted by Dx f (x, u) and DxΛ(x, u) respectively, which
are also continuous. Therefore, this problem satisfies the classical regularity hypotheses (see, e.g., p
437, Section 22 in [19] ). Those assumptions imply that the cost J(x, u) is well defined for any process
(x, u) (see, again [19]).

In the following section, we aim to characterize (x∗, u∗) minimizing the cost function J. Then, in
Sections 5 and 6, we show the existence and uniqueness of solution of the minimization problem (3.4).

4. Characterization of the optimal control

Here, we apply a version of Pontryagin Maximum Principle given in [19], p 438 to characterize the
solutions of control problem (3.4). See [29] for other versions.

Definition 1. (see p 437 in [19]) Let (x∗, u∗) be a given process satisfying the constraints of the mini-
mization problem (3.4). This process is called a local minimizer provided that, there exists some ϵ > 0
such that, for any other process (x, u) satisfying the constraints of minimization problem (3.4), as well
as ∥x − x∗∥∞ ≤ ϵ*, we have that J(x∗, u∗) ≤ J(x, u). In this terminology, u∗ is called an optimal control
and x∗ is called an optimal trajectory.

Before formulating the Pontryagin maximum principle, we recall some definitions and tools related
to our problem (see p 436–439 in [19]).

In addition to system (3.2), which can be written as:

dxi

dt
(t) = fi(x(t), u(t)), t ∈ (0, tf), i = 1, 2, ..., 7, (4.1)

we consider the following system of equations in the auxiliary variables
p = (p1, p2, p3, p4, p5, p6, p7):

−
dpi

dt
(t) =

n∑
j=1

∂ f j

∂xi
(x(t), u(t))p j(t) −

∂Λ

∂xi
(x(t), u(t)), i = 1, ..., 7. (4.2)

Since the system of Eq (4.2) is linear and homogeneous with respect to p, given the functions x and
u, for any final condition pi(tf), it admits a unique solution, denoted by p = (p1, p2, p3, p4, p5, p6, p7),
which is defined on the entire interval 0 ≤ t ≤ tf on which x and u are defined.

In order to combine Eqs (4.1) and (4.2), we consider the following function called the Hamiltonian
of the system:

H(x, p, u) = −Λ(x, u) + (p, f (x, u)) = −Λ(x, u) +
7∑

i=1

pi fi(x, u). (4.3)

Thus, systems (4.1) and (4.2) can be rewritten as

x′i(t) =
∂H

∂pi
(x(t), p(t), u(t)) and p′i(t) = −

∂H

∂xi
(x(t), p(t), u(t)), i = 1, 2, ..., 7. (4.4)

*Given a continuous function x : [0, tf]→ R7, we denote by ∥x∥∞ the norm defined by ∥x∥∞ = maxt∈[0,tf ]{|xi(t)| , i ∈ {1, ..., 7}}.
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For p ∈ R7 and x ∈ R7, we denote

M(x, p) = sup
u∈U
H(x, p, u).

From the Corollary 22.3 of Theorem 22.2 in [19] (p 438–439), we state the following theorem
which gives necessary conditions for the solutions of the minimization problem (3.4):

Theorem 1. [Pontryagin maximum principle]
Let the process (x∗, u∗) be a local minimizer for problem (3.4) under the classical regularity hypotheses
mentioned at the end of Section 3, with U bounded. Then, there exists a function p : [0, tf] −→ R7

satisfying

• the transversality condition p(tf) ∇A(x∗(tf)),
• the adjoint equation −p′(t) = DxH(x∗(t), p(t), u∗(t)),

• the maximum conditionH(x∗(t), p(t), u∗(t)) = M(x∗(t), p(t))=h(constant), a.e. for t ∈ [0, tf].

Proof. See [19], p 514–519.

Now, we apply Pontryagin maximum principle (see Theorem 1) to give necessary conditions for
any solution of the minimization problem (3.4).

Theorem 2. Suppose that x∗ and u∗ are optimal for the minimization problem (3.4). Then, u∗ satisfies

u∗1(t) = max

min


Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
, 1

 , 0
 , (4.5)

u∗2(t) = max
{

min
{

(p2(t) − p1(t))(cβIβI I∗(t) + cβDβDD∗(t))
S ∗(t)

c2
, 1
}
, 0
}
,

u∗3(t) = max
{

min
{

(p1(t) − p2(t))cβHβHH∗(t)S ∗(t) + (p5(t) − p6(t))cλλH∗(t)
c3

, 1
}
, 0
}
,

u∗4(t) = max {min {G(t), 1} , 0} ,
u∗5(t) = max {min {L(t), 1} , 0} ,

where

G(t) =
(p4(t) − p3(t))ηHI∗(t) + (p5(t) − p4(t))ηRH∗(t) + (p6(t) − p4(t))ηDH∗(t)

c4
.

