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Abstract: Metaheuristic algorithms have the drawback that local optimal solutions are prone to 
precocious convergence. In order to overcome the disadvantages of the whale optimization algorithm, 
we propose an improved selective opposition whale optimization algorithm (ISOWOA) in this paper. 
Firstly, the enhanced quasi-opposition learning (EQOBL) is applied to selectively update the position 
of the predator, calculate the fitness of the population before and after, and retain optimal individuals 
as the food source position; Secondly, an improved time-varying update strategy for inertia weight 
predator position is proposed, and the position update of the food source is completed by this strategy. 
The performance of the algorithm is analyzed by 23 benchmark functions of CEC 2005 and 15 
benchmark functions of CEC 2015 in various dimensions. The superior results are further shown by 
Wilcoxon’s rank sum test and Friedman’s nonparametric rank test. Finally, its applicability is 
demonstrated through applications to the field of biological computing. In this paper, our aim is to 
achieve access to DNA files and designs high-quantity DNA code sets by ISOWOA. The experimental 
results show that the lower bounds of the multi-constraint storage coding sets implemented in this 
paper equals or surpasses that of previous optimal constructions. The data show that the amount of the 
DNA storage cods filtered by ISOWOA increased 2–18%, which demonstrates the algorithm’s 
reliability in practical optimization tasks. 

Keywords: whale optimization algorithm; enhanced quasi-opposition learning; time-varying inertia 
weight; DNA storage set 
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1. Introduction  

Many metaheuristic algorithms [1–3] have been derived from research of the collective behavior 
of social organisms. These are generally employed to solve global optimization problems. They 
simulate nature and human intelligence to achieve the optimal solution. There are three main 
categories [4–9], as shown in Figure 1.  

 

Figure 1. Classification of metaheuristic algorithms. 

The first is based on the evolutionary process. For example, one of the first population-based 
stochastic algorithms [2], the genetic algorithm (GA), imitates the theory of evolution, with steps of 
dynamic adaptive adjustment to gain the most suitable chromosome. Similar algorithms include 
differential evolution (DE), which relies on mutation strategies and control parameters and whose 
values are difficult to determine. Zhou et al. [1] developed a self-adaptive differential evolution 
algorithm to greatly address a single batch-processing machine scheduling problem. Deng et al. [2] 
proposed a DE algorithm with wavelet basis function (WMSDE), which integrated a wavelet basis 
function and normal distribution, and improved the local search information and diversity of solutions. 
Zhao et al. [3] proposed a two-stage cooperative evolutionary algorithm with problem-specific 
knowledge to address energy-efficient scheduling of no wait flow shop problem (EENWFSP). Most 
evolutionary algorithms imitate biological characteristics, a series of mechanisms, such as competition 
orcooperation, are required to complete evolution. 

In the real world, biological individuals lack complicated intelligence, but based on certain rules, 
biological groups experience interaction, the interaction between the individual and the environment 
can often produce evolutionary phenomena. This is the basis of swarm intelligence optimization. By 
observing biological populations, we are able to simulate their cooperative strategies, such as hunting, 
swarming, migration, and foraging, and apply them to system design and optimization. Kaveh et al. [4] 
presented the water strider algorithm (WSA), inspired by the lifestyle of water strider bugs, to tackle 
discrete structural design problems, such as health monitoring. Zhao et al. [5] proposed a cooperative 
water wave algorithm (CWWO) to address the DANIFSP with the goal of minimizing the maximum 
assembly completion time. Yapici et al. [6] proposed a novel algorithm that imitates the leadership 
hierarchy of swarms, which is called the pathfinder algorithm (PFA). We thus review the crowd-based 
metaheuristic intelligent optimization algorithms, such as poor and rich optimization (PRO) [7] and 
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gaining sharing knowledge (GSK) [8], the latter was motivated by human lifespan. It involves junior 
and senior gaining, both followed by a sharing phase.  

Algorithms based on physical rules and chemical reactions usually simulate physical laws in 
nature, such as gravity, annealing, collision, and inertial force, and apply them to combinatorial 
constraint optimization. Liu et al. [9] proposed a metaheuristic photon search algorithm (PSA) with 
good search efficiency and convergence speed. Pflug et al. [10] employed a new random gradient 
metaheuristic algorithm for structural optimization problems. 

Metaheuristic algorithm is based on heuristic algorithm. It is a combination of random algorithm 
and local search algorithm. Through constantly iterative optimization, the exploration and exploitation 
of search space can be realized. From the practical perspective, these kinds of algorithms rarely require 
the characteristics of functions in the optimization field, and have strong robustness to the optimization 
of functions. As metaheuristic algorithm has the advantages of a simple principle, easy 
programmability, and few parameters, a slew of novel metaheuristic algorithms have emerged to solve 
NP problems in different fields. Recently, the algorithm has been applied to continuous constraint 
problems and discrete structural design problems in the fields of computer science, engineering 
optimization design [11], optimal scheduling [12], resource coordination and scheduling [13], multi-
objective optimization [14] and combinatorial optimization [15]. Deng et al. [2] applied DE to an 
assignment problem of airport gate which was a large-scale NP problem with complex constraint. 
Dhiman et al. [16] illustrated MoSSE by combing the characteristics of spotted hyena optimizer (SHO) 
with other metaheuristics. After testing on IEEE CEC-9 standard test function, the findings showed 
the stability of MOSSE to deal with the real complex multi-objective optimization problems. Zhao et 
al. [17] proposed a cooperative multi-stage hyper-heuristic (CMS-HH) algorithm to address six 
specific combinatorial optimization problems. The experimental results demonstrate the efficiency and 
significance of CMS-HH algorithm. Yang et al. [18] proposed an improved DBSCAN optimized by 
arithmetic optimization algorithm (AOA) for achieving automatic optimization of parameters. The 
experimental data show that DBSCAN can provide highly accurately clusters more efficiently. 

Whale optimization algorithm (WOA) [19] was proposed by Mirjalili, which mainly realized the 
optimization by simulating the behaviors of humpback whale. Through the test of 29 benchmark 
functions and the application of six practical engineering problems, the algorithm was proved that its 
better accuracy and speed of convergence than other metaheuristic algorithms. Nevertheless, we see 
from the literature that WOA is constantly changing the position of the leader, but it still leads to 
prematurity when the leader is trapped in the fake optimal solution.  

