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Abstract: Network security has become considerably essential because of the expansion of internet
of things (IoT) devices. One of the greatest hazards of today’s networks is distributed denial of service
(DDoS) attacks, which could destroy critical network services. Recent numerous IoT devices are
unsuspectingly attacked by DDoS. To securely manage IoT equipment, researchers have introduced
software-defined networks (SDN). Therefore, we propose a DDoS attack detection scheme to secure
the real-time in the software-defined the internet of things (SD-IoT) environment. In this article, we
utilize improved firefly algorithm to optimize the convolutional neural network (CNN), to provide
detection for DDoS attacks in our proposed SD-IoT framework. Our results demonstrate that our
scheme can achieve higher than 99% DDoS behavior and benign traffic detection accuracy.

Keywords: software-defined internet of things; distributed denial of service; firefly algorithm;
convolutional neural network; detect attacks

1. Introduction

Recently, network security has become particularly important because distributed denial of service
(DDoS) [1] gravely threaten network safety. With the aim of dissipating the computing resources of
the victim, for instance, memory and CPU, the DDoS attacker intentionally sends a good supply of
malicious request messages to the victim host, making the affected host unable to provide services to
normal users. DDoS attacks have increased dramatically in complexity, number, and impact due to
the rapid growth of hire attack services and the internet of things (IoT) devices [2]. Service providers
and network operators have done incalculable damage as DDoS attacks have become so devastating.
In October 2016, Mirai Botnet ordered a large quantity of IoT equipment to launch a DDoS attack
on the Dyn DNS infrastructure, leaving amazon, Twitter, GitHub and other prevalent Internet services
unreachable for several hours [3]. The DDoS attack with a topmost traffic of 1.35 Tbps is believed to
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be the largest DDoS attack in history. The amount of IoT equipment with risk factors has increased
dramatically, and there will be 24.6 billion connected devices by 2025 [4]. These IoT devices will
improve the capabilities of extensive DDoS attacks. Currently, the incidents of DDoS attacks on IoT
devices are increasing, and causing many IoT devices to fail and privacy leaks. Therefore, with the
rapid development of the IoT, corresponding network security measures should also be improved si-
multaneously.

Software-defined networks (SDN) offers a novel opportunity to settle the above matter. In view of
the success of SDN in network management and security maintenance, more and more domestic and
foreign scholars have tried to introduce their design concepts into IoT and proposed a software-defined
internet of things (SD-IoT) architecture [5]. The key characteristic of the SD-IoT architecture is the
separation of the control plane and the forwarding plane. The SD-IoT controller Usually works on a
high-performance computing platform, which enables the security strategies and detection mechanisms
that cannot be achieved by traditional network [6]. For SD-IoT switches, the most important task is to
deal with the traffic flow. The southbound interface brings the advantages of simplified equipment
management and business implementation cost reduction to the system.This separation guarantees
the continuous availability of IoT equipment and circumvents potential service failures and network
outages. Moreover, it can prevent unauthorized admission to other devices from logging in, inspect
devices that disrupt the Internet, distinguish normal and abnormal traffic flowing through IoT devices,
and reduce the security risks of IoT devices eventually. In addition , more research is also essential
because many problems such as network security still exist in the fusion of SDN and IoT.

DDoS attacks are currently one of the most difficult methods to detect in network attacks [7]. The
purpose is to exhaust the target system or network resources, causing the victim to be unable to carry
out normal services. Common DDoS attacks fall into two categories: resource bandwidth consum-
ing attacks and system resource consuming attacks. Resource bandwidth attacks use a large number
of zombie hosts to quickly generate a huge amount of traffic to converge on the victim’s server, and
completely seize its network bandwidth resources. For example, continuously sending a large number
of UDP, TCP and ICMP packets can initiate a flooding attack, resulting in UDP flooding, TCP flood-
ing and ICMP flooding. Or use reflection to perform amplification attacks, such as DNS reflection
amplification attacks. System resource attacks mainly use protocol vulnerabilities to consume specific
resources of the victim’s host. For instance, TCP SYN half-connection attack using TCP three-way
handshake.

At the same time, because of the many different combinations of DDoS attacks, detection becomes
increasingly arduous. For instance, lots of DDoS attackers leverage mixed protocol packets to attack
their victims. More comprehensive and persuasive defense techniques should be developed to deal
with a variety of attack techniques [8]. The novel DDoS attacks cannot be detected by the traditional
signature-based detection methods, while the more commonly used detection methods based on statis-
tical anomalies are restricted by the detection threshold. In order to solve the deficiencies of statistical
anomaly detection methods, attack detection schemes based on machine learning methods are being
studied. Among them, deep learning algorithms have been recognized for the classification of DDoS
attacks and normal traffic. The deep learning algorithms can extract the characteristics needed by
DDoS attack and normal traffic flow from the original data flow. However, most of the attack detection
methods based on deep learning algorithm in the past are implemented in traditional networks and re-
quire too much resource supply. Particularly, current DDoS attack detection methods are not designed
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for SD-IoT network offline attack detection. In live SD- IoT networks, detection algorithms must deal
with networking traffic flows that have been predefined data packet window.