and

L(t) =
cττ
(
p1(t)S ∗(t) + (p2(t) − p7(t))E∗(t) + p3(t)R∗(t)

)
c5

Here, p is the so-called adjoint vector solution to the adjoint equation

p′(t) = −DxH(x∗(t), p(t), u∗(t)), for almost every t (4.6)

and the terminal condition
p(tf) = (0,K1, 0, 0, 0,K2,K3)T .
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Proof 1. According to Eq (4.3), we have the following Hamiltonian for system (3.4):

H (x, p, u) = −Λ(x, u) + p1 f1(x, u) + p2 f2(x, u) + p3 f3(x, u) + p4 f4(x, u) + p5 f5(x, u)
+ p6 f6(x, u) + p7 f7(x, u)

Let p be the function defined in Theorem 1. It satisfies the adjoint equation (4.6)

p′1(t) = φ′(S ∗(t)
(
(p1(t) − p5(t)) Nv

N0
u∗1(t) + c1(u∗1(t))2φ(S ∗(t))

)
+ (p1(t) − p2(t)

(
(1 − cβI u

∗
2(t))βI I∗(t) + (1 − cβH u∗3(t))βHH∗(t)

+ (1 − cβDu∗2(t)βDD∗(t)
)
+ p1(t)(µ + (1 − cτu∗5(t))τ)

p′2(t) = K4 + (p2(t) − p7(t))
(
1 − cτu∗5(t)

)
τ + p2(t)µ

+ (p2(t) − p3(t)δ

p′3(t) = (p1(t) − p2(t))βIS ∗(t)
(
1 − cβI u

∗
2(t)
)
+ p3(t)µ

+ (p3(t) − p4(t))(γ + u∗4(t)ηH)

p′4(t) = (p1(t) − p2(t))βHS ∗(t)
(
1 − cβH(t)u∗3(t)

)
+ (p6(t) − p5(t))cλu∗3(t)λ

+ (p4(t) − p6(t))(λ − u∗4(t)ηD) + (p4(t) − p5(t))(α − u∗4(t)ηR) + p4(t)µ

p′5(t) = p5(t)
(
µ + (1 − cτu∗5(t))

)
τ

p′6(t) = K5 + (p1(t) − p2(t))βDS ∗(t)(1 − cβDu∗2(t)) + p6(t)θ
p′7(t) = K6.

(4.7)

The transversality condition satisfied by p, as defined in Theorem 1 is actually the terminal condition

p(tf) = ∇A(x(tf)) = (0,K1, 0, 0, 0,K2,K3)T .

The function u 7−→ H(x∗(t), p(t), u) from U to R attains its maximum at the point u = u∗(t) (see
Theorem 1).

In order to characterize the optimal control, we follow the technique proposed in [30] (see p 12).

We differentiate the Hamiltonian with respect to u1, u2, u3, u4, u5 and we solve
∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

∂H

∂u4
= 0 and

∂H

∂u5
= 0 on the interior of the control set and then we use the property

(boundness) of the control set U.
We obtain that:

a)
∂H

∂u1
= 0 gives

u1(t) =
Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
. (4.8)

When 0 ≤

Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
≤ 1 the maximizing value is satisfied by taking

u∗1(t) =
Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
∈ [0, 1]. If

Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
> 1, then u∗1(t) = 1 (by projection).
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Similarly,
Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
< 0 implies that u∗1(t) = 0.

We note that φ(S ∗(t)) = 0 if S ∗(t) = 0, and in this case, there is no susceptible people to vaccinate,
then u∗1(t) = 0 and u∗1(t) < [0, 1]. If S ∗(t) > 0, then φ(S ∗(t)) > 0.

Now, we can summarize (see again [19], p 444):

u∗1(t) =



0 if
Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
< 0

Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
if 0 ≤

Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
≤ 1

1 if
Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
> 1

(4.9)

Which can be rewritten as:

u∗1(t) = max

min


Nv
N0

(p5(t) − p1(t))

c1φ(S ∗(t))
, 1

 , 0
 . (4.10)

We procede similarly for the other controls:

b)
∂H

∂u2
= 0 implies that

u2(t) =
(p1(t) − p2(t))S ∗(t)(cβIβI I∗(t) + cβDβDD∗(t))

c2

Let us set g(t) =
(p1(t) − p2(t))S ∗(t)(cβIβI I∗(t) + cβDβDD∗(t))

c2
It follows the following characterization:

u∗2(t) =



0 if g(t) ≤ 0

g(t) if 0 < g(t) ≤ 1

1 if g(t) > 1

(4.11)

And then

u∗2(t) = max
{

min
{

(p1(t) − p2(t))S ∗(t)(cβIβI I(t) + cβDβDD(t))
c2

, 1
}
, 0
}
. (4.12)
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c)
∂H

∂u3
= 0 gives

u3(t) =
(p1(t) − p2(t))S ∗(t)cβHβHH∗(t) + (p5(t) − p6(t))cλλH∗(t)

c3
.

