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Abstract: The research of the mechanical properties of skeletal muscle has never stopped, whether in 
experimental tests or simulations of passive mechanical properties. To investigate the effect of biome-
chanical properties of micro-components and geometric structure of muscle fibers on macroscopic 
mechanical behavior, in this manuscript, we establish a multiscale model where constitutive models 
are proposed for fibers and the extracellular matrix, respectively. Besides, based on the assumption 
that the fiber cross-section can be expressed by Voronoi polygons, we optimize the Voronoi polygons 
as curved-edge Voronoi polygons to compare the effects of the two cross-sections on macroscopic 
mechanical properties. Finally, the macroscopic stress response is obtained through the numerical ho-
mogenization method. To verify the effectiveness of the multi-scale model, we measure the mechanical 
response of skeletal muscles in the in-plane shear, longitudinal shear, and tensions, including along the 
fiber direction and perpendicular to the fiber direction. Compared with experimental data, the simula-
tion results show that this multiscale framework predicts both the tension response and the shear re-
sponse of skeletal muscle accurately. The root mean squared error (RMSE) is 0.0035 MPa in the ten-
sion along the fiber direction; The RMSE is 0.011254 MPa in the tension perpendicular to the fiber 
direction; The RMSE is 0.000602 MPa in the in-plane shear; The RMSE was 0.00085 MPa in the 
longitudinal shear. Finally, we obtained the influence of the component constitutive model and muscle 
fiber cross-section on the macroscopic mechanical behavior of skeletal muscle. In terms of the tension 
perpendicular to the fiber direction, the curved-edge Voronoi polygons achieve the result closer to the 
experimental data than the Voronoi polygons. Skeletal muscle mechanics experiments verify the ef-
fectiveness of our multiscale model. The comparison results of experiments and simulations prove that 
our model can accurately capture the tension and shear behavior of skeletal muscle. 
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1. Introduction 

Skeletal muscle has complex microscopic structures and multiple compositions. Muscle fibers 
(also called muscle cells) are the structural unit of skeletal muscle and the basic functional unit of 
biological movement. The outside of the muscle fiber is wrapped by the endomysium, 5–20 muscle 
fibers form a fiber bundle, the fiber bundle is wrapped by perimysium [1], and a certain number of the 
muscle bundles are wrapped by the epimysium making up macro skeletal muscle organs. The endo-
mysium, perimysium, and epimysium are connective tissue membranes (containing glial fibers and 
elastic fibers) [2]. Therefore, such hierarchical structure and diverse compositions lead to the simula-
tion of the mechanical behavior of skeletal muscle being a difficult point for scholars. 

At the macroscale, scholars have established phenomenological models to simulate the mechani-
cal behavior of skeletal muscle, for example, Pierrat et al. [3], Gilchrist et al. [4], Böl et al. [5], Heidlauf 
and Röhrle [6], Ehret [7], Blemker et al. [8]. There were also phenomenological models for soft tissues, 
which could be used to predict the mechanical behavior of skeletal muscles by adjusting model param-
eters [9]. Phenomenological models achieved accurate results. However, the phenomenological mod-
els did not consider the influence of skeletal muscle microstructure and compositions on the macro-
mechanical properties.  

The multiscale method establishes a bridge linking the microscale and macroscale [10] and 
reflects the micro information to the macro mechanical properties. In recent years, the research on 
multi-scale modeling developed rapidly, both numerical methods and analytical approaches based 
on transformation field analysis [11]. At the microscale, the research was mainly divided into the 
following three points: research on component characteristics, and research on fiber microstructure, 
research on fiber distribution. These researches are conducted based on the representative volume 
element (RVE). 

Research on component characteristics. Skeletal muscle is often viewed as a complex of fibers 
and extracellular matrix (ECM). Bleiler et al. [12] used the isotropic Neo-Hookean energy function to 
characterize the passive mechanical behavior of muscle fibers and assumed that ECM was a trans-
versely isotropic material. Based on the composition of muscle fibers, Böl et al. [13] believed that the 
strain energy equation of skeletal muscle fibers should be characterized by the Holzapfel model [14] 
and isotropic Neo-Hookean energy function is suitable for ECM. The strain energy function of fibers 
proposed by Kuravi et al. [15] was a modified form of the transversely isotropic exponential strain 
energy function proposed by Holzapfel et al. [16]. With the deepening of research, another assumption 
was proposed, which was that the ECM contained collagen fibers, so that skeletal muscle tissue turned 
out to be a complex collagen-fiber-reinforcement composite material. It can be concluded that the 
extracellular matrix should be expressed as an anisotropic material. Spyrou et al. [17] split the strain 
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energy of ECM into an isotropic part and a generally anisotropic part to describe the collagen rein-
forcement. There were some different constitutive models mentioned in the literature [2,8]. 

