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Abstract: This work deals with the impact of the vaccination in combination with a restriction pa-
rameter that represents non-pharmaceutical interventions measures applied to the compartmental SEIR
model in order to control the COVID-19 epidemic. This restriction parameter is used as a control pa-
rameter, and the univariate autoregressive integrated moving average (ARIMA) is used to forecast the
time series of vaccination of all individuals of a specific country. Having in hand the time series of the
population fully vaccinated (real data + forecast), the Levenberg–Marquardt algorithm is used to fit an
analytic function that models this evolution over time. Here, it is used two time series of real data that
refer to a slow vaccination obtained from India and Brazil, and two faster vaccination as observed in Is-
rael and the United States of America. Together with vaccination, two different control approaches are
presented in this paper, which enable reduces the infected people successfully: namely, the feedback
and nonfeedback control methods. Numerical results predict that vaccination can reduce the peaks of
infections and the duration of the pandemic, however, a better result is achieved when the vaccination
is combined with any restrictions or prevention policy.
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1. Introduction

It was identified between late 2019 to early 2020, a new coronavirus (SARS-CoV-2), which is the
cause of the disease known as COVID-19. This virus has spread rapidly around the world making the
World Health Organization declared a pandemic caused by this virus on March 11, 2020. The COVID-
19 pandemic has produced not only biomedical and epidemiological repercussions on a global scale but
also social, economic, political, and cultural impacts [1]. For almost the entire year of 2020, the main
strategy to deal with the COVID-19 outbreak was adopting the use of non-pharmacological measures.
One can highlight such measures as social distancing, quarantines, lockdown, masks, hand hygiene,
etc [2, 3]. Wearing masks and social distancing can help reduce the chance of exposure to the virus or
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transmitting it to others, but these measures are not enough. For this reason, vaccines are important,
because they will work on the immune system so that it is ready to fight the virus if you are exposed.
The vaccines are considered the best preventive measures to decrease the morbidity and mortality of
infectious diseases [4]. Over the course of 2020, vaccines were developed with the most different
technologies and at a speed never seen before. Thus, the United Kingdom started vaccinating its
population on 08 December 2020, with an unprecedented vaccine based on Messenger RNA (mRNA),
the first vaccine approved for emergency use [5].

Deterministic mathematical models have been used for years as one of the ways to study the behav-
ior of infectious diseases. When making predictions about diseases policymakers can put in practice
the vaccination and/or isolation plans, and thus, have a significant reduction in the death rate of an
epidemic/pandemic [6]. Among the mathematical models that are used for this purpose, it can high-
light the SEIR model (and some variations of it), which is widely used, for example, to model the
dynamics of the COVID-19 pandemic [7–10], to pandemic control [11–13], and it is used to simulate
the effectiveness of non-phamacological measures [14, 15].

Time series analysis is a powerful tool that, among other applications allows to build a mathemati-
cal model from experimental data. Different methods have been applied to predict future values from
real data. Among them can be highlighted autoregressive methods (AR), auto-regressive moving av-
erage method (ARMA), auto-regressive integrated moving average method (ARIMA), autoregressive
moving average with exogenous inputs method (ARMAX). These kinds of models have been used for
forecasting time series by a number of authors [16–19], and, in particular, the Box-Jenkins method is
used to estimate incidences of COVID-19 [20, 21].

In this work, the classical SEIR model is changed by a control (σ) and vaccination terms. A fore-
casting mechanism based on the ARIMA model to estimate the future of the vaccination process is
used. The time series of vaccination (real data + prediction) is fitted using the Levenberg–Marquardt
algorithm in order to obtain a mathematical function that describes the vaccination over time. Based
on this SEIR model modified, numerical simulations are carried out. Two strategies are used in order
to perform the pandemic control. The nonfeedback control with constant and pre-determined values
of σ and the feedback control that uses a variable structure control (VSC) and an extended Kalman
filter (EKF) are employed in order to reduce the epidemic peaks. In the nonfeedback control case, the
pre-established values of σ generate two or three waves in the epidemic curve. On the other hand,
since the actions of the feedback control are more restrictive, then only one infection wave is observed.
In all these cases, results show that the combination of vaccination and restriction measures is a better
alternative for controlling the pandemic spread since it provides a more effective reduction of infected
when compared to the case obtained from the non-pharmacological approach only.