Although the large-scale CNN algorithm has achieved pretty results in detecting attacks, few people
pay attention to how to maintain respectable detection performance with the supply of few resources.
For example, deploy the trained CNN model in the SD-IoT controller. As more and more IoT equip-
ment are deployed in the network, the probability of the network being attacked by insecure IoT equip-
ment is also increasing, so we need to consider the defense mechanism. Deep learning approach can
automatically extract high-level features from low-level ones and gain powerful representation and in-
ference. We use deep learning for feature reduction of a large set of features derived from networking
traffic. Thus, we choose the deep learning algorithm to apply to our scheme. In fact, even without
resource constraints, it is valuable to minimize resource usage to maximize system output.

According to the latest DDoS detection requirements, this paper proposes a new detection algo-
rithm, which integrates CNN algorithm into SD-IoT controller. The following highlight are the main
contributions of this paper:

1) We put forward a SD-IoT security framework. This architecture includes IoT infrastructure, IoT
switches that fuse IoT gateways, and an SD-IoT controller.

2) A dataset-independent data packet preprocessing mechanism in which detection algorithms must
deal with flows fragments collected in predefined packet windows. The SD-IoT controller that provides
flexible programmability periodically obtains the packet header from the SD-IoT switch, which greatly
reduces the processing overhead of the SD-IoT controller.

3) We propose an improved firefly algorithm to optimize the neural network structure to improve
the detection accuracy.

4) The detection method in this paper uses CNN algorithm to learn normal traffic and malicious
traffic, and then detects DDoS attack. The method has high detection accuracy and low processing
overhead.

Roadmap: In Section 2, we retrospect the related work. Section 3 presents the currently gener-
ally recognized IoT architecture, interprets the proposed SD-IoT framework and introduces about the
DDoS attacks. In Section 4, we propose to detect DDoS attacks in SD-IoT environment with IFACNN
algorithm. The simulation platform is used for experiments and performance assessment in Section 5.
Lastly, Section 6 gives the conclusion of this paper.

2. Related work and background

There are three primitive methods of DDoS attack detection in SDN: the method based on statistics,
the method based on policy and the method based on machine learning.

In SDN network, the statistical-based method refers to the usage of statistical data to distinguish
malicious traffic and normal traffic. The common method of DDoS detection is to measure the statis-
tical characteristics of networking traffic flow. Generally, entropy variations of selected packet fields
should be monitored. Entropy, by definition, is the degree of chaos in the data, or a measure of the
randomness of the data. In DDoS attacks, the randomness of networking flows characteristics will be
affected by sudden changes. The typical characteristic of the DDoS attack is that a great deal of attack-
ers usually utilize the compromised device to send a lot of communication to one or more end hosts.
Therefore, traditional DDoS attacks usually lead to an increase in the entropy value of the source IP
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address or a decrease in the entropy value of the destination IP address.
Mousavi et al. [9] leveraged the entropy of the target IP address to detect DDoS attacks. When

the switch received a packet and did not know what to do with it, it sent a Packet-in message to the
SDN controller. Packet-in messages contained the target IP address, and the controller calculated
the entropy of the target IP address. Set the sampling window size and threshold in the controller.
When the calculated entropy value was less than the set threshold value, it was determined as a DDoS
attack. Wang et al. [10] processed the statistical information of switch flow table in SDN network to
detect DDoS attacks. Kiibra Kalkan et al. [11] used flow-based detection mode when detecting normal
traffic. Packet-based traffic detection mode was used when detecting malicious traffic. The scheme in
this paper could drop malicious packets after detecting the attack packets, so as to achieve effective
defense effect.

Although DDoS attack detection methods based on information entropy occupy less resources,
these detection methods all need to choose the appropriate threshold to get the desired detection results.
Because of the different traffic types in different networks, it is quite a challenge to determine the proper
detection threshold in different attack environments.

In a policy-based detection scheme, if the flows detected conforms to a specific policy, the network
flow examined is considered normal. Conversely, the network flows being examined is considered
malicious [12]. Shin et al. [13] proposed a strategy, which applied TCP connection status information
to detect and mitigate DDoS attacks. In this scheme, Avant-guard detected and classified normal and
abnormal flows in the system. Wei et al. [14] proposed another strategy-based anomaly detection
system. The system calculated the trust value of all sources. If the value was less than the threshold
set by the system, it was determined that these sources were attackers. The system further removed
packets sent by these sources to mitigate DDoS attacks. The attack detection method based on policy
has higher accuracy. However, it needs to redeploy the policy when encountering a new attack pattern.

The machine learning algorithms can grasp the characteristics of samples through learning, and
finally form a very accurate model for detecting such features through training. Ravi et al. pointed
out in [15] that the application of machine learning in network anomaly detection had been extensively
studied. Jin Ye et al. [16] extracted the six tuples in the flow tables of the switches as feature vectors,
which were as the input of SVM algorithm to detect malicious traffic. Peng et al. [17] took advantage
of the relevant information of the data set as the detection feature of K-nearest Traffic classification
and correlation analysis (CKNN), so as to classify the normal and abnormal traffic. Trung et al. [18]
combined SVM and SOM algorithm to detect DDoS attacks. The SVM was used to detect the network
flow in the first step, and the network flow that cannot be processed in the first step was detected by the
SOM algorithm.