Research on fiber structure. There were assumptions about the cross-sections of muscle fibers. 
Through observing skeletal muscle slices stained with hematoxylin and eosin, Sharafi et al. [2] pro-
posed that the cross-sections of skeletal muscle fibers and fiber bundles were approximately polygons. 
Spyrou et al. [18] assumed that the cross-sections of skeletal muscle fibers were the regular hexagonals. 
Subsequently, they chose Voronoi polygons as the fiber cross-sections [17]. Kuravi et al. [15] used 
image segmentation and registration methods to build a 3D RVE model of skeletal muscle. Virgilio et 
al. [19] used an agent-based model to randomly generate new muscle fiber geometries. To simplify the 
geometry structure of RVE, Röhrle et al. [20] believed that the polygonal anatomical structure of mus-
cle fibers can be approximated by a circle with a diameter of about 50–80 μm. Bleiler et al. [12] pointed 
out: on average, a circle can best describe the shape of heterogeneity. It should be noted that the volume 
fraction ( fv ) of health muscle fibers has reached 0.95. However, it is difficult to achieve such a high 
volume fraction using a geometric model with circular cross-sections [21]. Fortunately, the regular 
hexagons, Voronoi polygons, and some irregular polygon shapes created from histological sections 
can reach 0.95. 

Research on the distribution of muscle fibers and collagen fibers. For muscle fibers, the ran-
dom distribution is realized by randomly generating seeds, and the random sequential addition algo-
rithm was often used [17,21,22]. At present, there are two main methods to express the distribution of 
collagen fibers in constitutive functions, respectively named the generalized structure tensor method 
and the angular integral method (AI, also referred to as full network model or microsphere model) [23]. 
Based on the AI, Li et al. [24,25] introduced a discrete fiber dispersion model based on the triangular 
discretization of a unit sphere with a finite number of elementary areas. Bleiler et al. [12] introduced a 
concise model of the collagen fibers based on the AI model and applied it to the distribution of collagen 
fibers in the ECM of skeletal muscle. For the comparison of the generalized structure tensor and AI 
method, please refer to the literature [26]. However, Sharafi et al. [2] proved that the distribution of 
fiber bundles was not completely random and there was a certain hierarchical structure.  

After consulting literature, shear deformation plays an important role in the force transmission of 

skeletal muscle [27]. The absence of strain invariant 5 7,I I  in the strain energy functions will lead to 

unsatisfactory shear simulation results, that is, the shear modulus of the model in different planes are 

the same. In order to avoid this situation, we build constitutive models containing 5 7,I I  for muscle 

fibers and ECM respectively [28–30]. In this manuscript, constitutive models with 5 7,I I  were pro-

posed for capturing the mechanical properties of skeletal muscle under shear deformation. In addition, 

microscopic observations show that the cross-section of the muscle fiber is oval [13]. To establish a 

model that is closer to the real structure of the muscle fiber, we proposed curved-edge Voronoi poly-

gons as the cross-sections of muscle fibers. 

2. Materials and methods 

Skeletal muscle is always assumed to be a transversely isotropic, compressible, and hyperelastic 
fiber-reinforced composite material [6,7]. However, Böl et al. clearly showed that muscle tissue must 
not be described as a classical fiber-reinforced material [31]. Skeletal muscle has a complex collagen-
fiber-reinforcement microstructure [12]. In other words, in addition to muscle fibers, skeletal muscle 
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also contains collagen fibers which are distributed in ECM. Therefore, we assume that skeletal muscle 
is composed of three-phase materials and the ECM is laterally anisotropic material [32–34]. 

 Constitutive model 

The deformation of materials is represented by the deformation gradient tensor F . The right 

Cauchy-Green tensor is given by TC F F  [35], and the left Cauchy-Green tensor TB FF . We 

assume that the skeletal muscle fibers are transversely isotropic materials, and regard the ECM con-

taining collagen fibers as an anisotropic material. The strain energy W  of skeletal muscle was the 

superposition of the strain energy fW  of muscle fibers and the strain energy mW  of ECM: 

f mW W W   (1)

2.1.1. Constitutive model of the muscle fiber phase 

The muscle fiber is a transversely isotropic material with a preferred direction expressed as a unit 
vector M  (parallel to Y-axis) in the reference configuration. Smith et al. [36] performed a uniaxial 
tensile test on single muscle fibers, and the Poisson ratio 0.4657 0.124SD   . We assumed that 
muscle fibers were compressible, transversely isotropic materials. 