Let us denote C(t) =
(p1(t) − p2(t))S ∗(t)cβHβHH∗(t) + (p5(t) − p6(t))cλλH∗(t)

c3
. Then, the restric-

tions on the control give:

u∗3(t) =



0 if C(t) ≤ 0

C(t) if 0 < C(t) ≤ 1

1 C(t) > 1

(4.13)

and thus the following characterization holds:

u∗3(t) = max {min {C(t), 1} , 0} . (4.14)

d)
∂H

∂u4
= 0 gives

u4(t) =
(p4(t) − p3(t))ηHI∗(t) + (p5(t) − p4(t))ηRH∗(t) + (p6(t) − p4(t))ηDH∗(t)

c4
.

Let us denote

F(t) =
(p4(t) − p3(t))ηHI∗(t) + (p5(t) − p4(t))ηRH∗(t) + (p6(t) − p4(t))ηDH∗(t)

c4
.

Taking account the restrictions, we derive the following characterization:

u∗4(t) =



0 if F(t) ≤ 0

F(t) if 0 < F(t) ≤ 1

1 if F(t) > 1

(4.15)

Which becomes:
u∗4(t) = max {min {F(t), 1} , 0} . (4.16)

e) Finally,
∂H

∂u5
= 0 gives

u5(t) =
cττ
(
p1(t)S ∗(t) + (p2(t) − p7(t))E∗(t) + p3(t)R∗(t)

)
c5

= L(t)
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The characterization is given by:

u∗5(t) =



0 if L(t) ≤ 0

L(t) if 0 < L(t) ≤ 1

1 if L(t) > 1

(4.17)

which can be rewritten as:

u∗5(t) = max {min {L(t), 1} , 0} . (4.18)

The optimal control and the state are approximated by solving the optimality system, which is
a combination of the state system (3.1), the adjoint system (4.7), the boundary conditions and the
characterization of the optimal control Eqs (4.10)–(4.12)–(4.14)–(4.16)–(4.18).

By substituting the values of u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5 in the control system (3.1), we obtain the following

optimality system (4.19)–(4.20).



dS ∗

dt
(t) = Λ(t) − S ∗(t)

((
1 − cβI u

∗
2(t)
)
βI I∗(t) +

(
1 − cβH u∗3(t)

)
βHH∗(t)

+
(
1 − cβDu∗2(t))βDD∗(t)

)
−

(
µ +
(
1 − cτu5(t)

)
τ
)
S (t)

−
Nv

N0
φ(S ∗(t))u∗1(t),

dE∗

dt
(t) = S ∗(t)

((
1 − cβI u

∗
2(t)
)
βI I∗(t) +

(
1 − cβH u∗3(t)

)
βHH∗(t)

+
(
1 − cβDu∗2(t)

)
βDD∗(t)

)
− (µ + δ +

(
1 − cτu∗5(t)

)
τ)E∗(t),

dI∗

dt
(t) = δE∗(t) − (µ + γ + u∗4(t)ηH)I∗(t),

dH∗

dt
(t) = (γ + u∗4(t)ηH)I∗(t) −

(
µ + λ + α − u∗4(t)

(
ηR + ηD

))
H∗(t),

dR∗

dt
(t) =

(
α − u∗4(t)ηR + cλu∗3(t)λ

)
H∗(t) −

(
µ +
(
1 − cτu5(t)

)
τ
)
R∗(t)

+
Nv

N0
φ(S ∗(t))u∗1(t),

dD∗

dt
(t) =

((
1 − cλu∗3(t)

)
λ − u∗4(t)ηD

)
H∗(t) − θD∗(t),

dT ∗

dt
(t) =

(
1 − cτu∗5(t)

)
τE∗(t),

(4.19)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1746–1774.



1760

p′1(t) = φ′(S ∗(t)
(
(p1(t) − p5(t)) Nv

N0
u∗1(t) + c1(u∗1(t))2φ(S ∗(t))

)
+ (p1(t) − p2(t)

(
(1 − cβI u

∗
2(t))βI I∗(t) + (1 − cβH u∗3(t))βHH∗(t)

+ (1 − cβDu∗2(t)βDD∗(t)
)
+ (p1(t)

(
µ + (1 − cτu∗5(t))τ

)
p′2(t) = K4 + (p2(t)p7(t))(1 − cτu∗5(t))τ + p2(t)µ

+ (p2(t) − p3(t)δ

p′3(t) = (p1(t) − p2(t))βIS ∗(t)((1 − cβI u
∗
2(t))) + p3(t)µ

+ (p3(t) − p4(t))(γ + u∗4(t)ηH)

p′4(t) = (p1(t) − p2(t))βHS ∗(t)(1 − cβH(t)u∗3(t)) + p4(t)µ
+ (p4(t) − p6(t))(λ − u∗4(t)ηD) + (p4(t) − p5(t))(α − u∗4(t)ηR)
+ (p6(t) − p5(t))cλu∗3(t)λ

p′5(t) = p5(t)
(
µ + (1 − cτu∗5(t))τ

)
p′6(t) = K5 + (p1(t) − p2(t))βDS ∗(t)(1 − cβDu∗2(t)) + p6(t)θ
p′7(t) = K6.