Recent research have shown that separating the control and data plane, centralized control of SDN
and dynamic access of network equipment can be achieved the support IoT devices. A feasible solution
to reinforce the security control and management capability of the IoT is to combine with SDN [19].
The paper [20] proposed a software-defined IoT security service framework, using SDN security con-
troller to provide effective privacy protection, access control, key management and other security ser-
vices. The paper [21] proposed an IoT architecture model, which combined the pros of centralized
control of SDN and computing of fog. The paper [22] proposed a novel SDN controller design scheme
based on the IoT multi-network. The paper [23] divided the IoT into different subnets, and imple-
mented a cross-domain secure routing strategy using a software-defined security cluster head. The
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above research results prove the feasibility and effectiveness of the combination of SDN and the IoT.
In the SDN framework, how to improve the security of the IoT is an important research topic.

Nobakht et al. [24] proposed a framework called IoT-IDM, which was based on the SDN with IoT
attack detection and mitigation mechanism. It could detect the target host and mitigate the attack.
Salman et al. [25] proposed a resultful resolution for IoT security, which was the identity authentication
scheme combining SDN and IoT. Gonzalez et al. [23] proposed an IoT security scheme based on SDN
applicable to distributed cluster routing protocol. The author built a test platform for the proposed
security solution to verify and evaluate it. Nguyen et al. [26] analyzed specific vulnerabilities of link
spoofed attacks on link services in SDIoT networks by using controllers, and proposed a hybrid strategy
to solve this security problem. Bull et al. [27] proposed a security system based on flow for equipment
in the IoT, which aimed to reduce the damage caused by DDoS attacks. In order to improve the
accuracy of sample-based anomaly detection in the IoT, SDN was introduced into the system [28].

The IoT is a technology that can link up anything and anywhere.Security in the context of IoT is a
critical challenge [29]. Specially, numerous challenges prevent the securing of IoT devices and their
end-to-end communication in an IoT environment [30]. In the IoT ecosystem, all connected objects
can be connected to the Internet and all have a distinctive identifier, which is used for addressing.
The IoT has various forms, complex technologies and widespread implications. From up to down, the
IoT can be divided into comprehensive application layers, management service layers, network con-
struction layers and perception and recognition layers, respectively in accordance with the principles
of application, processing, transmission and information generation. As the name implies, the com-
prehensive application layer is a set of various applications. The number of network applications has
surged, showing the characteristics of diversification, scale, and industrialization [31]. With the aid of
vast storage technology and the management service layer of high-performance computation, which
provides the intelligent development platform for the application of the upper layer. It is the main
function of the network construction layer to link the perceptual recognition layer devices to the Inter-
net. The essential technology of the IoT is perception and identification. Perception and identification
layer contains automatic information generation equipment such as radio frequency identification and
wireless sensors, as well as diverse smart electrical products such as our common computers. The
essential technology of the IoT is perception and identification. Perception and identification layer
contains automatic information generation equipment such as radio frequency identification and wire-
less sensors, as well as diverse smart electrical products such as our common computers [32]. Because
of the numerous devices and applications, the security of the IoT has been threatened unprecedentedly.

3. DDoS attacks in proposed SD-IoT framework

Our proposed SD-IoT architecture is an expanded version of SDN combined with the IoT. Three
layers, the infrastructure layer, the control layer and the application layer, are included in the frame-
work. The proposed architecture is shown in Figure 1.

The location of the network equipment is the infrastructure layer, which includes many switches.
our scheme is to fuse SDN switches and IoT gateways into SD-IoT switches, that is, SD-IoT switches
have both SDN switch functions and gateway functions. Our solution is different from that in literature
[33], that the IoT gateways and SDN switches in this framework are independent. IoT drivers and
sensor equipment such as personal computers, digital cameras, and smart phones can be connected to
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our SD-IoT switches.
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Figure 1. The SD-IoT framework.

The SD-IoT controller is the component of the control layer. The SD-IoT controller utilizes the
southbound interface to collect topology information of IoT devices, establish a global view, and then
complete network management functions such as attack detection, traffic engineering and load balanc-
ing on the infrastructure layer. At the same time, this layer also provides the corresponding API for the
application layer to invoke.

The application layer in this framework involves of a variety of applications running in the IoT
server and connect to the SD-IoT controller through a northbound interface. At the same time, it also
provides convenience for developers. In SD-IoT, developers no longer worry about differences in un-
derlying device communication protocols by using a unified south interface protocol, which simplifies
application development, facilitates application deployment and reduces network maintenance costs.

In our framework, the centralized logical control of IoT devices is the responsibility of the SD-
IoT controller. The benefits of logical centralized control are configuration and management, but the
drawbacks are also obvious, namely, the system can be exposed to danger. Our proposed programmable
SD-IoT framework resemble SDN, which plays a constructive effect on detecting DDoS attacks. As
shown in Figure 2, the DDoS attack process in our proposed framework is analyzed as follows.

a) Both normal users and DDoS attackers send packets to the SD-IoT switch. Normal packets are
retrieved from daily traffic and attack packets are produced by attack scripts.

b) The SD-IoT controller periodically issues instructions to collect information about the current
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packets header of the SD-IoT switch.

c) The SD-IoT switches proceed to the next step based on the result of SD-IoT controller.

Figure 2. DDoS attacks in SD-IoT.