At the macroscale, scholars have proved that the constitutive model of transversely isotropic ma-

terials not only is a function of strain invariants 1I , 3I , 4I  but should include the contribution of 

strain invariant 5I  [37–39]. Based on previous research, we established a constitutive model for mus-

cle fibers, 

( )f f f iso f aniW f J W W     (2)

20( ) ( 1)
2

f

ff J J


   (3)

 1
1 3

2

f

f iso

c
W I     (4)

  2
2

4 3 5 4exp 1 1 2 1( )
2

f
f f f f f

f ani f

c
W k I c I I

k
        

 (5)

where ( )ff J  characterizes volume part, f isoW   represents the isotropic part, f aniW   represents the 

anisotropic part, 0
f , 1

fc , 2
fc , fk , 3

fc  are the model parameters, and J  is the volume ratio rep-

resenting the volume change. *
1I , 3I , 4

fI , 5
fI  are defined as: 
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The second Piola-Kirchhoff stress tensor can be directly calculated by derivation of the strain 
energy function fW  with the product and chain rules, 
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The Cauchy stress tensor also called Euler stress tensor is given as: 
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2.1.2. Constitutive model of the extracellular matrix phase 

The ECM of skeletal muscles plays an important role in lateral force transmission [40,41]. The 

ECM contains a variety of collagen fiber types, such as type I, III, IV, V, VI, VIII, XII, XIII, XIV, XV, 

XVIII and XIX [42]. Adding multiple types of collagen fibers to the skeletal muscle ECM is feasible 

and not difficult at the calculation level, but it is a difficult task to determine the optimal direction of 

each type of collagen fibers because the directions of the collagen fibers are not the same in different 

positions [40]. Type I, III collagen form quantitatively the majority of muscle collagens [43]. Type I 

collagen characteristically forms strong parallel fibers and confers tensile strength and rigidity. It ex-

hibits the largest contribution to the stiffness of biological tissues [44]. Here, we only consider the 

influence of type I collagen, so it is assumed that the ECM is a composite material reinforced by type 

I collagen. The mean directions of collagen fibers are expressed as 1 2,M M  distributing in the X–Y 

plane, and the angle with the X-axis is m  in the reference configuration, as shown in Figure 1. With 

the deformation along the fiber direction, m  will change accordingly. 
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Figure 1. Distribution of fibers and collagen fibers. 

The constitutive model of the ECM is expressed as: 
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where , ( 1,3, 4,5,6,7)m m
i m

i

W
W i

I




  . 

The constitutive models of the muscle fibers phase and the ECM phase developed in this section have 
been implemented in the ABAQUS 2016. A particular “user material subroutine” (UMAT) has been de-
veloped through the FORTRAN language. Table 1 shows the pseudo-code of calling UMAT and the cal-
culation in UMAT. Please refer to literature [45,46] for the calculation of the Jacobian matrix. 

Table 1. Pseudo-code of calling UMAT and the calculation in UMAT. 

Input: Model parameters( 0
f , 1

fc , 2
fc , fk , 3

fc , 0
m , 1

mc , 2
mc , mk , 3

mc , F ) 

Output: STRESS 

1: Check global equilibrium at tn 

2: If not converged 

3:  Input Model parameters, DFGRD1( F ), NDI NSHR 
4:  Call UMAT 
5:    Calculate stress (STRESS) 
6:    Calculate Jacobian matrix (DDSDDE) 
7:  Newton-Raphson iteration 
8:  Go step 1 
9: Else go to next iteration tn+1 

 Definition geometry structure of RVE 

The fiber cross-sections designed in RVE are polygons and circles, as introduced in the Introduc-
tion. However, due to the geometric conditions of the circular cross-sections, it is difficult to reach a 
very high value of the volume fraction of fibers. In the literature, the volume fraction with circular 
cross-sections of fibers is usually set at 0.2–0.5 [21] but the volume fraction of skeletal muscle fibers 
reached 0.95, so that the circular cross-sections do not accurately reflect the volume fraction of skeletal 
muscle fibers. In a recent study, Böl et al. [13] peeled off the muscle fibers of the pig’s hind legs and 
observed the surface of the muscle fibers as a smooth curved surface through microscope observation. 
In the research of Gillies et al. [47], after the NaOH solution dissolving muscle fibers, the connective 
tissue showed a honeycomb structure in the scanning electron microscope observation image and the 
cavities enclosed by the connective tissue is not strictly polygons, that is to say, the cavity interfaces 
are curved surfaces, which further confirms that the muscle fiber interface is not circular. 

Therefore, we designed a curved-edge optimization based on the Voronoi polygons, that is, the 
Voronoi polygons were transformed into irregular ellipses without edges and corners, named as 
curved-edge Voronoi polygons, as shown in Table 2. The principle was that mark the midpoint of each 
side of the Voronoi polygons, and use the B-spline curve to connect the middle of the polygons. Finally, 
the B-spline curves were the boundary lines of fibers.  
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To study the effect of volume fraction on the macroscopic performance of skeletal muscle, we set 
the volume fraction to be 0.7, 0.8 and 0.9 for curved-edge Voronoi polygons and Voronoi polygons, 
and generated the corresponding geometric models, as shown in Table 2. 

