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Abstract: Based on the Nottingham Histopathology Grading (NHG) system, mitosis cells detection is 

one of the important criteria to determine the grade of breast carcinoma. Mitosis cells detection is a 

challenging task due to the heterogeneous microenvironment of breast histopathology images. 

Recognition of complex and inconsistent objects in the medical images could be achieved by 

incorporating domain knowledge in the field of interest. In this study, the strategies of the 

histopathologist and domain knowledge approach were used to guide the development of the image 

processing framework for automated mitosis cells detection in breast histopathology images. The 

detection framework starts with color normalization and hyperchromatic nucleus segmentation. Then, 

a knowledge-assisted false positive reduction method is proposed to eliminate the false positive (i.e., 

non-mitosis cells). This stage aims to minimize the percentage of false positive and thus increase the 

F1-score. Next, features extraction was performed. The mitosis candidates were classified using a 

Support Vector Machine (SVM) classifier. For evaluation purposes, the knowledge-assisted detection 

framework was tested using two datasets: a custom dataset and a publicly available dataset (i.e., 

MITOS dataset). The proposed knowledge-assisted false positive reduction method was found 

promising by eliminating at least 87.1% of false positive in both the dataset producing promising 

results in the F1-score. Experimental results demonstrate that the knowledge-assisted detection 

framework can achieve promising results in F1-score (custom dataset: 89.1%; MITOS dataset: 88.9%) 
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and outperforms the recent works. 

Keywords: breast carcinoma; mitosis cells detection; segmentation; handcrafted feature-based 

approach; knowledge-assisted; domain knowledge; false positive reduction; histopathology image 

 

1. Introduction  

Mitosis counting on Hematoxylin and Eosin (H & E) [1,2] stained breast histopathology slides is 

one of the important prognostic markers that indicate the proliferative activity of breast carcinoma. 

The Nottingham Histopathology Grading (NHG) is a scoring system to assess the grade of breast 

carcinoma [2]. The NHG system was developed based on the following three morphological criteria: 

mitosis count, degree of tubule formation, and nuclear pleomorphism [2]. Each criterion of the NHG 

system is scored from 1 to 3 and the summation of these scores provides the grade. The score of breast 

carcinoma is determined manually by the histopathologist. There are three grades for breast carcinoma: 

scores 3–5 for Grade 1; scores 6 and 7 for Grade 2; scores 8 and 9 for Grade 3. Distinct prognosis and 

treatment planning are developed according to the obtained grade. 

Conventional assessment of mitosis count is done through visual examination method under a 

light microscope. For each histopathology slide, multiple images/frame (approximate 2000 frames) is 

created corresponding to different areas on a slide [3]. The slide is examined at a high-power field 

(HPF) under 40x magnifications. As the histopathology slides are complex and heterogeneous [4–6], 

visual examination requires the slide to be examined frame by frame. During the slide examination, 

the histopathologist needs to identify a defined area express in mm2 with the highest mitosis activity 

to provide scores based on the NHG system [2]. In many hospitals, histopathologist typically handles 

around 100 grading cases per day [7]. Thus, conventional visual examination of breast carcinoma 

tissues is cumbersome and tedious [1,8]. During the past few decades, the emergence of Whole-Slide-

Imaging (WSI) scanner has made a giant leap in the pathology laboratory [9–11]. This provides a 

significant benefit over the conventional histopathology slides. WSI scanner takes the analogue 

histopathology slides as input and produces digital images as output. 

Mitosis detection is very challenging [12]. Most of the challenges arise from the variability of the 

mitosis cell appearance and the imperfection of H & E staining [13,14]. Mitosis cell is formed through 

a process known as mitosis [15,16]. Mitosis is a process where the chromosome is replicated and 

separated into two new nuclei. This process involves five phases [16]: interphase, prophase, metaphase, 

anaphase, and telophase (Figure 1, top row). The appearance of the mitosis cell varies from a round 

shape with rough texture (interphase and prophase) into a narrow oval shape with hyperchromatic 

properties (metaphase). It then becomes a separate-like nuclei with rough texture and hyperchromatic 

properties (anaphase and telophase) [16]. Apart from this, there are few artefacts such as karyorrhectic 

and apoptotic nuclei that have similar appearance with the true mitosis cells (Figure 1, bottom row). 

Imperfection in the H & E staining, variability of the mitosis cells and artefacts could influence the 

mitosis count and breast carcinoma grading. 

In recent years, the research interest in mitosis detection is mainly driven by the open challenges 

and availability of public access datasets. These datasets allow the researchers to test and validate the 

respective methods and benchmark the results with other re-searchers across the globe. To date, the 

MITOS [17], AMIDA [18], MITOS-ATYPIA [19], and TUPAC [20] are four public access datasets,  
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specifically for mitosis detection in breast carcinoma. Table 1 summarizes the public access datasets 

for mitosis cells detection. 

      

(a) Interphase (b) Prophase (c) Metaphase (d) Anaphase (e) Telophase 

      

(f) Karyorrhectic (g) Apoptotic nuclei 

Figure 1. The top row shows samples of mitosis cells in different phases, whereas the 
bottom row shows the artefacts with similar appearances to the mitosis cells. 

Table 1. Public access datasets for mitosis cells detection. 

Datasets Year Resolutions Magnification 
Number of  

images 

Number of  

mitosis cells 

MITOS [17] 2012 

Aperio scanner: 2084 × 2084 

Hamamatsu scanner: 2250 × 2252 

Multispectral images: 1360 × 1360 

40 x 50 327 

AMIDA [18] 2013 2000 × 2000 40 x 311 550 

MITOS-

ATYPIA [19] 
2014 

Aperio scanner: 1539 × 1376 

Hamamatsu scanner: 1663 × 1485 
40 x 1200 749 

TUPAC [20] 2016 2000 × 2000 40 x 321 Unlabeled 

The recent works in mitosis cells detection can be characterized into three different approaches: 

handcrafted feature-based approach, deep learning approach, and fusion approach. In mitosis cells 

detection, the unbalanced data between the mitosis cells and non-mitosis cells are significant. 

Therefore, to ensure a fair comparison, results benchmarking is usually performed by observing the 

percentage of F1-score obtained from a proposed method. Tables 2–4 show the recent works in mitosis 

detection using the public access datasets with handcrafted feature-based, fusion, and deep learning 

approaches, respectively. 