4. DDoS attack detection model

The model IFACNN can detect DDoS attacks in SD-IoT efficiently and accurately. The four com-
ponents of this model are introduced below.

4.1. Data packets collection and data preprocessing model

Data Packets collection: The foremost purpose of this module is to collect the header information
of the current data packets of SD-IoT switches periodically. Take advantage of the programmability
of the architecture, write a program module at the SD-IoT controller to send instructions to the switch
to collect packets. The time interval at which the controller collects the packet header from the switch
is extremely important. If the collection time interval is relatively long, the system may be unable to
respond in time when it is subjected to a DDoS attack, resulting in irreparable loss and damage. Con-
versely, if the collection interval is too short, the number of interactions between the controller and the
switch will enhance, increasing the overhead of processing data for the SD-IoT controller. Considering
the above factors, the SD-IoT controller in this system obtains data packets header information from
the SD-IoT switches every 6 seconds.
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Algorithm 1 Converting Packets into Networking Flow Algorithm
Input:

pkt.tuple
Output:

The index value of the networking flow
1: Procedure GetIndex (pkt.tuple)
2: T ← 0 ▷ Initialise the networking flow
3: ε← 0
4: for all pkt ∈ NDP do
5: for idx init 0 to T.length() by 1 do ▷ Loop over the networking flow
6: if pkt.tuple = = T [idx] then
7: break
8: if idx = = T.length() then ▷ The networking flow was not found
9: T.append(pkt.tuple) ▷ Add a new networking flow

10: ε[idx].append(pkt.header)
11: End procedure

Table 1. Glossary of symbols.

Notation Definition
NDP The networking data packets set
idx The index
f id The index of networking flow
ε A collection of packets sorted by networking flow
M The sub-flow window set
m The sub-flow window
V The feature vector
T The networking flow according to the 5-tuple
L The lable of networking flow
h The number of networking flow

Data packets preprocessing: Networking flow refers to the sequence of data packets with the
identical multiple tuples. For example, we define that data packets in the network are the same network
flow when they own the same {Source IP, Source Port, Destination IP, Destination Port, Protocol}
information. S =

{
p(1), p(2), ..., p(l), ..., p(n)

}
can be utilized to describe a network flow with n packets,

where p(l)(1 ≤ l ≤ n) stands for the l-th packet of S. The q-vector containing the information p(l) ={
p(l)

1 , p
(l)
2 , ..., p

(l)
m

}
can be represented as p(l) ∈ Rq. For instance, the source IP address, destination IP

address and other information in the packet header. After we obtain the packets header, we divide
the data packets into different network flows according to the quintuple. Algorithm 1 describes the
detailed process. In Algorithm 1, the two for loops are nested and their time complexity is o(n2). Since
the space required for the implementation of this algorithm does not change with the size of a certain
variable, the space complexity of this algorithm is a constant, which can be expressed as o(1). The
symbols are defined in Table 1.

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1280–1303.



1288

Algorithm 2 Data preprocessing algorithm
Input:

Networking traffic flow
Output:

List of labelled samples
1: Procedure GetIndex (pkt.tuple)
2: M ← 0 ▷ Initialise the sub-flow window set
3: f id ← 0
4: V ← 0
5: while f id < T.length() do
6: m← 0
7: mrow ← 0
8: mcol ← 0
9: while m.length() < n do

10: m[mrow,mcol]← ε[ f id].shi f t() ▷Move ε[ f id] data into m
11: if true = = ε[ f id].empty then ▷ When the current ε[ f id] is empty, go to the next net-

working flow table
12: f id ← f id + 1
13: mcol ← 0
14: mrow ← mrow +1
15: if mrow ≥ h then
16: break
17: M.append(m) ▷ Fill in M with m
18: for all m ∈ M do
19: V.append(m. f eatures)
20: V.lable← L.[m] ▷ Apply the lable
21: End procedure

We regard all the data packets in the network flow, assuming that there are A data packets. In these
A packets, n packets are taken as a packets window, and there are h sub-flows in a packets window.
In the following experiments, we chose to use 250 packets as a window. When h < x, we extract 6
features of each networking traffic flow in the window, and the remaining x−h traffic flow features will
be filled with zeros as the input to the IFACNN model. If h > x, each h flow features constitutes a set
of inputs to IFACNN. As shown in Algorithm 2. In Algorithm 2, the two while loops are nested, and
the for loop and while loop are parallel, so their time complexity is o(n2). Like the space complexity
of Algorithm 1, the space complexity of this algorithm is also o(1). The influence of the size of the h
value on the detection rate will be considered in Section 5.

4.2. Feature extraction module

The core function of this module is to obtain the characteristics of network flow through data packets
collection and data packets preprocessing module. We require determining the characteristics of the
network flow as the input of the deep learning algorithm for DDoS attack detection. Although DDoS
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attackers can make use of a variety of attack methods, most attacks network flows are subject to certain
rules. Hence, we can utilize network flow characteristics to detect DDoS attack. Based on the previous
analysis, we have selected six characteristics associated with DDoS attacks.