Table 2. Geometry structures of RVE. 

fv  0.7 0.8 0.9 

Voronoi polygons 

Curved-edge 
Voronoi polygons 

 Periodic boundary conditions 

Biological tissues are composed of a finite number of RVE by periodic arrangements. Therefore, 
the application of periodic boundary conditions is necessary to ensure displacement continuity and 
force continuity. The periodic boundary condition is expressed as [48]: 

( )    u F X u  (16)

where u  is the microscopic displacement vector, the second-order tensor F  denotes the macro-
scopic average deformation gradient of RVE, X  denotes the spatial coordinates in the reference con-
figuration,   is the second-order identity tensor, u  is a periodic displacement field [49,50]. In this 
paper, we use the open-source ABAQUS plugin(easyPBC) to add periodic boundary conditions [51]. 

 Biomechanical experiment 

To obtain more comprehensive biomechanical properties of skeletal muscle, we conducted uni-
axial tension and shear experiments on skeletal muscle. The experiments mainly contained the tension 
along the fiber direction and perpendicular to the fiber direction, longitudinal shear, and in-plane shear 
tests. The loading directions for experiments are shown in Figure 2. In Figure 2(a)–(c), the red lines 
represent the fiber whereas and the yellow area represents the extracellular matrix, in Figure 2(d) the 
red polygons denote the cross-sections of muscle fibers. 
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Figure 2. (a) Tension along the fiber direction. (b) Tension perpendicular to the fiber 
direction. (c) Longitudinal shear. (d) In-plane shear. 

2.4.1. Experiment preparation 

Table 3. Geometric parameters of samples. 

Group Number Length (mm) Width (mm) Thickness (mm) 

G1 

1-1 28.01 10.17 4.20 
1-2 33.40 8.54 4.48 
1-3 33.59 7.77 4.51 
1-4 29.99 9.45 4.78 
1-5 30.01 11.11 4.53 

G2 

2-1 31.98 11.94 6.26 
2-2 36.25 7.27 5.63 
2-3 28.71 7.48 5.77 
2-4 38.10 13.13 5.21 
2-5 33.74 12.03 5.23 

G3 

3-1 19.30 21.85 5.3 
3-2 18.46 21.79 5.69 
3-3 18.62 18.6 4.02 
3-4 18.07 21.14 4.40 
3-5 18.65 21.40 4.50 

G4 

4-1 22.84 16.50 4.11 
4-2 20.75 20.16 5.18 
4-3 26.37 15.81 4.65 
4-4 22.87 23.25 3.31 
4-5 17.98 17.74 2.70 

The samples were from the right hind limb of a 4 ± 0.5-month-old female pig (n = 1) collected in 
the slaughterhouse, so it does not involve ethical review and approval. After transporting to the labor-
atory at 37℃ in a constant temperature box, the samples were cut to the design rectangle and divided 
into four groups, which were respectively subjected to tension along the fiber direction (G1, n = 5), 
tension perpendicular to the fiber direction (G2, n = 5), longitudinal shear (G3, n = 5) and in-plane 
shear (G4, n = 5). The specimen dimensions are shown in Table 3. The data in Table 3 are the average 
of the measured values of three positions of test areas. Then, these samples were stored in Krebs- The 
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force sensor selected Zwick Roell KAP-TC (500N). To ensure quasi-static stretching, all material tests 
were performed at a strain rate of 0.5% /s  to minimize the viscoelastic effect [52,53]. In order to 
avoid the rigor mortis effect, the whole experiment was done within 7 h post-mortem. 

Figure 3. The Zwick Z010 material test device. 

 

Figure 4. The uniaxial tension tests. 

2.4.2. Uniaxial tension test 

In the uniaxial tension tests, the initial distance between the upper and lower clamps is 10 mm as 
shown in Figure 4, and the beam displacement of the electronic material test device was used as the 
tension displacement of samples. All uniaxial tension tests were performed up to failure of samples. 

The displacement u  of the upper clamp was recorded. Nominal strain can be calculated: 

0

u

l
   (17)
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where, 0l  is the initial length, here 0 10mml  . The force P  was measured in the tension process 
and then calculated to obtain the nominal stress S  was calculated as: 

0

=
A

P
S  (18)

where 0A  is the initial area. 

2.4.3. Shear test 

In the skeletal muscle shear experiment, the skeletal muscle samples were installed on a spe-
cial fixture, as shown in Figure 5(a). The simplified representation of the shear test is shown in 
Figure 5(b). To exclude the influence of the fixture on the experimental results, we set up a blank 
control group (n = 5) where all settings were as same as in the shear experiment, but no sample was 
installed. The measurement results of the blank reference group were averaged, and the measurement 
results of the G3 and G4 groups were subtracted from the average value as the final shearing experi-
ment result. During the experimental test, if the clamping force is too large, tissue failure will occur at 
the holding position, and if the clamping force is too small, the sample will slip during deformation. 
To solve this problem, we laid a layer of 220 grit sandpaper between the fixture and samples.  