(4.20)

5. Existence of optimal solution

In this section, we prove that, under suitable assumptions, there exists an optimal solution for system
(3.4).

To do so, we rewrite system (3.4) as (see [19], p 480):



Minimize J(x, u) = K1E(tf) + K2D(tf) + K3T (tf) +
∫ tf

0
(K4E(t) + K5D(t)

+K6T (t) + 1
2

(
c1(φ(S (t))u1(t))2 +

∑5
i=2 ci(ui(t)))

)
dt.

Subject to


x′(t) = g0(x(t)) +G(x(t))u(t) a.e.,

u(t) ∈ Ua.e.,

(5.1)

where
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g0(x) =



Λ − S (βI I + βHH + βDD) − (µ + τ)S

S (βI I + βHH + βDD) − (µ + δ + τ)E

δE − (µ + γ)I

γI − (µ + λ + α)H

αH − (µ + τ)R

λH − θD

τE



,

G(x) =



−
Nv
N0
φ(S ) S (cβIβI I + cβDβDD) S cβHβHH 0 cττS
0 −S (cβIβI I + cβDβDD) −S cβHβHH 0 cττE
0 0 0 −ηHI 0
0 0 0 ηHI + (ηR + ηD)H 0

Nv
N0
φ(S ) 0 cλλH −ηRH cττR
0 0 −cλλH −ηDH 0
0 0 0 0 −cττE


and

Q = [0, tf] ×Ω.

Then, we prove the following result:

Theorem 3. There exists an optimal solution to the problem (5.1).

Proof 2. To prove this result, we apply the Theorem 23.11 proposed in [19] (see p 481):

(a) We can see that each Gi, i = 1, 2, ..., 5 is continuous in x. Furthermore:

– G1(x) =
(
−

Nv
N0
φ(S ), 0, 0, 0, Nv

N0
φ(S ), 0, 0

)T
. Thus, we have:

|G1(x)| ≤ 2
Nv

N0
|φ(S )| ≤ 2

Nv

N0
|S | ≤ M1(1 + ∥x∥)

where M1 = 2 Nv
N0

– G2(x) =
(
S (cβIβI I + cβDβDD),−S (cβIβI I + cβDβDD), 0, 0, 0, 0, 0

)T
|G2(x)| ≤ 2 |S |

∣∣∣cβIβI I + cβDβDD
∣∣∣ ≤ 2k1(|I| + |D|)

where k1 = max(cβIβI , cβDβD). Then, we have:

|G2(x)| ≤ 2k1 ∥x∥ ≤ M2(1 + ∥x∥)
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where M2 = 2k1

– G3(x) =
(
cβHβHHS ,−cβHβHHS , 0, 0, cλλH,−cλλH, 0

)
.

|G3(t, x)| ≤ 2cβHβH |S | |H| + 2cλλ |H| ≤ 2k2 |H|

where k2 = max(cβHβH, cλλ). Thus

|G3(x)| ≤ M3(1 + ∥x∥)

With M3 = 2k2

– G4(x) =
(
0, 0,−ηHI, ηHI + (ηR + ηD)H,−ηRH,−ηDH, 0

)T
. We have:

|G4(x)| ≤ 2ηH |I| + (2ηR + 2ηD) |H| ≤ 2k3(|I| + |H|)

where k3 = max(2ηH, 2ηR + 2ηD). It follows that:

|G4(x)| ≤ M4(∥x∥) ≤ M4(1 + ∥x∥)

where M4 = 2k3

– G5(x) =
(
cττS , cττE, 0, 0, cττR, 0,−cττE)T . One has:

|G5(x)| ≤ 2cττ(|E| + |S | + |R|) ≤ M5 ∥x∥ ≤ M5(1 + ∥x∥)

where M5 = 2cττ

Thus, we conclude that each Gi(x), i = 1, 2, 3, 4, 5 has linear growth.
(b) For almost every t, the set U = [0, 1]5 is closed and convex by definition;

(c) The sets Q and Ω defined above are closed;