The number of packets per networking flow (NPf): It is found that there is a significant difference
in the number of packets between DDoS attack networking flow and normal networking flow. The
attackers exploit the randomly produced fake source IP addresses to attack the victim host. Although
this method can generate a great deal of networking flows within a short time, the characteristics of
the attack networking flows are also obvious, that is, the number of packets per attack networking flow
is merely 1–3. Normal networking flow possess extensive packets. For that reason, we apply NPf to
indicate one of the networking flow features.

The number of bytes per networking flow (NBf): For the sake of sending a large quantity of
packets at short notice, attackers need to make the number of bytes of each attack networking flow
extraordinary tiny. For example, the attackers send 120 bytes TCP flood attack packets to attack the
victim host, while the number of bytes in a normal networking flow is much larger than this number.
Thus, a significant feature for detection DDoS attacks is NBf.

Duration of each networking flow (DNf): The duration of the normal networking flow is long.
The abnormal networking flow is plenty of useless packets randomly sent by the attacker with different
source IP addresses, so the duration of the abnormal networking flow is short.

Rate of networking flow (RNf): Since DDoS attackers can send mountains of unusable networking
flows, the available resources of the victim host will be occupied. Consequently, during an attack on
a victim host, a good supply of associated networking flows increases dramatically. Therefore, RNf is
also an important feature of DDoS attack.

Source IP addresses of networking flow (SIP): As previously mentioned, DDoS attackers send
massive packets of fabricate source IP addresses to the victim host. For the attack networking flow
where the attacked host is the destination address, the source IP addresses are fairly scattered and
possess great randomness in a packets window which is predefined.

Destination IP addresses of networking flow (DIP): The destination IP addresses of the DDoS
attack networking flow is extra focused and less random than that of the benign networking flow.

4.3. Improved firefly algorithm

Firefly algorithm (FA) is a kind of bionic swarm intelligence optimization method. Fireflies have
two elements: brightness and attractiveness. Fireflies with strong luminescence can attract fireflies
with weak luminescence. The iteration of position is completed in the process of moving from the
weak firefly to the strong firefly. According to the above principle, the search for the optimal solution
can be realized in the step-by-step iterative process.

The FA is a population-based algorithm, in which each firefly is represented as a vector point in
the search space, that is, a solution to the problem. The candidate solution cx can be expressed as the
position of firefly x : C = (cx1, ..., cim), where x = 1, 2, ..., ξ, ξ represents the total number of individuals
in the firefly population, and m represents the dimension of the problem. The relative brightness and
relative attraction of fireflies can be expressed as the following equation:

θ = θ0e−Lδxy (4.1)
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µ(δ) = µ0e−Lδ2xy (4.2)

where, θ0 represents the fluorescence brightness of firefly at δ = 0; µ0 is the maximum degree of
attraction, that is, the degree of attraction at δ = 0; L is the parameter of light absorption, which repre-
sents the characteristic that the fluorescence is weakened by the influence of distance and propagation
medium, and can be set as a constant; δxy represents the distance between position x and position y.
The Euclidean distance between two fireflies can be expressed as:

δxy =∥ cx − cy ∥=

√√
m∑

k=1

(cxk − cyk)2 (4.3)

when fireflies are attracted to move, the distance between them will gradually shorten. According to
the principle of equivalent infinitesimal substitution, Eq (4.4) can be used to replace Eq (4.2), so as to
reduce the amount of calculation and improve the operation speed.

µ(δ) =
µ0

1 + Lδ2
xy

(4.4)

It is further concluded that the update iteration formula for the firefly to move from position x to
another more attractive position y is as follows:

cx
n+1 = cx

n + µ0e−Lδ2xy(cx − cy) + φ(r − 0.5)

= cx
n +

µ0

1 + Lδ2
xy

(cx − cy) + φ(r − 0.5)
(4.5)

where φ is the step size factor, n is the current number of iterations, r is the random factor between
[0,1], which follows a uniform distribution.

Aiming at the problems of slow convergence speed and easy to fall into local optimal value of FA,
we introduce a location update strategy based on population diversity. In order to avoid the vibration
problem of the optimal solution and improve the accuracy of optimization, we propose an adaptive step
size update measure.

According to Eq (4.5), when each firefly updates its position, it mainly depends on the attraction
of fireflies with high fluorescence brightness to itself. The analysis shows that due to the lack of
randomness of global search, the whole search space may converge to the local optimum after several
location updates. Therefore, this paper proposes to use the average distance length from individual to
group center to measure group diversity firstly, as shown in Eq (4.6):

βn =
1
|S |

|s|∑
x=1

√√ m∑
y=1

(cxy − cY)2 (4.6)

where, βn represents the diversity index of the n-th generation population, |S | represents the population
size, and cY represents the j-dimensional component of the average center of the population.
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Based on the diversity characteristics introduced above, the strategy of firefly location update is
further adjusted. The modified location update formula is as follows:

cx
n+1 = cx

n + µ0e−Lδ2xy(cx − cy) + ρ ∗ (cx − cb) + φ(r − 0.5) (4.7)

where, cb is the current optimal firefly individual, ρ is a weight that changes according to population
diversity and iteration times and has a certain randomness. The calculation formula of ρ is as follows
Eq (4.8):

ρ = {
−r∗σ βn≤σ∗β0

0 βn>σ∗β0
(4.8)

where, β0 represents the population diversity index at the initial time; σ is a linear decreasing function,
which decreases with the increase of the number of iterations. The calculation formula of σ is as
follows Eq (4.9), in which Tmax is the maximum number of iterations and Titex is the current number of
iterations.