In handcrafted feature-based approaches, Irshad et al. proposed a mitosis cells detection 

framework that implements multispectral band selection and spatial characterization [21]. The selected 

spectral bands are meant to reduce the computation load and storage complexity, whereas the multi-

features are meant to discriminate between the mitosis cells and non-mitosis cells. Lu and Mandal 

proposed a multi-stage mitosis cells detection framework that involved: discriminative image 

generation stage, mitosis candidate detection, and segmentation stage, followed by the classification 

stage [22]. Tashk et al. performed mitosis cells detection by using a combination of different features: 

Completed Local Binary Pattern, Statistical Moment Entropy, and Stiffness Matrix which includes 
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textural, statistical, and innovative mathematical features [23]. Paul and Mukherjee proposed a mitosis 

cells detection framework that is driven by domain knowledge in mitosis cells [24]. Based on the fact 

that the intensity pattern of the mitosis remains similar in breast histopathology images, mitosis cells 

detection can be done by implementing the Relative Entropy Maximized Scale Space using area 

morphological opening and closing approaches. Nateghi et al. proposed a mitosis cells detection 

framework that implemented a novel Maximized Inter-class Weighted Mean method to reduce the false 

positive in mitosis cells candidates selection stage [25]. Color, textural, and shapes features are then 

extracted from the mitosis cells candidates and are used as input for the classifier. 

In deep learning approaches, Li et al. proposed a novel multi-stage deep learning framework [8]. 

The deep segmentation framework is able to detect the mitosis cells regions by using a weak label such 

as the centroid pixel of the mitosis cells. Also, the deep learning framework is facilitated using contextual 

region information and a deep verification network. The proposed method is termed as DeepMitosis. Cai 

et al. proposed an effective mitosis cells detection framework using a modified regional convolutional 

neural network (RCNN) [26]. The proposed RCNN implemented the Resnet-101 network as the 

backbone feature extractor and is pre-trained on the ImageNet dataset. The output channels are then 

reduced using a large separable convolution. This proposed method is found promising in reducing the 

computation time in both training and inference stages. Alom et al. proposed an end-to-end mitosis 

cells detection framework, namely MitosisNet [27]. The proposed method constitutes of segmentation, 

detection, and classification stages. The output from segmentation and detection stages are used as 

mitosis cells reference regions while further confirmation is performed using the classification stage. 

Sebai et al. proposed a multi-task deep learning framework for mitosis cells detection and instance 

segmentation using Mask RCNN which is termed as MaskMitosis [10]. The MaskMitosis is meant to 

perform multiple tasks such as mitosis mask estimation, bounding box labelling on weakly annotated 

and unannotated datasets, mitosis cells localization, and mitosis cells classification using the estimated 

pixel-level annotations. 

In fusion approaches, Wang et al. proposed a mitosis detection framework that combines the 

convolution neural network (CNN) and handcrafted features such as morphological, textural, and color 

features [28]. The proposed fusion approach was found promising in reducing the computation load 

while achieving high accuracy. Beevi et al. proposed a multi-classifier system for mitosis cells 

detection using the Deep Belief Network [29]. The proposed system combined methods such as the 

Localized Active Contour Model and Krill Herd Algorithm for segmentation purposes and a multi 

classifier system to improve the prediction accuracy. Das and Dutta proposed a deep CNN with wavelet 

decomposed images for mitosis detection [30]. The input images are decomposed into smaller images 

using Haar wavelet. These images are then used to develop a deep CNN for automatic mitosis cells 

detection. Mahmood et al. proposed a multi-stage mitosis cells detection framework based on a faster 

region convolutional neural network (Faster R-CNN) and deep CNNs [31]. The proposed framework 

included a post-processing stage that aims to reduce the false positive using handcrafted features. 

Overall, the recent works aforementioned benefit from applying similar image processing 

methodologies for mitosis detection. These methodologies included image pre-processing, mitosis 

cells candidate estimation and segmentation, feature extraction, feature selection, and classification. 

There are two known challenges in mitosis detection: the number of mitosis cells is very low as 

compared to non-mitosis cells and the mitosis can present in various shapes and morphologies (refer 

to the top row in Figure 1). A plethora of non-mitosis cells are usually found after the segmentation 

stage. This contributes to a high number of false positives and impinges the overall detection accuracy. 
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In addition, a large number of non-mitosis cells can significantly increase the computation time of the 

proposed framework. Several recent works highlight and propose solutions to this issue. Khan et al. 

proposed a gamma-gaussian mixture model to reduce the number of non-mitosis objects after the 

segmentation stage [36]. A more recent work by Nateghi et al. proposed a false positive mitosis 

candidate reduction using a novel Maximized Inter-Class Weighted Mean method [25]. 

Table 2. Recent works in mitosis cell detection using handcrafted feature-based approach. 

Authors Year Datasets Methods 
F1-score 
(%) 

Sommer et al. 
[32] 

2012 

MITOS 
[17] 

Mitosis detection using hierarchical learning 
workflow 

62.9 

Irshad [33] 2013 

Mitosis detection using the multi-channel features 
computation framework where the nuclei feature 
extraction is performed in selected channels of 
color spaces at a fixed image scale 

63.0 

Tek [34] 2013 
Mitosis detection via application of generic 
features and an ensemble of cascade adaboosts  

58.0 

Irshad et al. 
[35] 

2013 
Mitosis detection using texture, sift features, and 
HMAX biologically inspired approach  

76.0 

Tashk et al. 
[25] 

2013 
Mitosis detection using objective and pixel-wise 
textural features 

70.1 

Khan et al. 
[36] 

2013 
Mitosis detection using Gamma-Gaussian mixture 
model 

75.4 

Irshad et al. 
[21] 

2014 
Mitosis detection via the selection of spectral 
bands and focal plane 

74.0 

Nateghi et al. 
[37] 

2014 Mitosis detection using genetic algorithm   78.4 

Irshad et al. 
[21] 

2014 
Mitosis detection using multispectral band 
selection and spatial characterization 

57.0 

Lu and 
Mandal [22] 

2014 

Mitosis detection using three main stages: 
discriminative image generation, mitosis cell 
candidate detection and segmentation, and 
followed by a classification 

47.9 

Tashk et al. 
[23] 

2015 
Mitosis detection using a combination of textural, 
statistical, and innovative mathematical features 

82.7 

Nateghi et al. 
[25] 

2017 
Mitosis detection using Maximized Inter-Class 
Weighted Mean method 

88.4 

Nateghi et al. 
[25] 