(d) The running cost Λ(x, u) is continuous in x and u. This implies that Λ is measurable in x and
continuous in u. Using Proposition 6.35 in [19] (p 123), we conclude that Λ is LB measurable in
x and u;
Furthermore, the epigraph of Λ is defined by

epi(Λ) = {(x, u, r) ∈ Ω × U × R : 0 ≤ Λ(x, u) ≤ r} = Λ−1([0, r]),

which is closed. Additionally, as Λ is continuous, it follows that

– Λ is lower semicontinuous in (x, u);

– u 7−→ Λ(x, u) is convex for each x ∈ Ω, (due to the convexity of u2
i , i = 1, 2, ..., 5);
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– Λ(x, u) ≥ K4E + K5D + K6T,∀x ∈ Ω. Indeed, E, D and T are bounded, so there exist
m1,m2,m3 ≥ 0 such that E ≥ m1, D ≥ m2 and T ≥ m3. This implies that Λ(x, u) ≥ λ0, with
λ0 = K4m1 + K5m2 + K6m3.

(e) The projection {α ∈ Ω : (α, β) ∈ Ω ×Ω for some β ∈ Ω} of Ω is bounded by definition.

(f) Let r > 1. By hypothesis, ∀t ∈ [0, tf] , u(t) ∈ U =⇒ |u(t)| ≤ 1.
Let k(t) = 1,∀t, we obtain that |u(t)| ≤ k(t) for a.e. t.

Thus, the hypotheses of Theorem 23.11 in [19] are satisfied and there exists a solution for problem
(5.1).

6. Uniqueness of the optimality system

Now, we aim to prove that the optimal controls given by Eqs (4.10), (4.12), (4.14), (4.16) and (4.18)
are unique. To do so, following the ideas introduced by [31] (see p 435), we verify that the state and
adjoint functions fi and pi, i = 1, 2, ..., 7 are bounded and are Lipschitz functions. First, we rewrite the
state equation on the following form:

Φt = AΦ + F(Φ), (6.1)

where

A =



A1 0 0 0 0 0 0
0 B1 0 0 0 0 0
0 δ −(µ + γ + u4(t)ηH) 0 0 0 0
0 0 γ + u4(t)ηH −x 0 0 0
0 0 0 y A1 0 0
0 0 0 z 0 −θ 0

(1 − cτu5(t))τ (1 − cτu5(t))τ 0 0 (1 − cτu5(t))τ 0 0


,

where x = (µ + λ + α − u4(t)(ηH + ηD)), y = α − u4(t)ηR + cλu3(t)λ, z = (1 − cλu3(t))λ − u4(t)ηD,
A1 = −(µ + (1 − cτu5(t))τ), B1 = −(µ + δ + (1 − cτu5(t))τ)

F(Φ) =



Λ − A2 −
Nv
N0
φ(S )u1(t)

A2

0

0

Nv
N0
φ(S )u1(t)

0

0



.
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ϕ =
(
S , E, I,H,R,D,T

)T
and Φt =

(
dS
dt ,

dE
dt ,

dI
dt ,

dH
dt ,

dR
dt ,

dD
dt ,

dT
dt

)T
,

where A2 = S ((1 − cβI u2(t))βI I + (1 − cβH u3(t))βHH + (1 − cβDu2(t))βDD).
One has

∥F(Φ1) − F(Φ2)∥ ≤ 2
( ∣∣∣βI1S 1I1 − βI2S 2I2

∣∣∣ + ∣∣∣βH1S 1H1 − βH2S 2H2

∣∣∣ + ∣∣∣βD1S 1D1 − βD2S 2D2

∣∣∣
+
∣∣∣cβI1

u2βI1S 1I1 − cβI2
u2βI2S 2I2

∣∣∣ + ∣∣∣cβH1
u3βH1S 1H1 − cβH2

u3βH2S 2H2

∣∣∣
+
∣∣∣cβD1

u2βD1S 1D1 − cβD2
u2βD2S 2D2

∣∣∣ ) + 2
Nv

N0
u1(|φ(S 1)| − |φ(S 2)|)

where Φ1 = (S 1, E1, I1,H1,R1,D1,T1)T and Φ2 = (S 2, E2, I2,H2,R2,D2,T2)T .
Let k1 = max(βI1 , βI2), k2 = max(βH1 , βH2), k3 = max(βD1 , βD2),
k4 = max(cβI1

βI1 |u2| , cβI2
βI2 |u2|), k5 = max(cβH1

βH1 |u3| , cβH2
βH2 |u3|) and

k6 = max(cβD1
βD1 |u2| , cβD2

βD2 |u2|).
We have that, for Φ1 , Φ2:

∥F(Φ1) − F(Φ2)∥ ≤ 2k1 (|S 1I1 − S 2I2|) + 2k2 (|S 1H1 − S 2H2|) + 2k3 (|S 1D1 − S 2D2|)

+ 2k4 (|S 1I1 − S 2I2|) + 2k5 (|S 1H1 − S 2H2|) + 2k6 (|S 1D1 − S 2D2|)

+ 2
Nv

N0
(|S 1 − S 2|).