In view of the shortcomings of WOA, a large number of scholars have conducted research on 
WOA. Many of them improved whale optimization algorithm through different strategies and 
mechanisms. Chakraborty & Saha et al. [20] integrated the modified mutual mechanism from 
symbiotic organisms search with WOA to alleviate inherent drawback of premature convergence. Jin 
et al. [21] proposed an algorithm with random evolution and special reinforcement called REWOA. 
Luo & Chen et al. [22] proffered a multi-strategy boosted mutative whale optimization algorithm 
(MBMWOA), which was integrated with the chaotic initial regulation and the “shrinking” strategy of 
local search. Yang et al. [23] proposed a cellular automaton mechanism to improve whale optimization 
algorithm for the robust extreme learning machine (ELM) training. The experiment showed the 
improved optimizer was around 7% superior to the basic. 

In addition, in related work, the algorithm was improved by combining with other novel 
metaheuristic algorithms. For example, Fan & Chen et al. [24] proposed to combine WOA with the 
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characters of salp swarm algorithm (SSA) and learning mechanism. Nguyen et al. [25] fused galactic 
swarm optimization (GSO) with the variant of the WOA to avoid early convergence. In addition, WOA 
is also broadly used in practical applications. Due to the simplicity and accuracy of ISP problems, 
Abdel-Basset et al. [26] presented a hybrid metaheuristic algorithm called HSMA_WOA. The 
performance of HSMA_WOA had been proved by chest radiographs.  

In summary, WOA has strong adaptability to continuous optimization problems in various 
application fields. However, it has fewer applications in discretization applications. Zhang & Hong et 
al. [27] proposed a WOA integrated the dynamically adjusted weight and improved search strategy to 
solve the traveling salesman problem library (TSPLIB). Wang et al. [28] put forward an improved 
algorithm called CMWOA that contained chaotic and other improved strategies to solve difficult 
diagnosis problems. Hemmelmayr et al. [29] harnessed an adaptive large neighborhood search 
algorithm (ALNS) with whale optimization algorithm to get higher quality solutions in a multi-
compartment capacitated arc routing problem. To sum up, WOA algorithm has strong global search 
ability in discretization, so it also has advantages in building DNA storage code sets. In view of the 
characteristics of high density and high persistence of DNA, DNA storage has broken through the 
difficulties of traditional computers in data storage and computing speed, and has become a feasible 
solution. Then for the DNA storage problem, the first consideration is the DNA coding problem. An 
effective model that stores a large amount of data in a small amount of DNA is crucial to improve the 
storage rate, that is, the model can construct a larger number of coding sets within a certain base length. 
In order to solve this key problem, it is necessary to construct enough coding sets under the same 
sequence length, further improve the lower bound of the coding set, so that it can store more 
information at a given length, and thus improve the storage coding rate. This is also the meaning of 
DNA storage coding research.  

In this paper, a combinatorial strategy is applied to optimize the WOA to achieve better 
convergence performance, the optimized algorithm is applied to address the very large-scale discrete 
problems in the field of biological computing. The major contributions have been outlined as follows： 

1) In this paper, we propose the enhanced quasi-opposite learning (EQOBL). During each 
iteration, the locations of individual whales are selectively updated to better expand the search scope 
of the whale and enhance WOA’s ability to explore the space. By continuously reducing the distance 
difference between whale (the candidate individual) and prey (the global optimal individual), the 
convergence speed is accelerated, and the main objective of improving the quality and diversity of the 
whale population is finally achieved. 

2) An improved nonlinear decreasing strategy of inertia weight with collaborative control 
parameter is proposed to improve the convergence accuracy of WOA and adjust the global and local 
search ability to find the optimum. 

3) Considered the application in the construction of DNA storage code sets, by discretizing the 
whale optimization algorithm and using its special search rules, it can achieve breakthrough in the 
lower bounds under the same coding constraints and improve coding rate. The increased coding rate 
means that ISOWOA can effectively reduce the synthesis cost of sequences under the same 
performance requirements. Based on the characteristics of fourth-generation nanopore sequencing 
technology, the DNA storage codes after screening by ISOWOA can minimize the errors in sequencing 
and complete the access to large DNA files. 

The rest of this paper is briefly summarized as follows: In the second section, we briefly represent 
the concept of WOA; In the third section, we propose the new combination strategy to enhance the 
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WOA; In the fourth section, we demonstrate the results of the CEC standard test function experimental 
simulation, convergence image analysis, multi-dimensional test analysis and statistical discussion; In 
the fifth section, we showcase its advantages in building DNA storage coding set in the field of 
biological computing, and discuss the experimental results in detail. Finally, the research work is 
summarized and the future work is envisioned. 

2. Whale optimization algorithm 

Humpback whales are generally 13–15 m, which are well known for their complex calls, extra-
long front wings, and leaps out of the water. Lacking teeth and being unable to hunt large prey like 
other whales, humpbacks have evolved a different way of hunting—diving into deep water, creating 
bubble nets, and spiraling upward around their prey. Inspired by bionics, the whale optimization 
algorithm [19] was devised. The process is modeled as the three phases [19]. 

2.1. Shrinking of the prey encirclement 

Prey can be located and encircled. The position of individual represents a candidate solution. If 
the location of the target prey is unknown, WOA will assume that the optimal location of the current 
whale is the target prey’s location. Candidate solutions will continuously approach to the optimal 
solution in subsequent iterations. Through comparative analysis of location information, the optimal 
candidate solution will be updated using its positions. Humpback whales constantly shrink the 
encirclement till the target prey is found. The update formula [19] is 

𝐷𝚤𝑠 𝐶_𝐹𝑎𝑐𝑡𝑜𝑟 ∙𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝑊ℎ𝑎𝑙�⃗� 𝑡                          (1) 

𝐶_𝐹𝑎𝑐𝑡𝑜�⃗� 2 ∙ 𝑟                                    (2) 

𝑊ℎ𝑎𝑙�⃗� 𝑡 1 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝐴_𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐷𝚤𝑠                       (3) 

𝐴_𝐹𝑎𝑐𝑡𝑜𝑟 2 ∙ �⃗� ∙ 𝑟 �⃗�                             (4) 

where 𝐷𝚤𝑠  is the distance from the optimal solution to the current individual whale in the jth-
dimensional position. If 𝑊ℎ𝑎𝑙𝑒 𝑡 1   has a better positional advantage than 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡  , the 
optimal position is updated. 