2017 
AMIDA 
[18] 

Mitosis detection using Maximized Inter-Class 
Weighted Mean method 

75.3 

Paul and 
Mukherjee 
[24] 

2015 MITOS-
ATYPIA 
[19] 

Mitosis detection by implementing the Relative 
Entropy Maximized Scale Space using area 
morphological opening and closing 

73.4 

Nateghi et al. 
[25] 

2017 
Mitosis detection using Maximized Inter-Class 
Weighted Mean method 

83.7 

Recognition of complex and inconsistent objects specifically in the medical histopathology 

images could be achieved by incorporating domain knowledge in the field of interest [24,47,48]. There 

are studies obtained encouraging results when incorporating domain knowledge, image processing, 

and classification methods [24,48–53], but the number is very few. During manual vision inspection, 

histopathologists do not check the presence of mitosis on every cell in each frame under a light 
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microscope. Histopathologists scan through the frames using the ball rolling method and scrutinize 

cells with characteristics (e.g., hyperchromatic properties) that are specifically demonstrated by 

mitosis cells. In this study, a more promising handcrafted feature-based approach mitosis detection 

framework is proposed. The proposed framework considered both the challenges highlighted herein. 

The proposed mitosis detection framework is driven by domain knowledge in mitosis such that the 

domain knowledge and strategies of the histopathologist (human expert) were utilized to guide the 

development of the image processing framework for mitosis detection. Additionally, the proposed 

framework clusters the segmented cells into different groups based on the morphological structures. 

This aims to triage and eliminate false positives (i.e., non-mitosis cells) in different phases (i.e., 

interphase, prophase, metaphase, anaphase, and telophase). The main novelty of the proposed detection 

framework lies within the simple yet powerful detection capability of the framework with knowledge 

transferred from human experts, producing promising detection results, reflected with high percentages 

in F1-score. To the best of our knowledge, mitosis cells detection using a knowledge-assisted detection 

framework by incorporating domain knowledge as well as knowledge transfer from human experts is 

yet to be available in the literature. 

The objectives of this study are: 1) to remove and minimize the segmented non-mitosis cells (false 

positive); 2) to provide a mitosis cells detection framework that can serve as the second opinion for 

histopathologists to facilitate the mitosis cells assessment procedure; 3) to validate the applicability of 

the proposed detection framework by benchmarking the output of the proposed detection framework 

with ground truth and other recent works.  

Table 3. Recent works in mitosis cell detection using fusion approach. 

Authors Year Datasets Methods 
F1-score 
(%) 

Malon and 
Cosatto 
[46] 

2013 

MITOS 
[17] 

Mitosis detection using the convolutional neural 
networks and seeded blob features 

55.7 

Wang et 
al. [28] 

2014 
Mitosis detection using a combination of handcrafted 
and convolutional neural network features 

73.4 

Mahmood 
et al. [31] 

2020 

Mitosis detection using a multistage mitosis-cell-
detection method based on faster region 
convolutional neural network and deep convolutional 
neural network 

85.8 

Beevi et 
al. [29] 

2017 

MITOS-
ATYPIA 

[19] 

Mitosis detection using a multi-classifier system 76.7 

Das and 
Dutta [30] 

2019 
Mitosis detection using the deep convolution neural 
network with wavelet decomposed patches 

55.9 

Saha et al. 
[12] 

2018 
Mitosis detection using a supervised model of deep 
learning architecture with handcrafted features. 

90.0 

Mahmood 
et al. [31] 

2020 

Mitosis detection using a multistage mitosis-cell-
detection method based on faster region 
convolutional neural network and deep convolutional 
neural network 

69.1 

This paper is organized as follows: Section 2 details the methodology of the proposed mitosis 

detection framework; Section 3 describes the datasets used in this study; Section 4 presents the 

experimental results and analysis obtained from the proposed framework. In this section, the proposed 
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framework is benchmarked and compared with ground truth annotated by the histopathologist (using 

the custom dataset) and recent works (using the MITOS dataset [17]) for validation purposes. In 

Section 5, the conclusion of this study is presented. 

Table 4. Recent works in mitosis cell detection using deep learning approach. 

Authors Year Datasets Methods 
F1-score 
(%) 

Ciresan et 
al. [38] 

2013 

MITOS 
[17] 

Mitosis detection using the deep max-pooling 
convolutional neural networks 

78.2 

Chen et al. 
[39] 

2016 Mitosis detection using the deep regression network 79.0 

Wahab et 
al. [40] 

2017 
Mitosis detection using the two-phase deep 
convolutional neural network 

79.0 

Alom et al. 
[27] 

2020 
Mitosis detection via an end-to-end multi-task 
learning system from pathological images which is 
termed as “MitosisNet” 

87.8 

Sebai et al. 
[10]  

2020 
Mitosis detection using multitask deep learning 
framework for object detection and instance 
segmentation Mask RCNN 

86.3 

Xi et al. 
[41] 

2020 
Mitosis detection using the cascaded convolutional 
neural network (CNN) based on UNet. 

83.6 

Albarqouni 
et al. [42] 

2016 

AMIDA 
[18] 

Mitosis detection using the convolutional neural 
network (CNN) via additional crowdsourcing layer 
(AggNet) 

74.2 

Wollmann 
and Rohr 
[43] 

2017 Mitosis detection using deep residual Hough voting 60.9 

Romo-
Bucheli et 
al. [44] 

2019 
Mitosis detection using deep learning strategy with 
gene expression derived risk categories in estrogen 
receptor-positive breast carcinomas 

55.6 

Chen et al. 
[45] 

2016 

MITOS-
ATYPIA 
[19] 

Mitosis detection using the deep cascaded 
convolutional neural network 

48.2 

Li et al. [8] 2018 
Mitosis detection using the multi-stage deep learning 
framework 

43.7 

Cai et al. 
[26] 

2019 
Mitosis detection using the modified regional 
convolutional neural network  

58.5 

Alom et al. 
[27] 

2020 
Mitosis detection via an end-to-end multi-task 
learning system from pathological images which is 
termed as “MitosisNet” 

75.9 

Sebai et al. 
[10]  

2020 
Mitosis detection using multitask deep learning 
framework for object detection and instance 
segmentation Mask RCNN 

60.8 

Xi et al. 
[41] 

2020 
Mitosis detection using the cascaded convolutional 
neural network (CNN) based on UNet. 

57.1 

Wahab et 
al. [40] 

2017 
TUPAC 
[20] 

Mitosis detection using the two-phase deep 
convolutional neural network 

55.0 

Cai et al. 
[26] 

2019 
Mitosis detection using the modified regional 
convolutional neural network 

73.6 
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2. Methods 

The proposed mitosis cells detection framework consists of five main stages: 1) color 

normalization using the optimal stain vector approach [54]; 2) hyperchromatic nucleus segmentation 

performed using the knowledge-assisted K-Mean; 3) the proposed knowledge-assisted false positive 

reduction stage based on the domain knowledge in mitosis cells; 4) features extraction on 

morphological and textural features; 5) classification using the Support Vector Machine (SVM) with 

radial-based function (RBF) kernel. Figure 2 shows the block diagram of the proposed knowledge- 

assisted mitosis cells detection framework. The following subsections detail each stage in the proposed 

detection framework. 