2. Forecasting of vaccination time series

Vaccines are considered to be one of the best preventive measures to reduce mortality from infec-
tious diseases. However, the implementation of vaccine policies by health authorities is not an easy
task. Mathematical modeling is important in the development of any modern vaccination program and
should be used in the evaluation of different vaccination policies [4, 22, 23]. In this way, mathematical
modeling can help us to quantify the protection provided by immunization [4].

Figure 1 shows the real data of the population fully vaccinated until July 2021 obtained from the
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Our vaccination dataset [24] for India, Brazil, USA, and Israel. Note that the real data of COVID-19
vaccination from India and Brazil are slow, while, the USA and Israel are faster.
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Figure 1. Time-series of people fully vaccinated from December 2020 to June 2021.

Forecasting is made using a known time series called the past to estimate future values of this
series. The development of time series forecasting dates back to 1970 when Box & Jenkins (BJ) [25]
proposed a methodology quite different from the existing ones. Based on the important result of Wold,
(1938), who proved that any time series can be represented by an infinite moving average model, BJ
proposes a class of linear models known as ARMA (p, q) (Autoregressive Moving average) models. A
generalization of an ARMA model is an autoregressive integrated moving average (ARIMA (p, d, q))
that is applied in cases where the data shows evidence of nonstationarity. In both models p is the
number of lag observations included in the model, d is the number of times that the observations are
differenced and q is the size of the moving average window, also called the order of moving average.
The ARIMA models are particularly useful for forecasting due to the use of lagged variables.

In most cases the series are nonstationary, so it is necessary to use some transformation in order to
extract more information from it. This procedure is done so that the stability of the variance occurs, that
is, to make the residues of the adjusted model have a constant variance. In general, if a nonstationary
time series needs to be differentiated d times to become stationary, we call this integrated time-series
order d [26]. If a time series yt is stationary from the start (that is, it does not require any differentiation),
we say that it is zero-order integrated. A possible transformation that can be done is the use the
successive differences ∆yt = yt − yt−1. A nonstationary yt series can be differentiated n times (∆nyt)
until it acquires stability. Thus, for each difference applied to the data set, the stationarity verification
tests are remade.

The concept of an integrated process of order d, or I(d), comes from the representation of stochastic
processes as linear models of the ARIMA(p, d, q) class. In fact, the parameter d of an ARIMA(p, d, q)
model represents the number of times that the stochastic process has been differentiated until it becomes
stationary [26].

In order to test the stationarity of the fully vaccinated people time series, the Kwiatkowski, Phillips,
Schmidt e Shin (KPSS) test [27] was applied. The KPSS test evaluates the null hypothesis that a
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univariate time series has a stationary trend. The hypothesis test statistic is given by [28]

LM =
1

N2

N∑
t=1

S 2
t

σ̂2(p)
(2.1)

where S t =
∑t

j=1 e j(t = 1, 2, . . . ,N) being e j the residual from the regression process and σ2 the
estimate of the error of the variance of this regression, given by equation

σ̂2(p) =
1
N

N∑
t=1

e2
t +

2
N

p∑
j=1

w j(p)
N∑

t= j+1

etet− j (2.2)

where p is the truncation lag, w j(p) is the optimal weighting function that corresponds to the choice of
a Bartlett’s special window given by w j(p) = 1 − j

p+1 [28].