2.2. The spiral hunting of humpback whales 

The following formula shows the spiral position updating model of WOA, which is denoted [19] as 

𝑊ℎ𝑎𝑙�⃗� 𝑡 1 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝐷𝚤𝑠⃗ ∙ 𝑒 ∙ 𝑐𝑜𝑠 2𝜋𝑙                       (5) 

where ∙ denotes multiplication. To align the probabilities of exploitation and exploration of WOA, the 
shrinkage encircling mechanism is assumed to have the same probability as the spiral updating position, 
i.e., 𝑷  𝟎. 𝟓. 
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2.3. Random hunting of humpback whales 

This strategy updates the location of the search agent based on a randomly selected individual. It 
is shown mathematically as 

𝐷𝚤𝑠 𝐶_𝐹𝑎𝑐𝑡𝑜𝑟𝑊ℎ𝑎𝑙𝑒 ⃗ 𝑊ℎ𝑎𝑙�⃗�

𝑊ℎ𝑎𝑙�⃗� 𝑡 1 𝑊ℎ𝑎𝑙𝑒 ⃗ 𝐴_𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝐷𝚤𝑠
,                       (6) 

where 𝑊ℎ𝑎𝑙𝑒 ⃗  is a random whale, and 𝐷𝚤𝑠  is the distance from the whale to the current 
individual, and 𝑊ℎ𝑎𝑙𝑒 𝑡 1  is an updated population, and the value of 𝐴_𝐹𝑎𝑐𝑡𝑜�⃗� is given by (4). 

3. ISOWOA algorithm 

Although the whale optimization algorithm has the advantages of a simple principle, easy 
programmability, and few parameters, it has the drawbacks that local optimal solutions are prone to 
precocious convergence. The optimization results for various test functions are not ideal. This paper 
makes the following improvements. 

 

Figure 2. Iterative curve of nonlinear control parameter a. 

3.1. Nonlinear control parameter strategy 

WOA determines the global or local search through the value of 𝐴, which is determined by the 
factor 𝑎. A larger value of 𝑎 confers a stronger global search ability, and a smaller value confers a 
stronger local search ability. In the original literature [19], 𝑎  is linearly decreasing. Hence, the 
algorithm has a better global exploration ability at the beginning, but it may exist the possibility of 
easily falling into a local optimum in the middle and late iterations. A nonlinear decreasing parameter 
is applied to enhance this performance. The model is shown in Figure 2, which keeps a relatively high 
value for a period of time at the initial phase, then rapidly reduces to a low level, and maintains a low 
value at the middle and later phase of the iteration. This is expressed as 

𝑎 2 ∗ 𝑐𝑜𝑠 ∗ ∗ 𝑙𝑜𝑔 .                          (7) 
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The nonlinear control parameter 𝑎 has a high value, which improves the search ability of the 
ISOWOA. It decays rapidly to a lower value in middle iterations to realize the rapid transition from 
global search to local search, which is guaranteed through a low value in later iterations. 

3.2. Nonlinear decreasing strategy of inertia weight with collaborative convergence factor 

The proposed time-varying inertia weight is based on PSO. The parameter 𝜔 is important in 
PSO and plays a decisive role in its overall performance [30]. The focus on optimization algorithms 
research is to enable the algorithm to find the corresponding global optimal solution on various test 
functions. Of course, a relatively optimal solution is acceptable in practice. We introduce a time-
varying inertia weight 𝜔 to improve the convergence accuracy and convergence speed of WOA. It 
can make the algorithm adaptively adjust the update strategy in order to obtain the global optimal 
solution. In early iterations, the inertia weight of synergy 𝑎 makes ISOWOA have stronger global 
search ability, that is, ISOWOA explores the search space much widely. 𝜔 is positively correlated 
with 𝑎 and is given by 

𝜔 𝑡 𝑐𝑜𝑠 ∗ 𝜔 𝑡 ∗ 𝜔 𝜔 /𝑀𝑎𝑥 ∗
 ∗ .

.          (8) 

where 𝑎  and 𝑎  are the maximum and minimum of the convergence factor; 𝜔  and 𝜔  
are defined as 0.8 and 0.4 respectively; and Max  defines as 500. 

With the novel inertia weight, the three original search methods of WOA are changed to 

𝑊ℎ𝑎𝑙�⃗� 𝑡 1

⎩
⎨

⎧ 𝜔 ∙ 𝑊ℎ𝑎𝑙𝑒 ⃗ 𝑡 𝐴 ∙ 𝐶 ∙ 𝑊ℎ𝑎𝑙𝑒 ⃗ 𝑡 𝑊ℎ𝑎𝑙�⃗� 𝑡  𝐴 1

𝜔 ∙ 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝑐𝑜𝑠 2𝜋𝑙 ∙ 𝐶 ∙ 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝑊ℎ𝑎𝑙�⃗� 𝑡     𝐴 1 
   𝑝 0.5   

𝜔 ∙ 𝑊ℎ𝑎𝑙𝑒∗⃗ 𝑡 𝜔 ∙ 𝐷 ∙ 𝑒 ∙ 𝑐𝑜𝑠 2𝜋𝑙          𝑝 0.5 

(9) 

where 𝑏 𝑟𝑎𝑛𝑑𝑖 500 , 𝑙 𝑎 1 ∗ 𝑟𝑎𝑛𝑑 1, and 𝑎 1 . 

𝜔 is generally controlled by 𝑎, decreases nonlinearly, and has stronger adaptability, which is an 
important factor in balancing the abilities of the ISOWOA. After the coefficient amplification of 𝑎, 
the convergence speed is greatly improved. To avoid wasting computing resources through excessive 
development, the value of inertial weight decreases significantly with the rapid decline of the nonlinear 
convergence factor in the middle and later stages of iteration, which greatly enhances local search 
ability, improves convergence accuracy, avoids precocious convergence, and balances exploitation 
and exploration. 

3.3. Enhanced quasi-opposition learning method (EQOBL) 

After Tizhoosh et al. [31] put forward the concept of opposition-based learning, it has been 
successfully applied in various metaheuristic algorithms. Dhargupta et al. [32] applied it to grey wolf 
optimization with remarkable results. The strategy has been broadly used in various metaheuristic 
algorithms. The opposition-based learning strategy can be briefly defined as follows: 

𝑥 𝑥 , 𝑥 , ⋯ , 𝑥   is a point, where 𝑥 ∈ 𝑙 , 𝑢 .  𝑥 𝑥 , 𝑥 , ⋯ , 𝑥   is defined by its 
components: 𝑥  𝑙  𝑢  𝑥  31 . 
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Aiming at the situation that the individual fitness is still too high after opposition learning, in this 
paper, we propose a variant of OBL, enhanced quasi-opposite learning method (EQOBL) to increase 
the quality and diversity of candidate solutions, which makes EQOBL participate in each iteration 
instead of completing the initialization. By continuously reducing the distance difference between 
whale (the candidate individual) and prey (the global optimal individual), the convergence speed is 
accelerated. The main objective of improving the quality and diversity of the whale population is 
finally achieved.  

The proceed is described as follows: 
1) Define a time-varying factor for judging the difference between the rest and the optimal individual. 
2) Implement the EQOBL mechanism for individuals with greater differences than time-

varying factors. 
3) Among them, the correlation helps to select opposing individuals and opposing dimensions, 

thus limiting and guiding our search. 
4) Then the transformed population was merged with the original population, and the optimal n 

individuals were selected by the elite mechanism to participate in the subsequent iterative optimization. 
Algorithm 1 shows the EQOBL pseudocode, and Figure 3 shows the ISOWOA flowchart. 