According to the representation shown in Figure 5(b), the nominal shear strain γ  is calculated: 

=
n

ΔL
γ  (19)

where ΔL  is the shear displacement, n  is the width of the shear area. 
The nominal shear stress can be calculated as: 

L h



P

τ  (20)

where, P  is the force applied in the experiment, L , h  are the length and thickness of the shear 
deformation area. 
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Figure 5. (a). The fixture of shear test. (b). The representation of shear test and size, the 
gray area is the clamping area of the fixture. 

2.4.4. Experimental results 

For ease of interpretation, we expressed the tension along the fiber direction as Y tension, and the 
tension perpendicular to the fiber direction as X tension. Each group (G1–G4) of experiments con-
tained 5 experimental samples, and the measurement data of each experimental sample were smoothed 
(by Savitzky-Golay). It should be pointed out that our experiment samples were stretched until the 
sample occurred plastically deformation, and we only researched the elastic deformation range. Refer 
to the method of Kohn et al. [32], the e lastic range is the area where the slope is monotonically in-
creasing. Therefore, in Y tension, we intercept the strain at the range of 0–0.55 as shown in Figure 6. 
When 0.55  , the skeletal muscle tissue was destroyed, plastic deformation occurred and the curve 
began to fall. Figure 6 shows the average and standard deviation of the experimental measurement data 
in each group. The nominal stress increases with the increase of the nominal strain under Y tension. 
When the nominal strain is in the range of 0.3–0.4, the change of the slope of the nominal stress-
strain curve increases significantly. When comparing the results of Y tension and X tension, it can 
be found that the hardness of skeletal muscle along the fiber direction is greater than that of per-
pendicular to the fiber direction (see Figure 6). This phenomenon also appeared in the experiments 
of Morrow et al. [52]. For shear deformation, the nominal shear stress of the longitudinal shear is 
greater than the nominal stress of the in-plane share, which is probably caused by the reinforcement 
of muscle fibers in the longitudinal shear. 
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Figure 6. Experimental results. 

3. Results 

 Definition of the model parameters 

The model parameters ( 0
f , 1

fc , 2
fc , 

fk , 3
fc , 0

m , 1
mc , 2

mc ,
mk , 3

mc  in Eqs (2)–(5) and (10)–(13) 

are related to the simulation results of the model and the convergence speed of the model, so it is very 

important to select a set of reasonable model parameters. 
When setting parameter values of muscle fiber in Eqs (2)–(5), we used the strain energy functions 

of muscle fibers to derive the relationship between nominal stress and stretch ratio. The model param-
eters were obtained using the tensile experimental data of Böl et al. [13] and the volume experimental 
data of Smith et al. [36] fitted with the deduced nominal stress-strain relationship based on the Leven-
berg-Marquardt type minimization algorithm [54]. For the determination of the model parameters of 
ECM in Eqs (10)–(13), the same method was used as that of muscle fibers, and the experimental data 
came from the tensile experimental data of Kohn et al. [32] and of Smith et al. [36].  

When processing the experimental data of Smith et al. [36], we used the experimental data fitted 
with a linear function to obtain the linear relationship of volume ratio-stretch ratio and assumed that 
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the linear relationship passes (0,1) point to ensure that the volume ratio is 1in the initial configuration. 
Finally, the functions of ECM muscle fiber were obtained: 

1 0.43609( 1)m mJ     (21)

1 0.0253( 1)f fJ     (22)

where, m , f  represent the stretching ratio of ECM and muscle fibers during tensile deformation. 
However, the obtained model parameters are referenced values, and the model parameters need 

to be adjusted according to our experimental data. The final model parameters are listed in Table 4. 

Table 4. The model parameters. 

Fiber 0 (MPa)f  1 (MPa)fc  2 (MPa)fc  3 (MPa)fc  fk (1) f (1) 

0.31444 0.007 1.8044E-4 0.0056 1.5043 1.57 

ECM 0 (MPa)m  1 (MPa)mc  2 (MPa)mc  3 (MPa)mc  mk (1) m (1) 

0.17074 0.00384 1.0639E-4 0.0051 1.33 0.96 

Figure 7 shows the comparison between numerical simulation results and experimental data. The 
RMSE of each deformation has been explained. The RMSE was 0.0035 MPa in the tension along the 
fiber direction, the RMSE was 0.011254 MPa in the tension perpendicular to the fiber direction, the 
RMSE was 0.000602 MPa in the in-plane shear, the RMSE was 0.00085 MPa in the longitudinal shear. 
After analysis, the reason may be that the connective tissue contained in the sample was not completely 
removed, resulting in high experimental data. The calculation results of the RMSE and Figure 7 prove 
that our multiscale model can well predict the mechanical response of skeletal muscles during Y ten-
sion and shear deformation. 

 

Figure 7. Comparison of numerical simulation results and experimental data. 