 

Figure 2. Block diagram of the proposed knowledge-assisted mitosis cells detection framework. 

2.1. Color normalization 

Color variation in H & E-stained breast histopathology images is a common issue that arises 

from the use of different stains/dyes reactivity and coloring from a different manufacturer, use of 

different WSI scanner, and use of different equipment. To ensure excellent stability in the 

performance of the proposed detection framework, color normalization shall be performed to 

minimize color variation amongst the input images in any datasets. In this study, the optimal stain 

vector approach [54] was implemented for color normalization purposes. Briefly, the input images 

were first transformed to the optical density domain. The singular value decomposition was then 

calculated from the optical density tuples. The optical density was then transformed and projected 

onto the plane and was normalized to the unit length. Next, calculate the angle of each point with 

respect to the first singular value decomposition direction. Mapping of direction was then 

performed. All the extreme values were then converted back to the optical density domain. The 

optimal stain vector approach formalized three outputs: a color normalized image, a Hematoxylin-

stained image, and an Eosin-stained image. In this study, only the Hematoxylin-stained image is 

used as the mitosis cells captured only the Hematoxylin stain in the standard staining procedure. 
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Figure 3 shows a sample of outputs obtained from the color normalization stage. 

    
(a) Input image (b) Color normalized 

image 
(c) Hematoxylin-

stained image 
(d) Eosin-stained 

image 

Figure 3. A sample of outputs obtained from the color normalization stage. 

2.2. Hyperchromatic nucleus segmentation 

By nature, the chromosomal condensation that occurs during mitosis resulted in a higher degree 

of Hematoxylin stain absorption during the staining procedure. This causes the mitosis cells to become 

remarkable (i.e., darker in color) than the normal cells and is prominent in the Hematoxylin-stained 

image (Figure 3(c)). Thus, it is reasonable to conclude that the nucleus with low intensity is closely 

related to the mitosis cells. In this study, the nucleus with remarkable intensity values (i.e., darker in 

color) as compared to the normal nucleus in the Hematoxylin-stained image is termed as the 

hyperchromatic nucleus.  

To perform hyperchromatic nucleus segmentation, the Hematoxylin-stained image was first 

converted to the cyan channel (determined heuristically). The number of clusters for K-Mean was set 

as three, such that cluster 1 for hyperchromatic nucleus (white objects), cluster 2 for tumor regions 

(grey regions), and cluster 3 for background (black regions). In hyperchromatic nucleus segmentation, 

only information from cluster 1 (i.e., hyperchromatic nucleus) is relevant to this study. Nevertheless, 

it is important to assign two different clusters for tumor regions and background. If only two clusters 

were assigned in this stage (i.e., cluster 1 for hyperchromatic nucleus and cluster 2 for tumor regions 

and back-ground), the background (i.e., unstained areas that appeared in black color in the cyan 

channel) would act as an outlier and impinge the clustering accuracy for both the clusters. For 

knowledge-assisted K-Mean, the initial centroids are not generated randomly but based on domain 

knowledge. Since the hyperchromatic nucleus, tumor regions, and background respectively appeared 

in white, grey, and black pixel ranges, the initial centroids for each cluster can be selected by simply 

partitioning the gray level (i.e., 255) into three regions, such that region 1 ranges from 171 to 255, 

region 2 ranges from 86 to 170, and region 3 ranges from 0 to 85. Then, the median intensity of each 

region is selected as the initial centroid. 

2.3. Knowledge-assisted false positive reduction method 

The segmented hyperchromatic nucleus images contain mitosis and non-mitosis cells. Mitosis cells 

in different phases demonstrate different morphological features specifically in shape (see Figure 1, top 

row). The knowledge-assisted false positive reduction method was mainly based on domain knowledge 

in mitosis cells and is formalized through empirical analysis. To support the empirical analysis, Monte 

Carlo simulation [55,56] was implemented to determine the number of mitosis cells to be used in this 

stage. Parameters such as area, mean intensity, aspect ratio (AR), form factor (FF), and filled area (FA) 

are observed as random variables. The Cochran formula (refer to Eq (1)) is implemented to calculate the 
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sampling data at a confidence level of 95.0%, provided the z value is at 1.96 (obtained from the z table). 

�� =
����

��
 (1)

where z denotes the z value, p (set as 0.5 in this study) denotes the estimated probability a mitosis cell 

is found; q denotes the probability of 1-p; and e denotes the margin of error. From Eq (1), sampling 

data of 385 is required in order to obtain a confidence level of 95.0%. Thus, in this stage, the empirical 

analysis was performed using 385 mitosis cells. It is important to remark that all the 385 mitosis cells 

used for empirical analysis are first undergone color normalization as described in Section 2.1. As the 

mitosis cells demonstrate different morphological features, typically in shape, the mitosis cells can be 

grouped into four shapes (Figure 4): Large Circular-Shaped (LCS) nucleus, Ellipse-Shaped (ES) 

nucleus, Hollow-Shaped (HS) nucleus, and Curl-Shaped (CS) nucleus. Domain knowledge of mitosis 

cells and strategies used by the histopathologist were incorporated in this stage (i.e., Checking 

procedures 1 and 2, as in Figure 5) to reduce the number of false positive. The steps in the knowledge-

assisted false positive reduction stage are shown in Figure 5. 

        

(a) LCS nucleus (b) ES nucleus (c) HS nucleus (d) CS nucleus 

Figure 4. Four different shapes of nucleus. In images (a) to (d), the left image shows the 
RGB image of nucleus and the right image shows the segmentation results obtained using 
the knowledge-assisted K-Mean. 