 

Figure 3. Flowchart of ISOWOA. 
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Algorithm 1 The pseudocode of EQOBL-based population optimization 
1:  Sorted the fitness values of search agents 

2:      D 10 ∗ cos ∗  

3: differece = D, M =（aw + bw）/2, R = rand(); 

4: For q = 1 to the count of rest search agents 
5:    For w = 1 to the count of dim 
6:          discrepancy(w) = |Whale(w) - Whale*(w)| 
7:                If discrepancy (w) > difference 
8:                  number = number + 1 
9:                End if 
10:     End for 

11:  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 1
∗∑  

∗
 

12: If 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 <0 
13: If (dim – number < number) 
14:     else 
15:      For discrepancy (w) > difference 
16:          Whale(w) = R * (u(w) + l(w)) - Whale(w) 
17:          If (Whale(w) < M) 
18:             Whale(w) = M + (Whale(w) - M) * R 
19:          else 
20:             Whale(w) = Whale(w) + (M -Whale(w)) * R 
21:          End if 
22:       End for 
23:    End if 
24:  End if 
25: End for 
26: Update the locations of search agents 
27: Compare the fitness between the two populations 
28: Select the best n individuals as iterative population  

This strategy can well guide the evolution of the population, its strong convergence enables 
ISOWOA to more quickly approximate the global optimal value. 

4. Experimental simulation results 

To better interpret the algorithm’s performance, we selected 23 international standard test 
functions [33]. These 23 functions are composed of three types: 7 unimodal functions (F1–F7), 6 
multimodal functions (F8–F13), and 10 fixed-dimension functions (F14–F23). The three types of 
functions will be compared with the table as the boundary. Unimodal functions enable the investigation 
of local convergence accuracy and global convergence speed and stability; Multimodal functions can 
well distinguish global search ability; Fixed-dimension functions can be used to analyze exploration 
ability and avoidance of local traps. Hence, these test functions can greatly prove the performance of 
the algorithm. Its mean, standard deviation, iterative convergence curve, and multi-dimensional 
function tests were compared to those of the basic WOA, several variants, and a modern metaheuristic 
algorithm. However, in accordance with the No Free Lunch Theorem (NFL) [34], algorithm cannot 
reach the theoretical extremum on all test functions, and none can achieve the optimal design for all 
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applications. Therefore, algorithms may show superior performance on different functions. 

4.1. Effectiveness analysis of three improvement strategies 

It can be seen from the above that this paper has made three improvements to the basic WOA 
algorithm, namely, the nonlinear control parameter strategy, the nonlinear decreasing strategy of inertia 
weight with collaborative convergence factor and the enhanced quasi-opposition learning method 
(EQOBL). In order to analyze the effectiveness of the three improved strategies, this section compares 
the original WOA algorithm with the WOA algorithm that only uses the nonlinear control parameter 
strategy (named ISOWOA-1), the WOA algorithm that only adds the nonlinear decreasing strategy of 
inertia weight with collaborative convergence factor (named ISOWOA-2), and the WOA algorithm 
that only introduces the enhanced quasi-opposition learning method (EQOBL) (named ISOWOA-3), 
which effectively proves the contribution of each strategy to the algorithm. Here, the widely used CEC 
2005 benchmark test function is used as the evaluation standard. The Tables 1 and 2 shows the test 
results of the four algorithms against the test standard. Black font indicates the best result of the 
comparison algorithm. 

Table 1. Comparison of results of four algorithms on test function set (F1–F7). 

Function Criteria WOA ISOWOA-1 ISOWOA-2 ISOWOA-3 

F1 
ave 5.11E-72 3.6997e-136 0 4.2577e-43 

std 2.78E-71 2.0264e-135 0 2.2995e-42 

F2  
ave 2.83E-50 3.6884e-113 0 5.1235e-34 

std 1.02E-49 2.0202e-112 0 2.8061e-33 

F3 
ave 5.39E-17 101883.8355 0 111093.2992 

std 2.31E-16 30468.7316 0 32907.188 

F4 
ave 47.8759 49.279 1.1351e-316 41.824 

std 28.3435 28.0352 0 28.721 

F5 
ave 27.9079 0.52646 0.0097328 0.52516 

std 0.37657 1.2255 0.018956 0.71357 

F6 
ave 0.46161 0.14811 0.0028755 0.067588 

std 0.29464 0.09739 0.0042634 0.042058 

F7 
ave 0.0029988 0.0040491 0.00011165 0.0046454 

std 0.0027323 0.0044947 0.00010964 0.0045346 

From the experimental results, it can be seen that the improvement of WOA algorithm 
performance by using nonlinear control parameter strategy alone is limited, but the advantage of this 
strategy is that it can greatly improve the performance of the algorithm when mixed with other 
strategies. In addition, from F1–F13, it can be seen that the performance of WOA algorithm is 
improved most obviously by adding the nonlinear decreasing strategy of inertia weight with 
collaborative convergence factor alone. The order of magnitude of the convergence value of the 
function has been greatly improved, which indicates that the nonlinear decreasing strategy of inertia 
weight with collaborative convergence factor has the largest impact on the optimization performance 
of WOA algorithm among the three strategies, and further indicates that the nonlinear decreasing 
strategy of inertia weight with collaborative convergence factor is more effective. It can be seen from 
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the composite functions such as F14 and F20–F23 that the convergence value of the function has been 
greatly improved, which proves that the introduction of the enhanced quasi-opposition learning method 
(EQOBL) has significantly improved the performance of the WOA algorithm. 

Table 2. Comparison of results of four algorithms on test function set (F8–F14 and F20–F23). 