3. SEIR model

To characterize the dynamics during outbreaks of infectious diseases, mathematical models can be
used by political and health authorities in the formulation of public health policies. Compartmental
models are mathematical models in which the temporal variation of a given quantity is made through
well-defined sets, which we call compartments [29]. One of the compartmental models that are being
widely used to predict the evolution of the COVID-19 outbreak is the SEIR model, where S represents
the Susceptible individuals, E is the Exposed individuals, I represents the Infectious and R is the
Removed individuals (see Figure 2).

S E I R

β

N S I ωE γI

Figure 2. Schematic representation of SEIR model.

The SEIR compartmental deterministic model is given by the following set of ordinary differential
equations

dS
dt

= −
β

N
S I

dE
dt

=
β

N
S I − ωE

dI
dt

= ωE − γI

dR
dt

= γI

(3.1)

where β = R0
Tin f

, ω = 1
Tinc

and γ = 1
Tin f

and N = S + E + I + R is the total population. The rate
at which susceptible are converted into exposed (β) depends both on infection period (Tin f ) and the
epidemiological parameter R0 known as basic reproductive number of the infection system. In the case
of COVID-19, it is estimated R0 between 1.6 and 3.0 [11]. In addition, ω is the rate at which exposed
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are converted into infected, γ is the rate at which those infected are converted into recovered, and Tinc

is the incubation period.

4. Epidemic control strategies with vaccination

The impact of preventive measures on the infection spread is analyzed by the SEIR model. Preven-
tive measures, or in the context of this paper, control action are restrictive government and individual
measures that are proposed to contain a pandemic, such as social distancing, quarantine, restriction of
public movement, masks, and other efforts necessary to mitigate the spread of COVID-19. In order
to incorporate the control action, the SEIR model is rewritten with an additional control term (1 − σ)
following the formulation used by [7, 8]. In this case, the parameter σ can be associated with the
intensity of the restrictions imposed by the control policies adopted in order to reduce the spread of
infection [8]. Wearing masks and social distancing can help reduce the chance of exposure to the virus
or transmitting it to others, but these measures are not enough. Vaccines will work on your immune
system so that it is ready to fight the virus if you are exposed. Assume that the vaccine is effective so
that all vaccinated susceptible individuals become immune, that is, susceptible vaccinated transforms
into the removed, and by hypothesis, the removed individuals are assumed to be immune to reinfec-
tion. Let vk(t) represent the percentage of susceptible individuals being vaccinated per unit of time and
θ = 1

Timm
where Timm is the average time for immunization of an individual after vaccination. Figure 3

represents the compartmental SEIR model with the restriction (σ) and vaccination (vk(t)).

S E I R

β

N S I(1 − σ) ωE γI

θvk(t)S

Figure 3. Schematic representation of SEIR model with restriction and vaccination.

Taking all the above considerations, the SEIR model with restriction and vaccination terms is given
by:

dS
dt

= −
β

N
S I(1 − σ) − θvk(t)S

dE
dt

=
β

N
S I(1 − σ) − ωE

dI
dt

= ωE − γI

dR
dt

= γI + θvk(t)S

(4.1)

where the vaccination rate vk(t) is defined by the function

vk(t) :=
Pk

100
, k = 1, 2, 3, 4. (4.2)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1355–1372.



1360

For instance, if we take k = 1 we obtain the function v1(t) = P1
100 that refers to the vaccination rate

of the people in India. On the other hand, if we take k = 2 we obtain the function v2(t) = P2
100 that

represents the vaccination rate of Brazil and so on. Observe that if vk(t) = 0, then no vaccination is
done and vk(t) = 1 indicates that all susceptible population is vaccinated.