 

Figure 5. Block diagram showing processes in the knowledge-assisted false positive reduction stage. 

2.3.1 Post-processing 

Post-processing was first implemented to eliminate the small objects, typically noise and/ or non-

mitosis cells. Manual segmentation was performed on the 385 mitosis cells to obtain the area in pixel. 

The mean area (± standard deviation (SD)) for the mitosis cells was 312 (± 76) pixels. The smallest 
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area of the mitosis cell is 118 pixels. To avoid over-elimination, in this step, only objects with areas 

less than half of this smallest size (i.e., 59) were eliminated from the images and considered as artefacts. 

Table 5 shows the results of the empirical analysis for the area. 

Table 5. Results of empirical analysis for the area in 385 mitosis cells. 

Feature 
Parameters 
Mean (± SD) Maximum Minimum 

Area 312 (± 76) 564 118 

2.3.2 Grouping 

As aforementioned, the knowledge-assisted false positive reduction stage is meant to triage and 

eliminate false positive in different phases (i.e., interphase, prophase, metaphase, anaphase, and 

telophase). Thus, the outputs from the previous step (i.e., post-processing step) are characterized into 

four different groups to facilitate the morphological features screening step in Section 2.3.3. The four 

groups were LCS, ES, HS, and CS groups. These groups are derived from the morphological features 

of the mitosis cells from different phases (i.e., interphase, prophase, metaphase, anaphase, and 

telophase) as in Figure 1, top row, such that the LCS group aims to remove false positive in interphase 

and prophase, ES group in metaphase; HS group in anaphase, and CS group in telophase. 

Grouping was performed based on the following shape parameters: AR, FF, and FA. AR is a ratio 

of the major axis length to the minor axis length (Eq (2)). A high AR value (e.g., > 2.0) relates to an 

ellipse shape. When AR approaching 1.0, it indicates a circular shape. FF is a shape descriptor (Eq (3)). 

It is used to indicate the degree of similarity to a perfect circle [57]. FF value of 1.0 refers to a perfect 

circle and the object becomes less circular when approaching 0.0 [57]. FA is used to detect a hollow 

shape (Eq (4)). A high value of FA indicates an object with a cavity inside whereas a small value of FA 

refers to a solid object. Figure 6 illustrates how FA can be obtained. It is important to remark that in 

any dataset, the number of mitosis cells is very limited. Hence, it is very challenging to perform 

empirical analysis using 385 mitosis cells (at a confidence level of 95.0%) for each group. Therefore, 

the 385 mitosis cells were first manually examined and characterized into LCS, ES, HS, and CS groups. 

Based on the manual examination, from the 385 mitosis cells, there are 134, 91, 82, and 78 mitosis 

cells in LCS, ES, HS, and CS groups, respectively. The shape parameters (i.e., AR, FF, and FA) were 

then extracted from the mitosis cells in each group. Table 6 shows the parameter values of the mitosis 

cells in each group. 

�� =
����� ���� �����ℎ �� �����

����� ���� �����ℎ �� �����
 (2)

�� =
4� ∗ ����

����������
 (3)

�� = � − � (4)

where x denotes the enclosed area of the nucleus and y denotes exact area of the nucleus. 
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(b) The enclosed area of the 
nucleus (�) 

(c) �� obtained from � − � 

Figure 6. Illustration on how to obtain ��. 

Table 6. Results of empirical analysis for shape parameters on the mitosis cells in each group. 

Groups 
Shape parameters 

��  ��  �� 
Mean Max Min  Mean Max Min  Mean Max Min 

LCS 1.5 1.9 1.2  0.6 0.9 0.4  - - - 
ES 3.1 4.5 2.6  - - -  - - - 
HS - - -  - - -  41 57 28 
CS 1.6 1.8 1.4  0.2 0.3 0.1  - - - 

2.3.3 Morphological features screening 

Based on the parameter values in Table 6, conditions for each group were set as shown in Table 7. 

The segmented hyperchromatic nuclei were put into any of these groups based on the conditions. The 

shape parameters of the segmented hyperchromatic nuclei were first checked to see if they fit the 

condition for the HS group. This is then followed by checking the conditions for the ES group, LCS 

group, and CS group. The mitosis candidates in each group then underwent two checking procedures: 

Checking Procedures 1 and 2. These procedures were used to eliminate the false positive in each group. 

Checking Procedure 1 was implemented on the LCS and ES groups, whereas Checking Procedure 2 

was implemented on the HS and CS groups. In Checking Procedure 1, mitosis candidates with an area 

smaller than 118 pixels (obtained in Table 5) were recognized as false positive and eliminated from 

the image. In Checking Procedure 2 (Figure 7), the minor axis length (in pixel) (minoraxis) of each 

nucleus was obtained and was used to develop a square window, such that window = [minoraxis 

minoraxis]. The window was then superimposed and placed on the centroid of the respective nucleus. 

The mean intensity within the window patch was calculated. Checking Procedure 2 eliminates 

candidates with mean intensity lower than 0.23 (obtained in Table 8). This value is obtained from the 

empirical analysis of 385 mitosis cells. Table 8 shows the results of empirical analysis in terms of mean 

intensity calculated using the aforementioned square window. 

Table 7. Setting conditions of shape parameters for four different shape groups. 

Groups 
Shape parameters 

�� �� �� 
LCS ≤1.9 ≥0.4 - 
ES >1.9 - - 
HS - - >28 pixels 
CS ≤1.9 <0.4 - 
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Table 8. Results of empirical analysis for mean intensity in 385 mitosis cells. 

Feature 
Parameters 
Mean (± SD) Maximum Minimum 

Mean intensity (calculated 
using square window, where 
������ =
[��������� ���������]) 

0.53 (± 0.113) 0.76 0.23 

 

    

 

    

   

 

(a)  (b)  (c) (d) 

Figure 7. Illustration on Checking Procedure 2 for HS and CS groups. The top row images 
show the nucleus from HS group and the bottom row images show the nucleus from CS 
group. (a) The sample nucleus, (b) the centroid of the corresponding nucleus is shown by 
the green dot, (c) a window patch with the size of minor axis length (pixel) of the 
corresponding nucleus was developed and (d) the mean intensity in the corresponding 
window is calculated. 

2.4 Features extraction 

Morphological feature describes the form, shape and the structure of the mitosis cell. 