Function Criteria WOA ISOWOA-1 ISOWOA-2 ISOWOA-3 

F8 
ave -10232.47 -12550.1708 -12567.6137 -12480.7619 

std 1683.6928 88.3732 4.7451 376.6853 

F9 
ave 0 0 0 0 

std 0 0 0 0 

F10 
ave 4.59E-15 1.0066e-15 8.8818e-16 2.1908e-15 

std 3.11E-15 6.4863e-16 0 2.3756e-15 

F11 
ave 0.0065099 0 0 0.032237 

std 0.035656 0 0 0.17657 

F12 
ave 0.022638 0.010272 8.6621e-05 0.0041772 

std 0.014756 0.011963 0.00013368 0.0024753 

F13 
ave 0.49925 0.14171 0.00063103 0.062659 

std 0.25791 0.16562 0.00080778 0.055856 

F14 
ave 3.2936 2.4049 1.2346 1.0317 

std 2.9982 3.0218 0.49925 0.18364 

F20 
ave -3.1859 -3.1127 -2.963 -3.2268 

std 0.18322 0.34223 0.24093 0.10416 

F21 
ave -8.9355 -9.933 -10.0871 -10.1283 

std 2.1799 0.31542 0.085086 0.050903 

F22 
ave -6.8106 -9.1764 -10.2583 -10.3815 

std 3.3228 2.74 0.32565 0.047403 

F23 
ave -7.0653 -9.8009 -10.406 -10.5139 

std 3.3858 1.602 0.13583 0.048373 

In order to prove the optimization effect of the ISOWOA, we compared it to enhanced whale 
optimization algorithm (EWOA) [33], improved whale optimization algorithm with joint search 
mechanism (JSWOA) [35], classical WOA, augmented grey wolf optimizer (AGWO) [33], and 
adaptive whale optimization algorithm (AWOA) [35]. Among them, EWOA modified the stages of the 
WOA. JSWOA introduced the joint search mechanism. The data of AGWO and AWOA were from 
EWOA [33] and JSWOA [35], respectively. The algorithm was tested with the parameters of the 
comparative algorithms, i.e., a population size of 30, with 500 maximum iterations.  

Due to the randomness of relevant parameters, each test function was run 30 times independently. 
Optimized algorithm performance is usually reflected by the average value and iterative convergence 
curve. The stability of the optimization algorithm is reflected by the standard deviation. Therefore, the 
average value and standard deviation of various functions were calculated, as shown in Tables 3–11. 
Convergence curve is shown in Figures 4–6. Modeling and testing were done with MATLAB R2017a 
on an AMD Ryzen 7 PC with 16GB RAM and Windows 10. The best mean and variance results are 
highlighted in boldface in the tables. 
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4.2. Test of high-dimensional unimodal functions 

A unimodal function has only one optimum, which is both local and global, i.e., the enhancement 
of global search ability helps to search for the global optimum.  

To minimize the impact of contingency on the solution of the function, Table 3 lists the evaluation 
indexes of six metaheuristic algorithms after repeated iteration for 30 times in the unimodal function. 

Table 3. Statistical results (average and standard deviation) for unimodal functions. 

Function Criteria ISOWOA EWOA JSWOA WOA AGWO AWOA 

F1 
ave 0 0 0 5.11E-72 6.69E 44 0 
std 0 0 0 2.78E-71 1.33E-43 0 

F2 
ave 0 1.40E-195 0 2.83E-50 8.35E-27 6.32E−182
std 0 0 0 1.02E-49 9.41E-27 0 

F3 
ave 0 0 0 5.39E-17 2.98E-08 0 
std 0 0 0 2.31E-16 1.08E-07 0 

F4 
ave 0 3.16E-201 0 47.8759 1.25E-10 9.31E−179
std 0 0 0 28.3435 5.70E-10 0 

F5 
ave 2.11E-02 2.17E-01 2.79E+01 27.9079 26.9654 2.83E+01 
std 4.47E-02 2.81E-01 4.50E−01 0.37657 0.6973 3.36E−01 

F6 
ave 4.70E-03 2.38E-02 7.86E−01 0.46161 1.4381 4.66E−01 
std 6.50E-03 3.36E-02 2.20E−01 0.29464 0.3314 2.28E−01 

F7 
ave 7.60E-05 1.78E-04 7.63E-05 0.0029988 1.42E-03 7.96E−05 
std 6.61E-05 1.73E-04 7.12E−05 0.0027323 8.21E-04 7.82E−05 

In Table 3, ISOWOA has good adaptability and stability when dealing with unimodal functions 
(F1–F7). Among them, F1–F3 functions all reach the theoretical extreme value in both mean value and 
standard deviation. In the solutions of F4–F7, for modified variants such as EWOA and JSWOA, the 
enhanced algorithm improves by one or three orders of magnitude in both mean and standard deviation, 
which shows that ISOWOA has good convergence accuracy and stability. In addition, F5 is a typical 
nonconvex function. As the bottom of this function is flat, which is called a valley or banana function. 
It's a great tool for evaluating the merits of an algorithm. On this function, the optimization value and 
standard deviation obtained in this paper are the better compared with all other algorithms, which 
proves that the algorithm has higher optimization accuracy under the premise of ensuring stability.  

4.3. Test of high-dimensional multimodal functions 

Because multimodal functions have multiple local optimal values, the optimization algorithm 
needs a stronger global search ability. From the test results of F8–F13 in Table 4, we see that F8, F9, 
and F11 found the global optimal solution. They converged to the theoretical extreme value. The test 
results of F12 and F13 were one to four orders of magnitude higher than those of the enhanced 
metaheuristic algorithm and the variants of WOA, which further confirms the improvements of the 
proposed strategy. The quality of the sequence set in the iterative process was well controlled. 



14154 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 14142-14172. 

Table 4. Results of multimodal functions (average and standard deviation). 

Function Criteria ISOWOA EWOA JSWOA WOA AGWO AWOA 

F8 
ave -1.26E+04 -12569.45 -1.25E+04 -10232.478 -3633.36 −1.23E+04 

std 2.51E-01 1.63E-01 1.93E+02 1683.6928 442.5815 6.16E+02 

F9 
ave 0 0 0.00E+00 0 0.91397 0.00E+00 

std 0 0 0.00E+00 0 5.006 0.00E+00 

F10 
ave 8.88E-16 8.88E-16 8.88E-16 4.59E-15 9.30E-15 8.88E-16 

std 0 0 0.00E+00 3.11E-15 2.55E-15 0.00E+00 

F11 
ave 0 0 0.00E+00 0.0065099 1.18E-03 0.00E+00 

std 0 0 0.00E+00 0.035656 0.0045 0.00E+00 

F12 
ave 9.54E-05 7.71E-04 4.40E−02 0.022638 0.1024 1.94E−02 

std 1.07E-04 2.20E-04 1.52E−02 0.014756 0.0312 1.08E−02 

F13 
ave 7.50E-04 1.44E-02 5.41E−01 0.49925 1.1287 2.68E−01 

std 9.13E-04 2.49E-02 1.40E−01 0.25791 0.2193 1.16E−01 

Table 5. Results of fixed dimensional multimodal functions (average and standard deviation). 