5. Results and discussion

This section presents the results and discussions on the influence of vaccination and government
actions to control the COVID-19 pandemic. At first, the vaccination prediction functions are adjusted
by the ARIMA model. After that, numerical simulations considering two control methods are used,
where σ is the control parameter. The nonfeedback and a feedback method based on the variable
structure control (VSC) are applied to the system (4.1) to control the transmission of coronavirus
disease (COVID-19). The simulations were performed by using the fourth-order Runge–Kutta method
with a fixed step and reference parameter values from the literature are used to simulate the outbreak
of COVID-19: R0 = 2.2 [30], Tinc = 6.4 days [31], Tin f = 3 days [32]. Moreover, in all simulations, the
initial conditions are defined as follows (S 0, E0, I0,R0) = (999, 0, 1, 0). As the number of vaccinated
people grows, one question is still open: how long does the immunity produced by the vaccine last?
This is a question that is not yet possible to predict as the immune response to vaccines is influenced
by many factors [33]. However, a study published in the journal Science found that the immunity
acquired by individuals who had COVID-19 can last up to 8 months [34]. Therefore, one of the
possible scenarios is that perhaps immunization against the new coronavirus will become part of the
annual vaccination campaigns. Due to the uncertainty of the duration of the immunization period, it is
adopted that Timm = 365 days, which implies that θ = 1

365 .

5.1. Analysis and prediction of the vaccination times series

The analysis of vaccination time series is carried out in this section. Initially, the results obtained
for the KPSS test are shown in table 1, where the critical values are for right-tail probabilities. If h
value is equal to 1 it indicates the rejection of the null hypothesis, while if it is equal to 0 it indicates
the acceptance of the null hypothesis;

Table 1. Results of KPSS test for fully vaccinated people time series.

Time series test statistics critical value h
India 0.15 0.146 1
Brazil 0.302 0.216 1
USA 0.17 0.146 1
Israel 0.342 0.146 1

According to table 1, and based on the proposal by [35], the analyzed series are nonstationary,
because if the LM statistic is greater than the critical value, then the null hypothesis is rejected, and
therefore, the series is nonstationary. All the series presented here are nonstationary, therefore, the
ARIMA model will be used to forecast the time series of vaccinated people. First, the parameter
d must be identified in order to convert all the nonstationary time series into stationary. The new
differentiated series is illustrated in Figure 4.
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Figure 4. Time series after differentiation for (a) India, (b) Brazil, (c) Israel and (d) USA.

To check whether the stationarity has been achieved, the KPSS test was remade for the differentiated
series and the results are presented in Table 2. Note that to achieve the stationarity from India and Israel
time series is necessary to derivative the respective series one time (d = 1), and the time series from
Brazil and the USA, it is necessary to derivative two times (d = 2).

Table 2. Results of KPSS test for time series after differentiation.

Time series d test statistics critical value h
India 1 0.08 0.146 0
Brazil 2 0.05 0.146 0
USA 2 0.07 0.146 0
Israel 1 0.117 0.146 0

Now, it is necessary to find the values of p and q in order to select an appropriate ARIMA model to
forecast the evolution of the fully vaccinated people times series. In order to determine the best ARIMA
model to predict the time series the Bayesian Information Criterion (BIC) is used. The best model is
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achieved when the BIC measure will be as small as possible (the BIC measure can be negative [26]).
As the fit of the model improves, the BIC will approach −∞ [26]. It is considered that parameter d is
constant like observed in table 2, and the BIC is used to determine the parameters p and q. Table 3
reports the best ARIMA model with the respective minimum values of BIC for Indian, Brazil, USA,
and Israel time series of the fully vaccinated people, considering the interval given by p ∈ [1, 5] and
q ∈ [1, 5].

Table 3. ARIMA model selected based on the minimum value of BIC.

Time series ARIMA(p,d,q) BIC
India 1,1,1 -596.5372
Brazil 1,2,1 -174.7926
USA 4,2,2 -416.2727
Israel 4,1,3 -119.4096

Figure 5 shows the predictions of the populations fully vaccinated using the ARIMA model as
values described in Table 3. It is important to note that considering these forecasts the population of
India will be fully vaccinated in 1314 days after starting the vaccination, the Brazilian people will be
vaccinated in 414 days, the Israeli people in 398 days, and the US people in 488 days.