σ =
Tmax − Titex

Tmax
(4.9)

According to Eq (4.7), in the initial stage of the algorithm, the value of σ is relatively high, and
the result obtained by Eq (4.8) is a negative value. Therefore, the probability of firefly individual will
move towards the irregular direction away from the best in the initial stage, so as to ensure the search in
a wider range; while in the later stage of the algorithm, due to the reduction of diversity requirements,
the firefly will search randomly in the direction close to the best to achieve more refined local search.
Such a dynamic adjustment mechanism can balance the problems of global optimization in the early
stage and local optimization in the later stage, so as to better avoid the phenomenon of convergence of
the algorithm to local optimization.

In the FA, the step factor φ in Eq (4.5) is a fixed value. In the later stage of the algorithm, most
fireflies will do local optimal search around the best point, and fixed step size may lead to failure to
converge to the best point. Therefore, in order to balance the contradiction between the early and late
stages of the algorithm convergence process, the step size factor is dynamically adjusted according to
the number of iterations as follows:

φ = φ0 ∗ σ (4.10)

where, φ0 is the initial step factor. So far, we have completed the improvement of firefly algorithm.
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Figure 3. Flowchart of DDoS attack detection.

4.4. DDoS attack detection

For the reason that the characteristics of attack networking flows and normal networking flows
are distinctive, attack detection is considered as a classification problem. Data packets collection and
data packets preprocessing module collects data packets and preprocesses the data. The features of net-
working flows are extracted by feature extraction module. Ultimately, train the attack detection module
through the data samples. Figure 3 shows the process of DDoS attack detected by IFACNN. The train-
ing of IFACNN neural network should gradually adjust and reduce the error between network output
and expectation by constantly adjusting the weight and bias between each layer, and finally achieve the
target accuracy requirements. The topology structure of each layer and the learning rate in IFACNN
network are all part of the hyperparameters of neural network. The adjustment of hyperparameters has
great influence on the final network performance and detection accuracy of neural network. We use
the improved firefly algorithm to optimize the selection of IFACNN hyperparameters. Each firefly in-
dividual represents the hyperparameter configuration of a neural network. During training, the training
accuracy of the neural network is measured by the root mean square.The trained IFACNN model is
exploited to detect the DDoS attack on the networking flows of the system and export the detection
results.

Deep learning model: The IFACNN model is mainly composed of input layer, convolution layer,
pool layer, fully connected layer and output layer. It is the function of the input layer to accept the
data to be detected. The convolution layer is used to take local features, and full connected layer is to
assemble the previous local features into a complete graph through the weight matrix. The function of
pooling layer is to remove redundant information, compress features and simplify network complexity.

Input layer: As mentioned above, data packets are divided into different networking flows ac-
cording to five tuples, and different features are extracted from the networking flows. In the predefined
networking flow window, the networking flows and features constitute a two-dimensional input matrix.
The IFACNN algorithm studies the correlation of networking flows in that window. We can represent
the flow of the window as F matrix, which size is h × f . For example, F = { f low1, f low2, ... f lowh} is
the matrix in a window of our model, where F has h flows and every flow owns f = 6 characteristics,
as shown in Figure 4.
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CNN layer: Filters is also known as kernels or sliding windows. The input matrix F is convolved
with e filters, each of which has a size of h× i, where h is the length of the filter and i is the width of the
filter. Through convolution operation, the algorithm gets and studies useful partial features for normal
flow and DDoS attack classification. One convolution yields an activation map c of size f − i + 1, as
follows

Figure 4. The input of CNN model.

ce = ReLU(Conv(F) We, be) (4.11)

The weight of the e-th filter learned in the model training stage is We, and the bias parameter is be.
With the intention of overcoming the problem of gradient disappearance and accelerate the training
speed, we introduced the linear rectifier function ReLU:

ReLU(y) = max(0, y) (4.12)

Stack all activation maps to construct an activation matrix C of size (( f − i + 1) × e, so that C =
[c1 | c2 |...| ce].

Max pooling layer: We adopt the under sampling for C. The output matrix q0 of size {[( f − i +
1)/q] × e} is generated by a pool of size q. Among them, each learning filter possesses the hugest q
activation, making q0 = [max(c1)|...|max(ce)]. This approach allows our model to focus on the larger
activation and ignore some of the less valuable information. This also indicates that pooling layer can
compress information characteristic encoding, thus decreasing the complication of the network. Then
the output matrix is flattened, and the one-dimensional data is input into the classification layer.

Classification layer: Input the output data of the pooling layer to the full connection layer. Our
output layer consists of two nodes, and deliver the output data x to the activation function sigmoid:

σ(y) = 1/(1 + e−y) (4.13)

The output value from the activation function is between 0 and 1. therefore returning the possibility
that given networking flows is a malicious DDoS attack p ∈ [0, 1]. When p > 0.5, we classified these
networking flows as DDoS attack flow, while other p value networking flows are classified as normal
flows.
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Figure 5. The topology of DDoS attack detection for SD-IoT.

5. Performance evaluation

To begin with we configure the experimental settings in this section, and then we estimate the
performance of the proposed algorithm.