Set m1 = max(2k1, 2k4),m2 = max(2k2, 2k5),m3 = max(2k3, 2k6)

∥F(Φ1) − F(Φ2)∥ ≤ 2m1 |S 1I1 − S 2I2| + 2m2 |S 1H1 − S 2H2| + 2m3 |S 1D1 − S 2D2|

≤ 2m1 |S 1I1 − S 2I1 + S 2I1 − S 2I2| + 2m2 |S 1H1 − S 2H1 + S 2H1 − S 2H2|

+ 2m3 |S 1D1 − S 2D1 + S 2D1 − S 2D2|

≤ 2m1 |I1(S 1 − S 2) + S 2(I1 − I2)| + 2m2 |H1(S 1 − S 2) + S 2(H1 − H2)|
+ 2m3 |D1(S 1 − S 2) + S 2(D1 − D2)|
≤ 2m1I1 |S 1 − S 2| + 2m1S 2 |I1 − I2| + 2m2H1 |S 1 − S 2| + 2m2S 2 |H1 − H2|

+ 2m3D1 |S 1 − S 2| + 2m3S 2 |D1 − D2| + 2
Nv

N0
(|S 1 − S 2|

By hypothesis, we have I1 ≤ 1, S 2 ≤ 1, H1 ≤ 1 and D1 ≤ 1. Then,

∥F(Φ1) − F(Φ2)∥ ≤ (2m1 + 2m2 + 2m3 + 2
Nv

N0
) |S 1 − S 2| + 2m1 |I1 − I2| + 2m2 |H1 − H2|

+ 2m3 |D1 − D2|

≤ M (|S 1 − S 2| + |I1 − I2| + |H1 − H2| + |D1 − D2|)

with M = 2m1 + 2m2 + 2m3 + 2
Nv

N0
.

We set

∥Φ1 − Φ2∥ = |S 1 − S 2| + |E1 − E2| + |I1 − I2| + |H1 − H2| + |R1 − R2| + |D1 − D2| + |T1 − T2|
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and we note that
|S 1 − S 2| + |I1 − I2| + |H1 − H2| + |D1 − D2| ≤ ∥Φ1 − Φ2∥

It follows that

∥F(Φ1) − F(Φ2)∥ ≤ M∥Φ1 − Φ2∥.

Now, let
G(Φ) = AΦ + F(Φ).

We have that G verifies

∥G(Φ1) −G(Φ2)∥ = ∥A(Φ1) + F(Φ1) − A(Φ2) − F(Φ2)∥
≤ ∥A(Φ1 − Φ2)∥ + ∥F(Φ1) − F(Φ2)∥
≤ ∥A∥∥Φ1 − Φ2∥ + M∥Φ1 − Φ2∥.

Thus,
∥G(Φ1) −G(Φ2)∥ ≤ L∥Φ1 − Φ2∥,

where
L = 2 max (∥A∥ ,M) .

We conclude that G is Lipschitz. Additionally, as the control variables ui(t), i = 1, 2, 3, 4, 5 are bounded,
we deduce that G is bounded.

We follow the same techniques considering the adjoint system (4.7).
Let Z(Φ) = BΦ + K(Φ), where

B =



z1 + z2 + e1 −z1 0 0 −
Nv

N0
φ′(S )u1(t) 0 b

−b e2 −δ 0 0 0 0
(1 − cβI u2(t))βIS −(1 − cβI u2(t))βIS w −e3 0 0 0
(1 − cβH u3(t))βHS −(1 − cβH u3(t))βHS 0 y −e4 −v 0

0 0 0 0 e1 0 −b
(1 − cβDu2(t))βDS −(1 − cβDu2(t))βDS 0 0 0 θ 0

0 0 0 0 0 0 0


,

Φ =



p1

p2

p3

p4

p5

p6

p7



,K(Φ) =



0

K4

0

0

0

K5

K6



,
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where b = (1 − cτu5(t))τ, e1 = (µ + (1 − cτu5(t))τ), e2 = µ + δ + (1 − cτu5(t))τ, e3 = (γ + u4(t)ηH,
e4 = µ − cλu3λ + (α + u4(t)), z1 = ((1 − cβI u2(t))βI I + (1 − cβH u3(t))βHH + (1 − cβDu2(t))βDD), z2 =
Nv
N0
φ′(S )u1(t)+ c1u1(t)2φ(S )φ′(S ), y = µ+λ+α− u4(t)(ηR + ηD), w = µ+γ+ u4(t)ηH, v = (λ− u4(t)ηD +

cλu3(t)λ), (1 − cτu5(t)).
Now, we can write

∥K(Φ1) − K(Φ2)∥ ≤ K4 + K5 + K6 ≤ 3 max(K4,K5,K6).