The mathematical model of the population fully vaccinated is obtained from a curve fit of real data
together with the forecast performed, where each series was fit to a Fourier series (see Eq. 5.1).

Pk = a0 +

n∑
j=1

a j cos( jωt) + b j sin( jωt), k = 1, 2, 3, 4 (5.1)

where P1, P2, P3, P4 corresponds to India, Brazil, USA and Israel functions, respectively. The Brazil
time series can be described by a 2th-order Fourier series, the Indian time series is fit to a 3th-order
Fourier series and the USA and Israel time series can be fitting to the 4th-order Fourier series.

The coefficients of the Fourier series were obtained based on the Levenberg-Marquardt method for
curve-fitting problems. Table 4 shows the coefficient value of each series.

5.2. Nonfeedback strategy

The proposed nonfeedback control of the system (4.1) consists of adopting constant values for σ
for a certain amount of time and then altering it up or down to reduce the curve of infected individuals.

Case 1. In this case, the restrictions added to the system (4.1) result in two waves of the pandemic.
The restrictions imposed are given by

σ =



0.0, if t ≤ 30
0.4, if 30 < t ≤ 130
0.6, if 130 < t ≤ 250
0.4, if 250 < t ≤ 365
0.0, if 365 < t

(5.2)

Figure 6 shows the time response of the Infected individuals of the system (4.1) where the nonfeed-
back action (see Eq. 5.2) is applied. The gray curve in Figure 6 shown the system response without
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Figure 5. Real data and forecasting of time series for (a) India, (b) Brazil, (c) USA and (d)
Israel.

restriction (σ = 0,∀t) and vaccination (vk(t) = 0,∀t). As expected, the only infectious peak is very
high which could lead to an overload of the health care system, implying the need for a large expansion
of the hospital infrastructure, a fact that proved to be unfeasible in this pandemic. On the other hand,
the black curve shows a scenario in which restrictions provided by Eq. 5.2 are put into practice but still
without vaccination (v(t) = 0,∀t). Note that in this case the infected peak is drastically reduced, how-
ever, as these restraint measures are smoothed and hardened over time a second peak (second wave)
is observed. The advantage of adopting these restrictions is that the infectious peak decreases and
probably, fewer deaths will be observed, in return, the pandemic duration increases.

Figure 7 depicts the time series of the infected people subjects to restrictions (see Eq. 5.2) and vacci-
nations rate (vk(t)). In these cases, the vaccination started 335 days after the beginning of the outbreak
of COVID-19. Initially, the impact of a faster vaccination (see v3(t) and v4(t) cases) on susceptible
individuals leads to a decrease in the peak of infected as compared to the case where only restrictions
were imposed (see Figure 7a). Figures 7b and 7c are magnifications of the infected curve (Figure 7a).
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Table 4. Coefficients of the Fourier series of Eq. 5.1 obtained through the Levenberg-
Marquardt method.

Coefficients

Time series
India Brazil USA Israel

a0 52.5211 143.0738 59.2779 56.2703

a1 -40.8105 -154.1863 -31.8553 -40.2695

a2 -11.6672 11.2329 -18.7046 -17.3305

a3 -0.1266 0 -5.8297 -2.6721

a4 0 0 -1.2258 0.5241

b1 -22.4162 -29.2240 -23.4229 -3.7607

b2 6.9607 11.7953 1.5793 19.2970

b3 2.9042 0 2.0832 11.3469

b4 0 0 0.2832 2.2685

ω 0.0029 0.0038 0.0076 0.0094
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Figure 6. Time-series of infected individuals showing the effects of the interventions with
the appearance of the second wave.