Function Criteria ISOWOA EWOA JSWOA  WOA AGWO AWOA 

F14 
ave 9.98E-01 1.2627 7.01E+00 3.2936 2.3104 2.18E+00 

std 8.34E-07 0.68538 5.19E+00 2.9982 2.4804 2.59E+00 

F15 
ave 4.03E-04 9.58E-04 4.96E−04 0.00082536 1.84E-03 4.03E−04 

std 7.04E-05 7.81E-04 1.84E−04 0.00059597 0.005 7.31E−05 

F16 
ave -1.01E+00 -1.0316 -1.02E+00 -1.0316 -1.0316 -1.02E+00 

std 7.08E-03 1.15E-12 1.09E−02 1.78E-09 4.17E-06 1.14E−02 

F17 
ave 4.01E−01 0.3979 3.98E−01 0.3979 0.3981 3.99E−01 

std 3.39E-03 8.24E-07 7.02E−04 2.81E-05 1.39E-05 9.31E−04 

F18 
ave 3.04E+00 7.5034 3.00E+00 3.0001 3.00E+00 3.01E+00 

std 5.30E-03 4.9322 5.02E−03 0.00015949 3.07E-05 3.58E−02 

F19 
ave -3.85E+00 -3.7529 -3.85E+00 -3.8518 -3.859 -3.84E+00 

std 1.63E-03 0.15693 1.63E−02 0.019943 0.0033 4.71E−02 

F20 
ave -3.19E+00 -3.0353 -3.14E+00 -3.1859 -3.1858 -3.07E+00 

std 7.15E-02 0.23885 1.19E−01 0.18322 0.1199 2.30E−01 

F21 
ave -10.1419 -10.0167 -1.01E+01 -8.9355 -6.7613 -4.80E+00 

std 0.02359 0.2213 6.07E−03 2.1799 1.7626 2.04E−01 

F22 
ave -1.04E+01 -10.228 -1.04E+01 -6.8106 -7.1128 -4.98E+00 

std 0.0040159 0.27626 5.83E−03 3.3228 1.9801 4.21E−01 

F23 
ave -10.5074 -10.3471 -1.05E+01 -7.0653 -8.1292 -5.45E+00 

std 3.30E-03 0.11708 3.64E−03 3.3858 1.0174 1.57E+00 
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4.4. Test of high-dimensional fixed-dimension multimodal functions 

In Table 5, ISOWOA shows good performance on fixed-dimension multimodal functions. 
Among the 10 functions tested, there are a total of 6 functions whose average value and standard 
deviation are all equaled or exceeded those of the other algorithms, they are F14, F15 and F20–F23 
functions respectively.  

To sum up, 19 of the 23 functions of the algorithm proposed in this paper exceeded or equaled to 
other algorithms. Among them, F1–F3, F8, F9, and F11 converged directly to the theoretical optimum. 
Other test results were very close to the theoretical extreme values, achieving the desired effect. In 
addition, F5 also converged to the theoretical value near 0, which is the best convergence effect for the 
valley function among the six algorithms. So the proposed algorithm (ISOWOA) maintained a certain 
stability in many aspects and had good convergence accuracy. 

According to the analysis of the experimental data, we see that ISOWOA is the best among the 
six algorithms in terms of optimization effect and algorithm stability. This further verifies the 
feasibility of various strategies introduced to address the shortcomings of the algorithm in this paper. 

4.5. Convergence analysis 

Due to the limited data reduction of the algorithm, only WOA [19], improved whale optimization 
(IWOA), SCA [36], GWO [37], and MFO [38] were selected as reference objects to draw a function 
convergence curve. According to the curves in Figures 4–6, we can see that the convergence speed 
and precision of ISOWOA are better on the 23 test functions. This is because ISOWOA enhances 
search abilities. 

Figure 4. Convergence behavior of tested algorithm (MFO = moth flame optimization, GWO = 
grey wolf optimizer, SCA = sine cosine algorithm, IWOA = improved whale optimization 
algorithm，ISOWOA = improved selective opposition whale optimization algorithm. 
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Figure 5. Convergence behavior of tested algorithm. 

 

Figure 6. Convergence behavior of tested algorithm. 

It is not difficult to see from Figure 6 that the fixed-dimension F18–F23 functions can obtain the 
minimum value of functions with the smallest number of iterations compared with other variant 
algorithms, which once again proves the powerful optimization efficiency of ISOWOA. It is noted that 
F20 and F22 do not show optimal performance among all variant algorithms in early iterations, but it 
is clear from the image that the enhanced algorithm has powerful searching ability to achieve the best 
optimization performance in the middle and late stages. Therefore, it can be seen that ISOWOA is a 
balanced algorithm with better global and local search capabilities. 

4.6. Function test results of multiple dimensions 

The optimized ISOWOA was applied to the tests of the three dimensions of 100, 500, and 1000 
to ensure that the multi-dimensional function could run independently and had a certain stability. 
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Table 6. Test results of 100 dimensional unimodal functions (F1–F7). 

Function Criteria ISOWOA JSWOA AWOA OWOA OBCWOA LWOA WOA 

F1 
ave 0 0 0 1.49E−173 0 4.25E-91 1.21E-73 

std 0 0 0 0 0 3.00E-90 3.63E-73 

F2 
ave 0 0 1.07E−178 1.46E−137 0 4.41E-73 2.91E-50 

std 0 0 0 7.78E−137 0 3.05E-72 8.97E-50 

F3 
ave 0 0 0 1.27E+06 0 1.86E+05 1022126.4 

std 0 0 0 4.59E+05 0 2.38E+04 214442.09 

F4 
ave 0 0 1.89E−169 8.90E+01 0 1.84E+01 77.4423 

std 0 0 0 1.22E+01 0 1.19E+01 20.7682 

F5 
ave 4.68E-02 9.81E+01 9.81E+01 9.80E+01 9.71E+01 9.80E+01 98.2389 

std 1.17E-01 1.40E−01 8.90E−02 2.83E−01 6.02E-01 2.66E-02 0.1572 

F6 
ave 1.04E-02 3.95E+00 1.99E+00 5.12E+00 4.41E+00 8.37E-01 3.859 

std 1.48E-02 9.34E−01 8.31E−01 1.12E+00 1.33E+00 1.42E-01 1.1369 

F7 
ave 8.87E-05 6.90E-05 8.93E−05 5.24E−04 6.10E-05 4.46E-03 0.0037956 

std 6.31E-05 5.53E−05 8.92E−05 1.06E−03 5.98E-05 5.12E-03 0.0053394 

The test results show that ISOWOA can solve optimization problems of large dimensions without 
serious dimensional disasters. Since no corresponding data are listed in the original literature [19], the 
WOA data in Table 6 are current environmental test results. EWOA does not show super-scale 
optimization results; so, we selected results in the corresponding literature of JSWOA [35] and 
OBCWOA [39]. Tables 6–11 shows the horizontal comparison results. 

Table 7. Test results of 100 dimensional multimodal functions (F8–F13). 