From Φ1 , Φ2, we have that ∥Φ1 − Φ2∥ , 0. Then, we obtain that

∥K(Φ1) − K(Φ2)∥ ≤ C∥Φ1 − Φ2∥

where
C = 3 max(K4,K5,K6).

We have that Z verifies:

∥Z(Φ1) − Z(Φ2)∥ = ∥B(Φ1) + K(Φ1) − B(Φ2) − K(Φ2)∥
≤ ∥B(Φ1 − Φ2)∥ + ∥K(Φ1) − K(Φ2)∥
≤ ∥B∥∥Φ1 − Φ2∥ +C∥Φ1 − Φ2∥

≤ k∥Φ1 − Φ2∥,

where
k = 2 max(∥B∥,C).

Thus, the function Z is Lipschitz. Since controls ui(t), i = 1, 2, 3, 4, 5 are bounded, then we have the
boundedness of Z.
We have shown that the state and adjoint functions are bounded and are Lipschitz functions, so the
optimal solution is unique.

7. Numerical simulations

In this section, we first propose a numerical approach to approximate the optimal solutions charac-
terized in Theorem 2. Then, we propose numerical experiments to illustrate the interest of the proposed
implementation.

7.1. Numerical scheme

Here, we use the Runge Kutta fourth order method developed in [32] (see p 49–52) to solve the
optimality system found in the previous sections. This method can be summarized as follows: (see
again [32], p 50)

Step 1: Choose an arbitrary value of u∗ (generally u∗ = 0) over [0, tf];

Step 2: Using initial conditions x(t0) = x0 and the value of u∗ above, solve the state system with explicite
scheme;
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Step 3: Including the transversality conditions p(tf) and considering the expressions of u∗ and x∗

estimated previously, solve the adjoint system p(t) with implicit scheme;

Step 4: Refresh the expression of u∗ by replacing x(t) and p(t) by their expressions.

Step 5: Check convergence. If values of the variables in the current and previous iterations are close
enough, return the actual values as solutions. Else, return to Step 2.

We use the following notations for the state and adjoint equations:

dS
dt
= f1(x(t), u(t)),

dE
dt
= f2(x(t), u(t)),

dI
dt
= f3(x(t), u(t)),

dH
dt
= f4(x(t), u(t)),

dR
dt
= f5(x(t), u(t)),

dD
dt
= f6(x(t), u(t)),

dT
dt
= f7(x(t), u(t)),

and



p′1(t) = g1(x(t), p(t), u(t)),

p′2(t) = g2(x(t), p(t), u(t)),

p′3(t) = g3(x(t), p(t), u(t)),

p′4(t) = g4(x(t), p(t), u(t)),

p′5(t) = g5(x(t), p(t), u(t)),

p′6(t) = g6(x(t), p(t), u(t)),

p′7(t) = g7(x(t), p(t), u(t)).

Given a step size h, the approximation of each state variable xi, i = 1, 2, ..., 7 is given by:

xn+1
i = xn

i +
h
6

(Ki
1 + 2Ki

2 + 2Ki
3 + Ki

4),

where

Ki
1 = fi(x),

Ki
2 = fi(x +

h
2

Ki
1),

Ki
3 = fi(x +

h
2

Ki
2),

Ki
4 = fi(x + hKi

3).

For the adjoint vector, the approximation is given backward in time and is of the form:

pn−1
j = pn

j −
h
6

(K j
1 + 2K j

2 + 2K j
3 + K j

4, )
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where

K j
1 = g j(x),

K j
2 = g j(x +

h
2

K j
1),

K j
3 = g j(x +

h
2

K j
2),

K j
4 = g j(x + hK j

3).

After these steps, the values of controls u∗i , i = 1, ..., 5 are refreshed according to their expressions
Eqs (4.10)–(4.18).

7.2. Numerical experiments

In order to illustrate the pertinence of the controls, we implement the algorithm proposed previously.
We consider several numerical results detailed below. To this aim, we considered a particular Scilab
implementation of the numerical schemes presented in Section 7.1.

Based on the values proposed in [17] for the case of the 2014-2016 West-African Ebola virus disease
epidemic, we consider the following data: βI = 0.2500; βH = 0.0195; βD = 0.2400; µ = 0.021; τ =
0.0000024; θ = 0.7500; δ = 0.022; γ = 0.15; λ = 0.1177;α = 0.1040; c1 = 10; c2 = 20; c3 = 30; c4 =

40; c5 = 50; cτ = 0.1; cλ = 0.2; cβI = 0.3; cβD = 0.3; cβH = 0.4; ηH = 0.6; ηR = 0.7; ηD = 0.8; K1 =

1000; K2 = 2000; K3 = 8000; K4 = 1200; K5 = 500; K6 = 1500; N0 = 10000000; Nv = 5000 and
Λ = 0.0217.