5.1. Simulation setting

We take advantage of SDN-WISE-CONTIKI and mininet to simulate the real SD-IoT environment.
All the software is deployed on the Windows 10 Virtual-Box platform, and the operating system Ubuntu
16.0.4LTS. In particular, the SD-IoT controller in the system utilizes floodlight of an Open source
controller, while the SD-IoT switch exploits Open vSwitch. Deep learning module is developed based
on Tensorflow framework. At the same time, SDN-WISE-CONTIKI is applied to create Sink nodes of
sdn-wise sink type and sensing nodes of sdn-wise mode type. Additionally, normal packets and DDoS
attack packets in the system are created through Scapy of the python script, corresponding to typical
network attack packets such as ICMP packets, UDP packets and TCP packets.

Figure 5 presents the SD-IoT network topology generated in Mininet, and we employ the topology
to verify the proposed DDoS attack detection mechanism. Our topology consists of a SD-IoT controller
implemented by floodlight, and six Open vSwitches S1, S2, ...and S6 are used as SD-IoT switches. The
IoT embraces 48 terminal equipment, which are entitled H1, H2, ... and H48, including host, wireless
nodes and so forth. The three hosts H1, H3 and H5 connected to S1 are selected as the attack hosts,
which send a large number of fake source IP address packets to the victim host H33 through Scapy
script to launch attacks on SDN network.

The detection performance of the IFACNN model is evaluated by five evaluation indexes, namely
F1 Score, Recall, Precision, and Confusion Matrix. True positive (TP) refers to the quantity of data
that the detection model judges normal data to be normal; False positive (FP) refers to the quantity of
data that the detection model identifies DDoS attack data as normal data; True negative (TN) refers
to the quantity of DDoS attack data correctly identifies by the detection model as attack data; False
negative (FN) refers to the quantity of data that the detection model determines normal data to be a
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Table 2. Number of samples.

Dataset Normal samples DDoS samples
Training Set 168948 128928

Test Set 112633 85953
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Figure 6. Improved firefly fitness.

DDoS attack.
Accuracy represents the percentage of data classified correctly by the detection model to the total

data:
Accuracy(Acc) =

T P + T N
T P + T N + FP + FN

(5.1)

Precision refers to the percentage of the data packets that the model determines to be attack that are
actually the number of attack packets:

Pr ecision(Pr) =
T P

T P + FP
(5.2)

Recall denotes the percentage of all DDoS attack data estimated by the detection model as DDoS
attack data:

Recall(Rc) =
T P

T P + FN
(5.3)

The harmonic mean of recall and precision signifies F1 score, which could assess detection model
implementation more appropriately.:

F1 =
2 ∗ Pr ecision ∗ Recall

Pr ecision + Recall
(5.4)

The confusion matrix is mainly intended for the classification results of detection model and the
degree to which the data matches the actual labels.
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5.2. Evaluation of IFACNN model experimental results

There are 496462 experimental data packets that come from the real SDN network, including
281581 normal packets and 214881 DDoS attack packets and 60% of which are used for training
and the rest for testing. As shown in Table 2.

A. Fitness and Loss: The output dimension is two in CNN network with improved firefly algorithm.
The input feature dimension and the node number of each layer in the hidden layer are optimized as
firefly features. In the SD-IoT network, we set the population size of fireflies as N = 50, the maximum
iteration times as 100, and the initial step factor as 0.6. The fitness changes in the optimization process
of firefly algorithm are shown in Figure 6. As can be seen from Figure 6, the improved firefly converges
to the optimal fitness of 0.0001 around 10th generations, and the algorithm tends to be stable. Through
the improvement of the algorithm, the speed of finding the ideal network structure and learning rate of
CNN is accelerated.

The obtained parameters are used to construct the CNN detection model, and the training data is
used to train 300 generations. The loss curve of the model is shown in Figure 7. It can be seen that
since generation 100, the loss of detection model is basically stable at about 0.000025.

B. Different depths of convolution layers: The detection accuracy of a well-behaved IFACNN
model is affected by many factors, and the depth of convolutional layer is extremely important.
We build four IFACNN models with different kinds of depths. Parameters selection for each single
IFACNN model are in Table 3. Among them, 3C2P2F indicates that the model contains 3 convolution
layers, 2 maximum pooling layers, and 2 fully connection layers.

In this paper, four evaluation indexes are used to evaluate the performance of the four models men-
tioned above. They are precision, accuracy, recall and F1. Through the experiments and comparative
analysis,the evaluation results are shown in Figure 8.
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Table 3. Parameters selection for each single IFACNN model.

IFACNN-Parameters IFACNN model
Layers 2C2P2F 2C2P3F 3C2P2F 3C3P2F

Activation Function Relu, S igmoid
Population Size 50

Maximum Iteration Times 100
Initial Step Factor 0.6

97.8
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98.2

98.4

98.6

98.8

99

99.2

99.4

2C2P2F 2C2P3F 3C3P2F 3C2P2F

Ac(%) Pr(%) Re(%) F1(%)

Figure 8. Performance comparison of different layers.