Morphological features such as eccentricity, extent, perimeter, convex area, area, equivalent diameter, 

AR, FF, FA, solidity, and ratio of perimeter to area were extracted from the mitosis candidates. Texture 

features hold a significant characteristic in describing objects or region of interest in an image. The 

condensation of chromosomes during mitosis causes the cell to show random but consistent texture 

properties throughout the five phases. Gray-Level Co-occurrence Matrix (GLCM) was applied to 

examine properties of the mitosis candidates. GLCM with radius, δ = 1 pixel and orientations (θ) of 

0°, 45°, 90°, 135° were used. δ of 1 pixel was used as it could provide the best result in examining the 

texture properties [58]. As the mitosis cell is not an isotropic object (i.e., the directional information 

of mitosis cell is important), thus, it is essential to obtain GLCM at four different orientations [59]. 11 

texture features were computed from the GLCM at four distinct orientations in different channels: 

entropy, energy, inertia, inverse different moment, correlation, sum average, sum variance, difference 

average, difference variance, skewness and kurtosis. Seven color channels were used to generate the 

co-occurrence matrix: red, green, blue, hue, Cr, Cb, and C channels. A total of 319 features (11 

morphological features and 308 texture features) were extracted from the mitosis candidates and used 

as inputs to the SVM classifier. 

Calculate 
mean 

intensity in 
the window 

HS 

 

 

CS 
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2.5 Classification 

SVM was selected to classify the extracted features [60]. SVM is optimized based on risk 

minimization [60]. The optimization process is defined by a function in order to find the parameters 

of a hyperplane that minimizes the risk. For a non-linear case, a kernel-based decision function can be 

applied [61]. By introducing kernel, SVM will gain its flexibility during the choice in the form of 

threshold separating the classes. As the kernel implicitly contains a non-linear transformation, no 

assumption about the functional form of transformation, which makes the data linearly separable, is 

needed. This study used RBF as the kernel-based decision function [61]. In this study, the parameters 

used in the SVM classifier were the default settings. Some of the default settings for the SVM classifier 

can be found in Appendix A (Table A).  

3 Datasets 

To evaluate the proposed knowledge-assisted detection framework, two datasets were used: a 

custom dataset and a publicly available dataset (i.e., MITOS dataset [17]). The custom dataset is a self-

collected dataset locally in Malaysia. This dataset consists of 48 breast histopathology slides and was 

obtained from the Pathology Department, Hospital Tuanku Fauziah, Kangar, Perlis, Malaysia. These 

slides were prepared under a standard staining procedure known as H & E stains. An Aperio CS2 WSI 

scanner was used to convert the slides into digital form. 20 images were captured at 40x magnification 

from different dominant areas in each digital slide. The captured image is in 8-bit RGB color with 

dimensions of 614 × 1264 pixels (size of pixel: 0.2521 µm per pixel) and is in tiff file format. The 

custom dataset consists of 960 images with a total of 832 mitosis cells. Another dataset, namely MITOS 

dataset [17] was used in this study. MITOS dataset [17] is a publicly available dataset that is widely 

used to evaluate the superiority of a mitosis detection framework. Images in MITOS dataset [17] were 

prepared using the standard H & E stains and were captured at 40 x magnification using Aperio XT 

WSI scanner, Hamamatsu NanoZoomer WSI scanner, and multi-spectral microscope. In this study, the 

dataset from the Aperio XT WSI scanner was used for evaluation purposes. The captured image is in 8-

bit RGB color with dimensions of 2084 × 2084 pixels (size of pixel: 0.2456 μm per pixel). This dataset 

consists of 50 images with a total of 327 mitosis cells. Table 9 summarizes the dataset used in this 

study. 

For the custom dataset, the ground truth (i.e., mitosis cells) annotation was performed by an 

experienced histopathologist from the Hospital Tuanku Fauziah, Kangar, Perlis, Malaysia. Each image 

was visually examined and the mitosis cells were annotated care-fully in accordance with the NHG 

system. The main purpose of using the custom dataset is to evaluate the applicability of the proposed 

knowledge-assisted detection framework and to determine the degree of agreement with respect to the 

ground truth. The main purpose of using the publicly available dataset (i.e., MITOS dataset [17]) is to 

perform benchmarking with recent works in order to justify the superiority of the proposed knowledge-

assisted detection framework. 

Table 9. The summary of dataset used in this study. 

Datasets Number of images Number of mitosis cells Magnification Resolution 
Custom 960 832 40 x 614 × 1264 
MITOS [17] 50 327 40 x 2084 × 2084 
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4 Results and analysis 

To evaluate the applicability of the proposed knowledge-assisted detection framework, 

performance evaluation was done in four main aspects: initialization method, false positive reduction 

method, capability in mitosis cells segmentation (after implementation of false positive reduction 

method), and overall performance in mitosis cells detection. The subsequent sub-sections show the 

performance evaluation in detail. 

4.1 Initialization method performance evaluation 

To evaluate the applicability of the improved initialization method, the knowledge-assisted K-

Mean method is compared to the baseline initialization method (i.e., random method [62]) and some 

other popular methods (i.e., Forgy method [63], K-Mean++ [64], and Greedy K-Mean++ [65]). The 

main purposes of this comparison are to: 1) justify if the knowledge-assisted initialization method is 

effective to avoid limitations in conventional K-Mean (using random initialization method) by 

minimizing the possibility of center redundancy, dead center, and the possibility of initial centroid to 

trap in local minima; 2) justify if the knowledge-assisted initialization method could reduce the 

iteration numbers (i.e., by reducing the search space) of the K-Mean algorithm. The boxplots in Figure 8 

shows the comparison in terms of iteration numbers for different initialization methods using both the 

dataset. Based on the boxplot, it is found that the knowledge-assisted K-Mean has a smaller search 

space reflected by lower iteration numbers to compute the final centroids. As compared to other 

initialization methods, the boxplot of the knowledge-assisted K-Mean has a compact distribution and 

outperformed the Random method [62], Forgy method [63], and K-Mean++ [64]. When compare to 

Greedy K-Mean++ [65], the iteration numbers obtained from the knowledge-assisted K-Mean are 

highly comparative and slightly better by demonstrating lower iteration numbers with lower median 

value (Greedy K-Mean++ [65] (median): 9 and knowledge-assisted K-Mean (median): 7). 