Function Criteria ISOWOA JSWOA AWOA OWOA OBCWOA LWOA WOA 

F8 
ave -41890.91 −4.16E+04 −4.14E+04 −4.14E+04 -3.32E+04 -3.83E+04 -34501.1 

std 11.1604 1.05E+03 1.19E+03 7.85E+02 6.02E+03 4.47E+03 5674.5881

F9 
ave 0 0 0 0 0 4.552E-15 0 

std 0 0 0 0 0 2.251E-14 0 

F10 
ave 8.88E-16 8.88E-16 8.88E-16 2.43E−15 8.88E-16 3.73E-15 4.56E-151

std 0 0 0 2.02E−15 0 2.38E-15 2.55E-152

F11 
ave 0 0 0 0 0 6.53E-03 0.0122543

std 0 0 0 0 0 4.62E-02 0.0671164

F12 
ave 5.95E-05 7.13E−02 2.45E−02 8.19E−02 6.43E-02 9.31E-03 0.0514455

std 6.23E-05 2.51E−02 1.45E−02 2.69E−02 3.33E-02 2.53E-03 0.0223976

F13 
ave 1.59E-03 2.36E+00 1.07E+00 4.04E+00 3.62E+00 7.891E-01 3.1365 

std 2.48E-03 5.79E−01 5.44E−01 1.40E+00 1.13E+00 2.631E-01 1.086 

From Tables 6 and 7, we can see that, in the 100-dimension function test, the horizontal 
comparison with the results in the references shows that ISOWOA still maintains its original stability 
without the occurrence of dimensional disasters, and results of the functions remain near the theoretical 
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extreme value.  
In view of F5–F7, the mean value of ISOWOA is also one or three orders of magnitude better 

than that of modern metaheuristic algorithm and variants of WOA. 

Table 8. Test results of 500 dimensional unimodal functions (F1–F7). 

Function Criteria ISOWOA IWOA AWOA OWOA OBCWOA LWOA WOA 

F1 
ave 0 0 0 2.2E−171 0 5.59E-95 3.76E-69 

std 0 0 0 0 0 2.46E-94 1.46E-68 

F2 
ave 0 0 3.5E−179 2.7E−137 0 2.82E-73 1.29E-48 

std 0 0 0 1.48E−13 0 1.84E-72 4.64E-48 

F3 
ave 0 0 0 3.01E+07 0 5.79E+6 3.42 E+7 

std 0 0 0 1.16E+07 0 8.25E+5 1.03 E+7 

F4 
ave 0 0 4.1E−170 7.54E+01 0 5.06E+1 54.1912 

std 0 0 0 3.37E+01 0 2.34E+1 27.2712 

F5 
ave 0.19283 4.95E+02 4.95E+02 4.96E+02 4.92E+2 4.94E+2 496.2001 

std 0.31447 2.03E−01 3.25E−01 5.35E−01 4.00E-01 6.08E-01 0.37054 

F6 
ave 3.90E-02 2.47E+01 1.15E+01 4.03E+01 4.36E+1 8.31E+0 28.2923 

std 4.77E-02 5.64E+00 4.93E+00 8.33E+00 9.22E+0 1.00E+0 8.8914 

F7 
ave 1.10E-04 1.02E−04 7.58E−05 3.58E−04 6.17E-05 4.01E-3 0.003300 

std 9.70E-05 8.16E−05 6.07E−05 5.46E−04 5.74E-05 3.96E-3 0.003975 

Table 9. Test results of 500 dimensional multimodal functions (F8–F13). 

Function Criteria ISOWOA IWOA AWOA OWOA OBCWOA LWOA WOA 

F8 
ave -209434 −2.09E+5 −2.08E+5 −2.08E+5 -1.61E+05 1.90E+05 170759.7 

std 80.4923 1.95E+03 3.19E+03 3.39E+03 2.92E+04 2.51E+04 29638.545

F9 
ave 0 0 0 0 0 7.28E-14 3.03E-14 

std 0 0 0 0 0 2.49E-13 1.66E-13 

F10 
ave 8.88E-16 8.88E-16 8.88E-16 2.19E−15 8.88E-16 3.80E-15 4.32E-15 

std 0 0 0 2.38E−15 0 2.45E-15 2.38E-15 

F11 
ave 0 0 0 3.70E−18 0 2.22E-18 0 

std 0 0 0 3.70E−18 0 1.57E-17 0 

F12 
ave 2.28E-05 7.14E−02 2.17E−02 1.43E−01 5.87E-01 1.33E-02 0.076393 

std 3.27E-05 2.21E−02 1.30E−02 5.60E−02 1.18E-01 2.13E-03 0.035297 

F13 
ave 5.38E-03 1.37E+01 5.16E+00 1.94E+01 4.78E+01 4.42E+00 19.6528 

std 9.48E-03 2.51E+00 1.87E+00 3.52E+00 5.41E+00 6.75E-01 7.0613 

From the results of 500-dimension functions in Tables 8 and 9, we can see that the valley function 
still shows a good effect. Although the order of magnitude has decreased precision, compared with 
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other algorithms, it is still closest to the theoretical value. 

Table 10. Test results of 1000 dimensional unimodal functions (F1–F7). 

Function Criteria ISOWOA JSWOA AWOA OWOA WOA 

F1 
ave 0 0 0 2.98E−172 1.81E-68 

std 0 0 0 0 9.89E-68 

F2 
ave 0 0 5.41E−178 1.53E−140 1.93E-48 

std 0 0 0 8.25E−140  5.69E-48 

F3 
ave 0 0 0 1.25E+08 132211500 

std 0 0 0 3.93E+07 48442106.1 

F4 
ave 0 0 1.85E−174 7.98E+01 63.782 

std 0 0 0 2.61E+01 23.0503 

F5 
ave 1.09E+00 9.91E+02 9.90E+02 9.92E+02 993.8017 

std 2.51E+00 4.08E−01 6.26E−01 7.01E−01 0.70666 

F6 
ave 1.39E-01 4.46E+01 2.12E+01 7.50E+01 72.8772 

std 1.99E-01 9.32E+00 8.76E+00 1.59E+01 19.5057 

F7 
ave 1.60E-04 8.78E−05 8.27E−05 7.74E−04 0.0035431 

std 8.44E-05 7.00E−05 6.63E−05 2.06E−03 0.0044305 

Table 11. Test results of 1000 dimensional multimodal functions (F8–F13). 