To research the influence of model parameters (sensitivity analysis) on the simulation results, we 

set 0
f  as 0.0031444, 0.031444, 0.31444, 3.1444, 31.444(MPa), 1

fc  as 0.005, 0.006, 0.007, 0.008, 
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0.009(MPa), 2
fc  as 1.4044E-4, 1.6044E-4, 1.8044E-4, 2.0044E-4, 2.2044E-4(MPa), 3

fc  as 0.0036, 

0.0046, 0.0056, 0.0066, 0.0076, fk  as 0.6043, 0.9043, 1.2043, 1.5043, 1.8043. Because the volume 

ratio of muscle fibers is significantly greater than that of ECM, we only study the influence of model 

parameters of the fiber phase on the nominal strain. 

  Homogenization response 

In In multiscale modeling, periodic boundary conditions satisfy the so-called averaging theorem, 
which requests that the average of the work decomposes into the product of work-averages [55]. 

1 1 1
: : 0

| | | | | |V V V

dV dV dV
V V V

        (23)

where   is the microscopic stress,   is the microscopic strain, V  is the volume of RVE. To eval-
uate the effective stress  , the stress of the macroscopic level and microscopic level are coupled 
through the following relation: 

1

1

1 1

| |

N

i iN
V

i

dV V
V V

    


  (24)

where, , ,i ii V  are respectively the stress, strain tensors, and the volume of the thi  element in RVE, 
N is the total element number of RVE. Based on the macroscopic Cauchy stress  , the macroscopic 
nominal stress can be obtained p : 

 det Tp   F F  (25)

Finally, the RVE geometric models were established, the constitutive models were determined, 
the model parameters were obtained, and the macroscopic stress was calculated. The workflow is 
shown in Figure 8. 
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Figure 8. Processing flowchart multiscale calculation. 

 Simulation results of uniaxial tension 

3.3.1. Tension along the fiber direction 

In this section, we choose the RVE model with 0.7fv   and the Voronoi polygon cross-sections 

of fibers as an example to study the influence of constitutive model parameters and the simulation 

results are shown in Figure 9. 
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Figure 9. The influence of model parameters on the simulation results of the Y tension. 

When changing 0
f , the nominal stress results are completely consistent except 

0 0.0031444f   as shown in Figure 9(a). It can be concluded that the influence of 0
f  can be neg-

ligible on the simulation results of uniaxial tension along the fiber direction. The influence of 1
fc  on 

nominal stress occurs in the entire strain range. However, when the parameter values differ by 0.001 

Mpa, the spacing between the curves is not evident, as shown in Figure 9(b). 2
fc  and fk  have the 

same influence area on the nominal stress, the influence area starts from the strain around 0.35, as 

shown in Figure 9(c),(e). By comparing Figure 9(c),(e), the nominal strain is more sensitive to fk . 

The influence of 3
fc  is also in the whole deformation process, and it is most evident in the ankle area, 
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as shown in Figure 9(d). A smaller value of 3
fc  will cause a more evident curvature of the ankle area. 

In summary, it can be seen from Figure 9 that the nominal stress increases with the increase of the 

parameters 1
fc , 2

fc , fk , 3
fc . Therefore, the influence areas of each parameter on the nominal stress-

nominal strain curve can be obtained, as shown in Figure 9(f). 
In addition to the model parameters, the cross-sections and volume fraction of muscle fibers also 

affect the stress-strain curve. Subsequently, we select the RVE structure (Table 2) to obtain the nominal 
stress-nominal strain curves under different fiber cross-sections and volume fractions, as shown in 
Figure 10. The increase of volume fraction case the increase of the nominal strain, but the effect of 
volume fraction is not as significant as that of the model parameter. Under the condition of the same 
volume fraction, the nominal stress of RVE with the curved-edge Voronoi polygons is slightly smaller 
than that of RVE with the Voronoi polygons. Therefore, it can be considered that the uniaxial tensile 
test of the fiber direction is sensitive to the fiber cross-sections. 

 

Figure 10. The influence of volume fraction and cross-sections of fibers on the 
simulation results of the Y tension. 

3.3.2. Tension perpendicular to the fiber direction 

In the tension perpendicular to the fiber direction (X-axis), the tensile load is added in the X-axis 

direction. The collagen fibers in ECM are distributed in the X-Y plane. Collagen fibers resist displace-

ment load during the X-axis tension process and increase the stiffness of the X-axis direction. Simula-

tion results show that only 1
fc  has a significant impact on nominal stress, as shown in Figure 11(a), 

the other parameters have no impact as 2
fc , i.e., all the curves are completely coincident, as shown in 

Figure 11(b). 
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Figure 11. The influence of model parameters on the simulation results of the X tension. 