From the picture we can see that detection results of models shown are all higher that 98%. This
shows that the CNN model has strong superiority in detecting DDoS attacks. Our model (3C3P2F,
3C2P2F) with 3 convolution layers is obviously pass beyond that with 2 convolution layers (2C2P2F,
2C2P3F). Compared with 3C3P2F model, 3C2P2F model has higher recall rate, accuracy and F1
scores, but the accuracy rate is marginal lower.

We leverage confusion matrix to further analyze the detection accuracy of the four models and the
results are shown in Figure 9. Figures a, b, c, d are 2C2P2F, 2C2P3F, 3C3P2F and 3C2P2F respectively.
The results show that the three-layer convolution model has better detection ability than the two-layer
convolution model. In addition, the detection accuracy of 3C2P2F model (0.99) is the highest compare
to others. Considering the importance of accuracy to DDoS detection system and the complexity of
CNN model, the 3C2P2F model is evaluated as the best.

C. The effect of various h values: In order to detect DDoS attack on networking flows, our detec-
tion method requires to define h networking flows in predefined packet windows. We investigate the
effect of various h values on performance in our experiment. We select different h values, such as h =
5, 10, 15, 20, 25 and 30 respectively, to train the proposed model.

Through the analysis of network data, we recognize that the traffic flow with a good deal of packets
is generally normal networking flow. IFACNN model has apprehended these characteristics in the
process of training, and then made the corresponding determination.
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Table 4. The effect of various h values.

The value of h Ave*Ac Ave*Pr Ave*Rc Ave*F1
5 99.12 99.23 99.46 99.11
10 99.18 99.20 99.41 99.04
15 99.09 99.17 99.29 98.99
20 99.06 99.11 99.31 98.96
25 97.91 97.96 97.25 96.12
30 97.75 96.67 96.42 94.93

Table 4, Figures 10 and 11 show the consequences for the proposed 3C2P2F IFACNN model. Ave
are average values. As the table shown, with the value of h increasing, the model is allowed to examine
more networking flows. As h increases, the performance of the model gradually decreases, but the
magnitude of the decrease is different. In Table 4, when the value of h is 5, 10, 15, 20, their 4 average
indicators almost reach 99%. When the value of h is 25, the average index value drops to 97%.
Detecting 25 networking flows significantly reduce the performance of our scheme. In the predefined
packet windows, the ones with less networking traffic will be padded with 0. That fillings can confuse
the model and cause degradation in detection performance.

Figure 10 and Figure 11 show the training time and CPU usage of IFACNN algorithm under differ-
ent H values. With the increase of h, the training time becomes shorter and shorter, and the utilization
of CPU becomes larger and larger. When h is 5, the training time is 36.3 minutes. When h is 10,
the training time is 27.6 minutes. When h is 15, the training time is 19.1 minutes. When h is 20, the
training time drops to 9 minutes. When h is 25 and 30, the training time does not change significantly.
That’s because we have a certain entire quantity of samples data, and the fewer the number of network-
ing flows in the data packet window, the number of training will take up a large part of the time. When
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the quantity of networking flows in the data packet window growths, the number of training decreases,
and the training time also decreases. When h is 5, 10,15 respectively, the utilization rate of CPU rises
from 5.1% to 6.4%. When h is 20, there is no significant change in CPU usage compared to when h is
15. When h is 25, CPU utilization increases again. Combined with Table 3, it can be concluded that
when h is 20, IFACNN model has the best performance.

D. Compared to different machine learning: This paper continues to utilize above four evaluation
factors to compare the performance of 3C2P2F model with traditional machine learning methods that
mentioned in paper [16–18]. As Figure 12 illustrated, the DDoS attack detection rate of CNN algorithm
is superior to traditional machine learning which detection rate is higher than 90%. It demonstrates the
advantages of IFACNN in networking flows detection and possesses the capacity to differentiate DDoS
traffic flows from normal traffic flows.

Furthermore, the area below the ROC (receiver operating characteristic) curves are calculated in-
dividually. Apparently, the larger the area, the higher the detection accuracy. The AUC value and
efficiency of detection are positively correlated. As shown in Figure 13, the AUC of IFACNN method
is 0.991, while the value of other machine learning methods is lower than IFACNN. Thus, the simula-
tion shows that the IFACNN method can greatly reduce false negative rate of DDoS detection system.

6. Conclusions

DDoS attack is still one of the main threats to global network security. We design a general frame-
work that consisting of SD-IoT controller, SD-IoT switch combined with IoT gateway and terminal
IoT equipment. An algorithm that specialized in traffic preprocessing is put forward for this SD-IoT
framework to detect DDoS attacks and to maximize the detection accuracy. Furthermore, We propose
an improved firefly algorithm to optimize the neural network structure to improve the convergence
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time and detect accuracy. Meanwhile the 3C2P2F is verified as best IFACNN model by experiment
and verification. Comparing to traditional machine learning from other papers, the IFACNN model
that described above has advanced performance in terms of precision, recall, accuracy and F1. By
compared different values of h, combining the detection capability, the training time and CPU usage,
it can be concluded that when h is 20, the performance of the model is relatively superlative.

Acknowledgments

This was supported by Research on Key Technologies of Security Mechanism of Software Defined
Internet of Things under Grant 2020YJS018 and the National Key Research and Development Program
of China under Grant 2018YFB1800305.

Conflict of interest

The authors declare no potential conflict of interests.

References
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