Figure 7b shows that even when a low speed of vaccination occurs, the magnitude response of infected
people decreases, when using the v1(t) vaccination rate approximately 7% reduction is observed, while
for v2(t) this reduction is 10 %. It can be said that even with the slow pace of vaccination it is rec-
ommended that the population are vaccinated since the number of infected is reduced, and, hence the
chances that people will develop severe forms of the disease, decrease as well. On the other hand,
Figure 7c shows that due to a high speed of vaccination the amplitude of peaks decreases considerably.
It is observed the peak level decreases approximately 36% and 75% to the v3(t) and v4(t) vaccinations
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rate, respectively. Figure 7d shows the evolution of vaccination for the v3(t) and v4(t). It should be
noted here that the attenuation of the second peak occurs because at this moment approximately 50%
and 60% of the susceptible have already been vaccinated in the v3(t) and v4(t), respectively.
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Figure 7. Time-series of infected individuals (a) restrictions + vaccination, (b) zoom of
figure (a), (c) zoom of figure (a) and (d) vaccination rate.

It is noteworthy that the vaccination has been started 335 days after the pandemic beginning, and
the value of σ in Eq. 5.2 corresponding to this date is 0.4, i.e. (t, σ) = (335, 0.4), which indicates
a reasonable level of restrictions, but, 30 days after the vaccination started occurs a complete easing
of restrictions (σ = 0 − see Eq. 5.2). However, the amplitude of the second peak can be reduced
considerably if an integrated strategy using restriction and vaccination is considered. Eqs. (5.2), (5.3),
and (5.4) are defined taking into account this strategy (restrictions + vaccination) where until t = 365
the values of σ are the same as Eq. (5.2), but to t > 365 the value of σ = 0.1, σ = 0.2 or σ = 0.3 are
assumed in Eqs. (5.3), Eq. (5.4) and Eq. (5.5), respectively.
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σ =

 ...

0.1, if 365 < t
(5.3)

σ =

 ...

0.2, if 365 < t
(5.4)

σ =

 ...

0.3, if 365 < t
(5.5)

Figure 8 shows the effects of this strategy on pandemic control adopting the v2(t) vaccination rate.
The impact of vaccination and restrictions is clearly seen in the decrease of the amplitude of infected
people of the second wave. Thus, for the considered σ parameters, the amplitude reduction are: 38%
for σ = 0.1, 67% for σ = 0.2 and 85% for σ = 0.3 in comparison with the σ = 0.0 case. Thus, it
is possible to say that the combination of vaccination and restrictions (governmental actions) provide
a better strategy to suppress the epidemic spreading because the restrictions flatten the peak of the
infected curve, and the vaccination makes the number of infected people can be minimized.
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start vaccination

Figure 8. Time-series of infected individuals considering the v2(t) vaccination ratio + re-
strictions.

Case 2. Now the restrictions added to system 4.1 result in three waves of infections. The restriction
is given by

σ =



0.0, if t ≤ 30
0.6, if 30 < t ≤ 130
0.4, if 130 < t ≤ 250
0.6, if 250 < t ≤ 335
0.4, if 335 < t ≤ 465
0.0, if 465 < t

(5.6)

Figure 9 presents the time series of infected people without any restriction (gray color) and with the
restriction defined by Eq. (5.6) (black color). Note that the restrictions dramatically alter the response
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of infected individuals, it significantly reduced the amplitude of the first peak, but three waves of
infections are observed instead of one wave. Similar to the previous case, restrictions increase the
pandemic duration.
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Figure 9. Time-series of infected individuals.

Figure 10 presents the infected population considering σ given by Eq. (5.6) and different vaccina-
tions rate (vk(t)). As previously, the vaccination is implemented 335 days after the spreading outbreak.
Once again, it can be observed that different vaccination rates can result in dramatically different num-
bers of infected individuals (see Figure 10a). Figure 10a shows the time series of infected indicating
when the vaccination starts and when the restriction is withdrawn. Figures 10b and 10c are magnifi-
cations of the infected curve (Figure 10a). It can be seen from Figure 10b that for both v1(t) and v2(t)
rates of vaccination, the infected decreases 8% and 15%, respectively. Figure 10c presents a high-speed
vaccination rate, and thus, the amplitude of the third peak decreases considerably, approximately 45%
when v3(t) vaccination rate is used and 74% for v4(t). Figure 10d shows the evolution of vaccination
for v2(t) and v3(t). One should note that after 130 days of vaccination all restrictions disappear (σ = 0).
In this instant of time, the fully vaccinated people arrive at about 67% when v3(t) is considered. On the
other hand, when the v2(t) vaccination rate is applied only 10% of susceptible people are completely
immunized. The decrease in restriction actions, even in the v3(t) case, demonstrated that the infected
increase and hence vaccination alone is not enough to combat the pandemic. Therefore, the vaccination
and restriction policies should combine action in order to avoid a larger number of infected people and
consequently deaths.