Figure 8. Comparison in terms of iteration numbers for different methods using both the datasets. 
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4.2 Mitosis cells segmentation performance evaluation 

The main purpose of the mitosis cells segmentation performance evaluation is to determine the 

capability of retaining the mitosis cells after implementation of segmentation and false positive 

reduction stages in a detection framework. For ideal performance, in the segmentation stage, the 

detection framework aims to segment all the mitosis cells as foreground, whereas, in the false positive 

reduction stage, the detection framework aims to remove most of the false positive (i.e., non-mitosis 

cells) and retain all the true positive (i.e., mitosis cells). Therefore, in this study, a high total number 

of segmented mitosis cells is preferable. Tables 10 and 11 show the comparison in terms of the total 

number of segmented mitosis cells with different methods after implementation of the respective 

segmentation and false positive reduction stages using the custom and MITOS [17] datasets, respectively. 

Based on the table, it is found that the proposed knowledge-assisted detection framework 

demonstrates a better performance as the total number of segmented mitosis cells for both the datasets 

are the highest (i.e., custom dataset: 825/ 832 and MITOIS dataset [17]: 321/ 327). In the proposed 

knowledge-assisted detection framework, all the mitosis cells were segmented as foreground in the 

segmentation stage using the knowledge-assisted K-Mean method with a trade-off of a high number 

of false positive. Nevertheless, it is important to remark that most of the false positive were then 

removed via the knowledge-assisted false positive reduction stage as in Section 2.3 with minimal loss 

in mitosis cells. 

Table 10. Comparison in terms of the total number of segmented mitosis cells for 
different methods using custom dataset. 

Methods Total number of segmented mitosis 
cells 

Total number of mitosis cells 

Gamma-gaussian mixture 
model [36] 

808 832 

Maximized Inter-Class 
Weighted Mean [25] 

817 

Proposed  825 

Table 11. Comparison in terms of the total number of segmented mitosis cells for 
different methods using MITOS dataset [17]. 

Methods 
Total number of segmented mitosis 
cells 

Total number of mitosis cells 

Blue ratio [35] 314 

327 

Anisotropic Diffusion [66] 314 
Gradient minimization [67] 315 
Gamma-gaussian mixture 
model [36] 

317 

Pixel features [32] 318 
Maximized Inter-Class 
Weighted Mean [25] 

318 

Proposed 321 
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4.3 False positive reduction method performance evaluation 

Based on Tables 10 and 11 in the previous sub-section, generally, the majority of the established 

works can retain most of the mitosis cells after the segmentation and false positive reduction stages. 

Nevertheless, as aforementioned, the number of false positive (i.e., non-mitosis cells) versus the 

number of true positive (i.e., mitosis cells) are commonly in great unbalance, where a high number of 

false positive would impinge the overall performance of the detection framework (low F1-score). Thus, 

removing the false positive is essential to improve the performance of mitosis cells detection. To establish 

a fair com-parison, in this section, the performance evaluation is done by benchmarking with two 

established works that incorporate different false positive reduction methods (i.e., Gamma-gaussian 

mixture model [36] and Maximized Inter-Class Weighted Mean [25]) after the respective segmentation 

stage. The percentage of false positive reduction can be calculated using Eq (5). 

���������� �� ����� �������� ���������� ��������� =
� − �

�
�100% (5)

where i denotes the number of mitosis candidates before the false positive reduction stage and o 

denotes the number of mitosis candidates after the false positive reduction stage. Figure 9 shows the 

comparison in terms of percentages in false positive reduction for different methods, where Figure 9 

(a) and (b) show the outputs evaluated using the custom and the MITOS [17] datasets, respectively. A 

high percentage in false positive reduction reflects that the false positive reduction method is capable 

to remove more false positive (i.e., non-mitosis cells) and is preferable in this study. 

Based on Figure 9, it is evident that the proposed knowledge-assisted false positive reduction 

method can remove most of the false positive (i.e., 90.0 and 87.1% of the false positive, respectively, 

for custom and MITOS [17] datasets). For the custom dataset, the percentage obtained by the proposed 

knowledge-assisted false positive reduction method is 14.1 and 6.6% higher than that of the Gamma-

gaussian mixture model [36] and Maximized Inter-Class Weighted Mean [25], respectively, whereas, 

for the MITOS dataset [17], 19.6 and 7.7% higher than that of the Gamma-gaussian mixture model [36] 

and Maximized Inter-Class Weighted Mean [25], respectively. 

 
(a) Outputs obtained using custom dataset.   (b) Outputs obtained using MITOS dataset [17]. 

Figure 9. Comparison in terms of percentage in false positive reduction using (a) custom 
and (b) MITOS [17] datasets. 
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4.4 Mitosis cells detection performance evaluation 

As aforementioned, in mitosis cells detection, the number of mitosis cells (true positive) versus 

the number of non-mitosis cells (true negative) is usually in great unbalance, where mitosis cells are 

very few as compared to non-mitosis cells in any dataset. Therefore, evaluation parameter such as F1-

score is useful where the detection of non-mitosis cells (true negative) is excluded in the calculation. 

To calculate the F1-score, one must first compute the precision and recall. Equations 6 to 8 show the 

formula for F1-score, precision, and recall, respectively. 

F1-score =  
�� ��������� � ������

����������������
 � 100% (6)

��������� =
��

�� + ��
 � 100 % (7)

������ =
��

�� + ��
 � 100% (8)

where true positive (TP) denotes the mitosis cells that are correctly labeled as mitosis cells, false 

positive (FP) denotes the non-mitosis cells that are wrongly labeled as mitosis cells; and false negative 

(FN) denotes the mitosis cells that are wrongly labeled as non-mitosis cells. In this study, F1-score 

would be used as the primary evaluation parameter. A high percentage in F1-score reflects an accurate 

detection of mitosis cells and is preferable in this study.  