The influence of 0
f  and 1

fc  is mainly reflected in the effect of the isotropic part of the fiber 

phase. 2
fc , 3

fc , fk  mainly reflect the influence of the anisotropic part of the fiber phase. It can be 

seen from Figure 11(b) that the anisotropic part of the fiber phase has no contribution to the nominal 

strain under the tension perpendicular to the fiber direction. 
Next, the influence of volume fraction and cross-sections of muscle fibers on the simulation re-

sults is researched. It can be seen from Figure 12 that the volume fraction has a negative effect on the 
nominal strain of the X tension, i.e., when the volume fraction increases, the nominal strain decreases 
instead. This is because the anisotropic part of the fiber phase has no contribution to the tension per-
pendicular to the fiber direction, and with the content of ECM gradually reducing, the contribution of 
the anisotropic part of ECM is reduced responsively. Therefore, the nominal stress decreases as the 
fiber volume fraction increases. It is worth noting that the nominal stress of RVE with the curved-edge 
Voronoi polygons is significantly greater than that of RVE with the Voronoi polygons. Comparing the 
experimental and simulation results in X tension, it is found that the simulation curve is lower than the 
experimental curve, as shown in Figure 7. Based on the comparison in Figure 12, it can be obtained 
that the simulation result of RVE with the curved-edge Voronoi polygons is closer to the experimental 
data than that of the Voronoi polygons. The simulation results show that the shape of the cross-sections 
of fibers affects the results of the tension perpendicular to the fiber direction. 
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Figure 12. The influence of volume fraction and fiber cross-sections on the simulation 
results of the X tension. 

 Simulation results of shear deformation 

3.4.1. Longitudinal shear 

Under the longitudinal shear, the model parameters 1
fc  and 3

fc  have evident effects on the 

nominal shear stress, as shown in Figure 13(a),(c). The change intervals of 1
fc  and 3

fc  are 0.001 

MPa, but the effect of 3
fc  is greater than that of 1

fc . Figure 13C shows that the change of 3
fc  leads 

to a large change of the nominal stress, which illustrates the effect of strain invariants 5
fI  on shear 

deformation. Simulation results show that 2
fc  does not affect the mechanical behavior of the longitu-

dinal shear, as shown in Figure 13(b). The same conclusion was obtained for fk . 
Under the same strain, the greater the volume fraction, the greater the nominal stress, as shown 

in Figure 14. However, different fiber cross-sections get almost the same simulation results. When the 
volume fraction is 0.7, the simulation results of the two kinds of cross-sections are the same. When the 
volume fraction is 0.9, there is a slight difference. This phenomenon may be caused by the actual 
volume fraction of RVE with the curved-edge Voronoi polygons being slightly smaller than the cali-
bration value. 
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Figure 13. The influence of model parameters on the simulation results of the 
longitudinal shear. 

 

Figure 14. The influence of volume fraction and fiber cross-section on the simulation 
results of the longitudinal shear. 
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3.4.2. In-plane shear 

For the in-plane shear, the direction of the shear force is perpendicular to the fiber direction, at 

this time, the isotropic part of the fiber and the ECM play a role. It can be seen that the model parameter 

1
fc  has an impact on the simulation results and this impact becomes more evident when the strain 

increases in Figure 15(a). From the point of theoretical analysis, the changes of model parameters 2
fc , 

3
fc , fk  are meaningless to nominal shear stress. The simulation results proved the above analysis, as 

shown in Figure 15(b). Here, we only show simulation results with the changing of 2
fc . 

 

Figure 15. The influence of model parameters on the simulation results of the in-plane shear. 

From Figure 16, we can see that the changes of volume fraction have little effect on the in-plane 
shear and the influence of fiber cross-section is not evident on the simulation results. However, the 
influence of the cross-sections is greater than the volume fraction. 

 

Figure 16. The influence of volume fraction and fiber cross-section on the simulation 
results of the in-plane shear. 
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4. Discussion 

 The influence of model parameters and fibers’ structure 

After the simulation and analysis, we obtained the influence of each parameter on the simulation 
result, in addition to the influence of volume fraction and cross-sections of fibers on the simulation 
result. Here we have carried out a comprehensive synthesis as shown in Table 5. 

Table 5. The influence of each parameter, volume fraction, and cross-sections of fibers on 
the simulation results. 

deformation 0
f  1

fc  2
fc  3

fc  fk  fv  Cross-
section 

Y Tension - + + + + + - 
X Tension - + - + - + + 
Longitudinal shear - + - + - + - 
In-plane shear - + - - - + + 

When we determined the model parameters, the maximum value of volume ratio of fiber phase 

was 1.01518, so that the influence of 0
f  on simulation results was offset by the small volume change. 

2
fc , fk only affect the mechanical behavior along the fiber direction. The influence of 3

fc  on nominal 

stress is more pronounced in Y tension and longitudinal shear. While the fiber cross-sections affect the 

mechanical behavior perpendicular to the fiber direction. 

The main advantage of the multi-scale framework proposed in this manuscript is predicting the 

mechanical behavior of skeletal muscle during shear deformation. Here we compare the results of 

constitutive modes with and without strain invariants 5 7,I I , as shown in Figure 17. When 3 0fc 
(without strain invariants 5 7,I I ), the nominal stress-nominal strain curves of longitudinal shear and 

in-plane shear completely coincide. The results of our experiments show that there is a difference in 

the mechanical behavior of skeletal muscle in the longitudinal shear and in-plane shear, as shown in 

Figure 6. When 3 0fc  , the difference is reflected. Therefore, the strain invariants 5 7,I I  in the con-

stitutive model have relevant significance. 