Furthermore, to obtain results with a relevant graphical interpretation, we set S 0 = 0.999; E0 =

0.001; I0 = 0; H0 = 0; R0 = 0; D0 = 0; T0 = 0,.
We solve the state system with and without controls and compare the obtained results below.
In Figures 3–5, we show the evolution of susceptible (S ) and exposed (E) populations, the evolution

of infectious (I + H) and recovered (R) populations and the evolution of deaths (D) and cumulative
number of infected persons leaving the system (T ), respectively. On those graphs, the red curves
represent the absence of controls in the considered population and the blue ones, the presence of
controls.

We can see in Figure 3 that, in absence of controls, the number of susceptible people increases
due te the effect of the recruitment term Λ(t). On the other hand, if controls are applied, this number
remains quite stable. Indeed, the vaccination campaign move people from this state to the recovered
state, and thus allow to reduce the number of person that can be affected by the disease. Focusing
of exposed people, we remark that, with controls, the number of infected persons per day decreases
slowly, whereas without control measure it explodes dramatically. This show that the obtained optimal
control measures seem to be efficient in reducing the impact of the epidemic.

Focusing on Figures 4 and 5, we observe that the number of infectious people (I + H) and deaths
(D) decreases and remains quite low in presence of control measures. But if no controls are applied,
those number increase rapidly. As expected, in case of control measures, the number of recovered
people increases due to the sanitary measures in hospital and vaccination campaigns. When there is no
control, this number tends to decrease with time.
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Figure 3. Evolution of susceptible and infected populations.

Figure 4. Evolution of infectious and recovered populations.

Finally, we observe on Figure 5, that, when controls are applied, the cumulative number of infected
persons leaving the country (T ) is restrained, limiting the spread of the disease outside the affected
territory. When no control measures are applied, as expected, this number growth quickly.

In Figures 6–8, we present the plots of the optimal controls. We observe an increasing behavior for
all control measures. The model seems to indicate that focusing on detection campaigns (u4) seems
to be primordial as its slope increases faster that other measures u1, u2 and u3. Then, vaccination
campaign (u1) and increasing sanitary measures in hospital (u3) should start since the beginning of the
hazard. The start of prevention campaigns seems to be delayed. Regarding the quarantine measures
(u5), they should be applied strongly since the beginning of the epidemic.

8. Conclusions

Since the recent outbreaks of Ebola virus disease, that occurred in some Western African countries,
several measures have been taken by sanitary authorities in order to control the disease. Additionally,
with the latest cases detected in Guinea, Democratic Republic of Congo and Ivory Coast, more
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Figure 5. Evolution of dead population and cumulative number of infected people leaving
the system.

Figure 6. Optimal control corresponding to vaccination (u1) and prevention campaign (u2).

Figure 7. Optimal control corresponding to treatment (u3) and early detection campaign (u4).
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Figure 8. Optimal control graph corresponding to quarantine measures (u5).

vigilance is required to avoid future outbreaks, and so, mathematical studies are useful tools to tackle
this situation.

In this work, we established an optimal control problem of a simplified version of Be-CoDiS limited
to the case of one country. The control variables corresponded to a wide range of possible control
measures such as vaccination campaign, educational campaign, treatment of hospitalized persons,
early detection campaign, and quarantine measures. We presented the existence and uniqueness
of an optimal control. Using Pontryagin Maximal Principal, we gave necessary conditions for this
optimality and obtained the characterization of optimal controls.

Finally, considering a representative numerical experiment, we implemented theoretical results and
studied the pertinence of those controls. We see that the combined effect of the considered control
measures seem to have a strong impact on the disease magnitudes.

Indeed, vaccination campaigns reduced the reservoir of possible affected people. The prevention
campaigns allowed to decrease the contacts with infected individuals and those that died from Ebola
and thus, to limit the propagation of the disease. The early detection campaigns and the increase
of sanitary measures helped to reduce the number of deaths in a short time interval. Finally, the
application of quarantine measure allowed to limit the propagation of the disease outside the affected
area.

We note that we have considered in this work the propagation of the disease inside a single country.
It might be interesting in future works to consider the interactions between two or more countries
related by the migration flow.
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Développement” through projects UMI 209-IRD and UMMISCO UGB and the Spanish “Ministry of
Science and Innovation” under Project PID2019-106337GB-I00.

References

1. M. Anderson, R. M. May, Population Biology of Infectious Diseases: Part 1, Princeton University
Press, (1979), 361–367. doi: 10.1038/280361a0.
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