The mitosis cells classification was done using a 10-fold cross-validation SVM classifier with an 

RBF kernel. The data were randomly divided into 10 equal pieces. Each selected piece was chosen as 

a test set with training done on the remaining data. The cross-validation was then repeated 10 times 

(folds) with each subsample used exactly once as the validation data. All the observations were used 

for both training and validation, and each observation was used for validation exactly. To demonstrate 

the capability of the proposed detection framework, the outputs of the proposed detection framework 

using both datasets are benchmarked to the recent works. For the custom dataset, the comparison of 

the outputs was done on recent works which incorporate different false positive reduction methods: 

Gamma-gaussian mixture model [36] and Maximized Inter-Class Weighted Mean methods [25]. The 

proposed knowledge-assisted detection framework outperformed these recent works by achieving 89.1% 

in F1-score. For the MITOS dataset [17], the performance comparison is mainly focuses on recent 

works using handcrafted features-based approach. Nevertheless, considering the growing body of 

literature in deep learning and fusion (i.e., handcrafted features-based and deep learning) approaches, 

several recent works in respective approaches are included for benchmarking purposes to justify the 

applicability of the proposed detection framework. Based on the outputs, the proposed knowledge-

assisted detection framework outperformed all the recent works using handcrafted feature-based 

approach by achieving 88.9% in F1-score. The F1-score of the proposed knowledge-assisted detection 

method is 0.5% higher than that of the best performing method amongst the handcrafted feature-based 

method (i.e., Nateghi et al. [25]). When comparing to recent works using deep learning and fusion 

approaches, the F1-score of the proposed knowledge-assisted detection framework is found promising 

and outperformed the best-performing methods using deep learning and fusion approaches by 1.1% 

(i.e., Alom et al. [27]) and 3.1% (i.e., Mahmood et al. [31]), respectively. Figure 10 shows the 

comparison of the overall outputs in terms of F1-score for different detection frameworks using custom 

(Figure 10 (a)) and MITOS [17] datasets (Figure 10 (b)).  
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(a) Outputs obtained using custom dataset. 

 
(b) Outputs obtained using MITOS dataset [17]. 

Figure 10. Outputs comparison in terms of F1-score for different detection frameworks 
using (a) custom and (b) MITOS [17] datasets. 

For both datasets, the classification obtained high TP values. The high TP is reflected in the high 

FI-score percentages. The high TP perhaps caused by the good performance in the hyperchromatic 

nucleus segmentation using the improved K-Mean and the knowledge-assisted false positive reduction 

methods. In the hyperchromatic nucleus segmentation, all the mitosis cells were retained on the images. 

This demonstrates the ability of the knowledge-assisted K-Mean method in providing a promising 

segmentation without removing the region of interest or ground truth (i.e., mitosis cells). In the 

knowledge-assisted false positive reduction stage, for custom and MITOS [17] datasets, only 0.8 (7 

mitosis cells) and 2.0% (6 mitosis cells), respectively, of the ground truth were lost. In terms of false 

positives, this stage successfully removed 90.0 and 87.1% false positives in the custom and MITOS [17] 

datasets, respectively. The overall classification result demonstrates robustness with an optimal F1-
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score of 89.1 and 88.9% for custom and MITOS [17] datasets, respectively. Overall, the obtained F1-

score was found promising and demonstrated superiority when compared to recent works using 

handcrafted feature-based, deep learning, and fusion approaches for both datasets. This shows integration 

between domain knowledge (from human experts) and image processing procedure can help to improve 

the performance of the mitosis cells detection producing complementary results. 

The low FP and high TP have enhanced the overall F1-score of the proposed knowledge-assisted 

detection framework. The combination of morphological and texture features has provided better feature 

discrimination between the mitosis and non-mitosis cells. The computation complexity of the proposed 

detection framework remains low as the proposed detection framework did not involve complex 

mathematic equations (as in the deep learning and fusion methods). Domain knowledge was incorporated 

in the detection framework and was used to guide the image analysis algorithms. The domain knowledge 

and strategies of the histopathologist were effectively incorporated in the mitosis cells detection 

framework and were used to formalize the basic building blocks in mitosis cells detection. Based on the 

results obtained from each stage and the overall performance, the domain knowledge is found prominent 

and potentially holds a significant role in medical image analysis, especially for mitosis cells detection. 

5 Conclusions 

In this study, an automated knowledge-assisted mitosis cells detection framework is proposed. The 

proposed detection framework is developed by incorporating the strategies of the histopathologist and 

domain knowledge approach which aims to perform recognition of complex and inconsistent mitosis cells 

in breast histopathology images. The main novelty of the detection framework lies within the simple yet 

powerful detection capability with knowledge transferred from human experts, producing promising 

detection results. The contributions of the detection framework are: 1) a knowledge-assisted K-Mean that 

is able to segment all the mitosis cells from the background and reduce the search space in computing the 

final centroids, which is reflected with low iteration numbers; 2) a knowledge-assisted false positive 

reduction method which capable to remove most of the false positive (i.e., non-mitosis cells). For both the 

datasets, the knowledge-assisted K-Mean is found able to segment all the mitosis cells with a trade-off of 

high false positive numbers. The knowledge-assisted false positive reduction method is then applied to 

remove most of the false positive (i.e., 90.0 and 87.1% in the custom and MITOS [17] datasets, 

respectively); 3) the proposed framework achieves a high percentage in F1-score (i.e., 89.1%) when tested 

using the custom dataset which reflects a good agreement with respect to ground truth demarcated by the 

histopathologist, 4) the proposed framework achieves a high percentage in F1-score (i.e., 88.9%) when 

tested using the MITOS dataset [17] and outperformed the recent works with handcrafted feature-based, 

deep learning, and fusion approaches; 5) to the best of our knowledge, mitosis cells detection using a 

knowledge-assisted detection framework by incorporating domain knowledge as well as knowledge 

transfer from human experts is yet to be available in the literature. The proposed knowledge-assisted K-

Mean and false positive reduction method are found capable to improve the performance of the mitosis 

cells detection producing complementary results. This is justifiable as the proposed knowledge-assisted 

detection framework obtains high F1-scores when the proposed detection framework is evaluated using 

two different datasets. Additionally, when benchmarking with recent works using handcrafted feature-

based, deep learning, and fusion approaches, the F1-scores of the proposed detection framework are found 

promising and outperformed the recent works. For future work, the proposed framework is intended to test 

using other publicly available datasets (e.g., AMIDA [18], MITOS-ATYPIA [19], and TUPAC [20]) to 
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further justify the applicability and capability of the proposed framework. 
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Appendix A 

Table A shows some of the default settings for the SVM classifier used in this study. 

Table A. Settings of the SVM classifier (default settings). 

Parameters Settings  

Box constraint 1 

Kernel function RBF kernel 

Kernel scale 1 

Flag to standardize predictor data False 

Solver (optimization routine) Iterative Single Data Algorithm (ISDA) 

Flag to clip alpha coefficients True 
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