The volume fraction fv  of muscle fibers affects the four types of deformation. In Y tension 

deformation and longitudinal shear, the skeletal muscle macroscopic stress is positively correlated with 

volume fraction; in X tension and in-plane shear deformation, the skeletal muscle macroscopic stress 

is negatively related to volume fraction. Increasing age and skeletal muscle diseases lead to the weak-

ening of skeletal muscle elasticity. One reason for this phenomenon may be the decrease in volume 

fraction of muscle fibers. 
In Figure 12, the results of the RVE with the curved-edge Voronoi polygons are larger than that 

of the RVE with the Voronoi polygons. In Figure 7, the simulation result of the RVE with the curved-
edge Voronoi polygons is smaller than the experimental result in X tension. It can be seen that the 
result of the RVE with the curved-edge Voronoi polygons is closer to experimental data results and 
more suitable as the cross-sections of fibers. The curved-edge Voronoi polygons also have certain 
limitations, i.e., when the volume fraction is above 0.9, there will be a cross between fibers. 
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Figure 17. Compaction of the simulation results of shear deformation with and without 
strain invariants 5 7,I I  

 Comparison of our model with the model of Spyrou et al. [17] 

In the previous section, we have discussed the influencing factors of the simulation results. Next, 
we will compare our multiscale model with the model of Spyrou et al. [17]. Because Spyrou et al. [17] 
compared their simulation results with the experiments of Morrowa et al. [52], we adjusted the model 
parameters to adapt to the experimental data of Morrowa et al. [52]. The model parameters are shown 
in Table 6. The comparison of the simulation results of the two models were get in Y tension, X tension, 
and longitudinal shear, as shown in Figure 18. 

In Y tension deformation, for 0 0.17  , our simulation results are between experimental re-
sults of Morrowa et al. [52] and simulation results of Spyrou et al. [17]. While our simulation results 
are smaller than the simulation results of Spyrou et al. [17] at 0.17 0.28  . When 0.28 0.3  , 
the simulation results of our model again coincide with the simulation results of Spyrou et al. [17] and 
experimental results of Morrowa et al. [52]. 

In X tension deformation, our simulation results coincide with the simulation results of Spyrou et 
al. [17] at the range of 0 0.4  ; for 0.4 0.78  , our simulation results are between the experi-
mental results of Morrowa et al. [52] and simulation results of Spyrou et al. [17]. What is certain is 
that our model is more accurate than the model proposed by Spyrou et al. [17] in X tension deformation. 

In longitudinal shear deformation, our simulation result is always between the experimental re-
sults of Morrowa et al. [52] and their simulation results of Spyrou et al. [17]. The comparison shows 
that our model achieves excellent results in shear deformation. 

In general, the simulation accuracy of our model in Y tensile deformation is not as good as the 
model of Spyrou et al. [17], but the accuracy of our model has been equal to or higher than the accuracy 
of their model both in X tension and longitudinal shear deformation. 

Table 6. The model parameters for fitting experimental data of Morrowa et al. [52]. 

Fiber 0 (MPa)f  1 (MPa)fc  2 (MPa)fc  3 (MPa)fc  fk (1) f (1) 

11 0.00716 0.0036 0.00915 4.7044 1.57 

ECM 0 (MPa)m  1 (MPa)mc  2 (MPa)mc  3 (MPa)mc  mk (1) m (1) 

0.17074 0.00104 0.001004 0.0021 1 0.436 
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Figure 18. Compaction of our model and the model proposed by Spyrou et al. [17]with 
experimental data of Morrowa et al. [52]. 

However, our multiscale model also has a limitation. When generating the RVE model with the 
curved-edge Voronoi polygons, it is necessary to try repeatedly to obtain the corresponding volume 
fraction of muscle fibers, which increases the generation period of the RVE geometric model. 

5. Conclusions 

In this manuscript, we provided available cross-section (curved-edge Voronoi polygons) of mus-
cle fibers, which was closer to the real geometric structure of muscle fibers; We established constitutive 
models that can simulate the shear behavior of skeletal muscle from the material property level, instead 
of the geometric structure of the muscle fibers; We compared the influence of the Voronoi polygons 
and the curved-edge Voronoi polygons on the simulation results and found that the s cross-sections of 
muscle fibers affected the behavior of skeletal muscle in X tension and shear deformation, and it had 
almost no effect on Y tension deformation; We investigated the influence of volume fraction of muscle 
fibers on the simulation results and gave a reasonable explanation for the elasticity change of skeletal 
muscle with decrease. In addition, we designed skeletal muscle mechanics experiments to verify the 
effectiveness of our multiscale model. The comparison results proved that our model can accurately 
capture the tension and shear behavior of skeletal muscle. 
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