5.3. Feedback strategy

To control the COVID-19 epidemic spreading will be using a variable structure controller (VSC).
The switching surface Λ = λ−σ̄ is defined based on the number of total infected individuals Itσ = E + I
where the controller design is separated into two steps. The VSC feedforward controller computes the
σ̄ and the VSC feedback controller adjusts the control input (σ) to suppress the epidemic spreading.
The controller uses an extended Kalman filter (EKF) to estimate the λ-parameter. A detailed descrip-
tion of the control and EKF design can be found in [8]. A schematic of the VSC controller is shown in
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Figure 10. Time-series of infected individuals (a) restrictions + vaccination, (b) zoom of
figure (a), (c) zoom of figure (a) and (d) vaccination rate.

Figure 11.
The function σ in Eq. (4.1) is defined in [8] as follows:

σ =

aσ̄ + bλ, if Λ > 0
σ̄ , if Λ < 0

(5.7)

Figure 12 shows the variable structure controller performance where the control actions being taken
every 7 days for a = 0.1 and b = 0.9. The control of the spread of COVID-19 without vaccination
but with restrictions is shown with the gray curve. Note that the number of infected is low but the
restrictions persist for a long period of time (approx. 740 days until σ = σ̄ - the lowest value of
restrictions) with the peak of infected being achieved 317 days after beginning the first infection. Note
that, due to vaccination, the reduction is observed in infected followed by a decrease in the duration
of the COVID-19 pandemic. Once again, it can be observed that different vaccination actions result
in different numbers of infected. Figure 12b shows the influence of vaccination on the action of the
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restriction parameter. It is interesting to note that with a higher speed of vaccination rate the restrictions
are reduced more quickly. The results also show that a higher vaccination coverage renders benefits
like easing the restrictions.

System

Extended Kalman

Filter

Controller

λ - estimator

VSC

Feedforward Controller Feedback Controller

ത𝜎 𝜎

𝜆

Figure 11. Controller schematic diagram and the extended Kalman filter.
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Figure 12. Time-series of (a) infected individuals and (b) restrictions.

6. Conclusion

In this paper, the non-pharmacological and vaccination terms are incorporated into the SEIR model
in order to control the COVID-19 outbreak. The Autoregressive Integrated Moving Average (ARIMA)
model was proposed for the vaccination time series forecasting in four different countries around the
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World. In particular, this procedure is performed on the time series from India, Brazil, the USA, and
Israel. All series are nonstationary that need to be transformed into stationary ones. After that, the
prediction made by the ARIMA model together with real data is fit to a basis of harmonic functions
where the Levenberg–Marquardt algorithm estimated the coefficients of this function. This analytical
function is used to model the vaccination rate in the simulations on the SEIR model. This paper presents
two strategies for controlling the COVID-19 pandemic considering the vaccination and restriction,
where the restriction parameter is considered as the control parameter. The nonfeedback control is
capable to reduces the first peak but other waves are observed. On the other hand, feedback control is
proposed, and, as it is more restricted than the nonfeedback one, only one peak is observed. Numerical
simulations indicate clearly that vaccination is indispensable to reducing the number of infected people.
In addition, the vaccination combined with governmental actions (like non-pharmacological ones) are
capable to minimize the infected peaks.
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