Function Criteria ISOWOA JSWOA AWOA OWOA WOA 

F8 
ave -418948 −4.17E+05 −4.12E+05 −4.16E+05 -335844.27 

std 72.2583 5.03E+03 1.55E+04 6.66E+03 62629.144 

F9 
ave 0 0 0 0 1.82E-13 

std 0 0 0 0 5.55E-13 

F10 
ave 8.88E−16 8.88E−16 8.88E−16 3.85E−15 4.91E-15 

std 0 0 0 2.81E−15 2.59E-15 

F11 
ave 0 0 0 0 3.70E-18 

std 0 0 0 0 2.03E-17 

F12 
ave 2.82E-05 7.15E−02 2.50E−02 1.34E−01 0.10518 

std 4.10E-05 2.59E−02 1.55E−02 4.32E−02 0.062805 

F13 
ave 1.13E-02 2.56E+01 1.05E+01 4.35E+01 36.1263 

std 1.70E-02 5.85E+00 5.37E+00 1.09E+01 13.0893 

We can see that, F1–F3 functions still maintain the theoretical extreme value in the 1000-
dimension test. It is worth mentioning that F5 and F6 functions still maintain their precision on the 
basis of surpassing other metaheuristic algorithms. It can be seen from Tables 10 and 11 that the 
powerful optimization ability of the ISOWOA can greatly make F1–F4, F9 and F11 find the optimal 
value. The convergence accuracy of ISOWOA is still better than that of the other four algorithms in 
multi-dimensional function tests. On the whole, results of 39 multi-dimensional function tests exceed 



14160 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 14142-14172. 

other algorithms except F7. These tests showed that ISOWOA is superior at solving large-scale multi-
dimensional optimization problems and maintaining a certain stability while avoiding serious 
dimensional disasters. In summary, ISOWOA has remarkable performance in addressing complex 
higher dimensional functions. Because of this, this paper considers it can be greatly applied to deal 
multi-constraints in DNA storage. 

4.7. Wilcoxon’s rank sum test and Friedman’s nonparametric rank test 

Table 12. Wilcoxon’s rank sum test of algorithms. 

Function ISOWOA EWOA JSWOA WOA AGWO AWOA 

F1 1 3 3 5 6 3 
F2 1 3 2 5 6 4 
F3 1 3 3 5 6 3 
F4 1.5 3 1.5 6 5 4 
F5 1 2 4 5 3 6 
F6 1 2 5 3 6 4 
F7 1 4 2 6 5 3 
F8 1 2 3 5 6 4 
F9 2 2 4.5 2 6 4.5 
F10 2.5 2.5 2.5 5 6 2.5 
F11 1.5 1.5 3.5 6 5 3.5 
F12 1 2 5 4 6 3 
F13 1 2 5 4 6 3 
F14 1 2 6 5 4 3 
F15 1.5 5 3 4 6 1.5 
F16 6 2 4.5 2 2 4.5 
F17 6 1.5 3 1.5 4 5 
F18 5 6 1.5 3 1.5 4 
F19 3.5 6 3.5 2 1 5 
F20 1 6 4 2 3 5 
F21 1 3 2 4 5 6 
F22 1.5 3 1.5 5 4 6 
F23 1 3 2 5 4 6 
Sum 44 69.5 75 94.5 106.5 93.5 
rank (1) (2) (3) (5) (6) (4) 

Wilcoxon and Friedman tests were employed for horizontal and vertical comparisons of the mean 
value of ISOWOA. We used statistical method (Wilcoxon’s rank-sum and Friedman’s nonparametric 
rank) to validate the superiority and significance of the ISOWOA and to investigate the difference 
between our algorithm and other improved algorithms, respectively. Because there are three sets of 
missing data in OBCWOA [39] and LWOA [39], we only selected the other five algorithms for 
significance analysis. The order of each algorithm using the rank-sum test is shown in Table 12. 

It can be seen from Table 12 that the rank means of the six algorithms are 1.91 (ISOWOA), 3.02 
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(EWOA), 3.26 (JSWOA), 4.11 (WOA), 4.63 (AGWO), and 4.07 (AWOA). The priority order is 
ISOWOA  EWOA  JSWOA  AWOA  WOA  AGWO. We see that ISOWOA ranks first, 
with an obvious horizontal comparative advantage, which demonstrates its superiority and significance. 
Table 13 lists the test results of all benchmark functions after vertical comparison, based on analysis 
using IBM SPSS Statistics 26 software. Based on a large number of statistical data, the significance 
level was set as 0.05. The confidence interval level (CILEVEL) was set to 95%. SPSS calculated the 
statistics and corresponding P-values. If P is less than 0.05, two algorithms can be considered to be 
significantly different, and there is no statistically significant difference when P is greater than 0.05. 

Hence, a small P indicates a better solution effect, i.e., the tests of our optimization algorithm 
have a qualitative breakthrough compared with those of modern metaheuristic algorithm and variants 
of WOA. Table 13 lists the P-values. Where N/S/E/I represent the overall statistical quantitative 
analysis that ISOWOA is superior (S), equal (E) and inferior (I) compared with other algorithms in 
N problems. 

Table 13. P-values using Friedman’s nonparametric test for functions F1–F23. 

Comparison p-value N/S/E/I 
ISOWOA vs. EWOA 0.012 23/18/3/2 
ISOWOA vs. WOA 0.002 23/20/1/2 
ISOWOA vs. AWOA 0.02 23/21/2/0 
ISOWOA vs. JSWOA 0.052 23/17/3/3 
ISOWOA vs. AGWO 0.018 23/20/0/3 

We see that ISOWOA had more signification compared to other algorithms. Among them, P = 0.012 
when comparing ISOWOA and EWOA, indicating a statistically significant difference. In addition, 
compared with AWOA, the algorithm proposed in this paper has a dominant ratio of 91.3%, which is 
not 100% because the function has reached the theoretical extreme value and cannot be further 
optimized. These results conform to the intuitive results in Tables 3–5. 

4.8. Performance of ISOWOA algorithm on CEC-2015 test function set 

Table 14. Average fitness value obtained by algorithms on IEEE CEC-2015 function. 

Dim Algorithms CEC-1 CEC-2 CEC-3 CEC-4 CEC-5 

30 

IWOA 3.80E+07 5.58E+08 2.01E+01 2.49E+02 4.28E+03 

MFA 9.85E+04 3.74E+03 2.09E+01 5.15E+01 2.87E+03 

ISOWOA 8.97E+04 2.70E+03 2.01E+01 5.13E+01 2.39+03 

50 

IWOA 1.06E+08 4.20E+09 2.03E+01 5.51E+02 7.15E+03 

MFA 8.38E+05 1.35E+04 2.11E+01 1.35E+02 5.02E+03 

ISOWOA 8.35E+05 7.96E+03 2.01E+01 1.35E+02 4.90E+03 

90 

IWOA 3.45E+08 1.62E+11 2.08E+01 1.54E+03 2.00E+04 

MFA 6.50E+06 7.13E+03 2.13E+01 3.73E+02 1.27E+04 

ISOWOA 6.21E+06 8.01E+03 2.05E+01 3.29E+02 1.13E+04 
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Table 15. Average fitness value obtained by algorithms on IEEE CEC-2015 function. 

Dim Algorithms CEC-6 CEC-7 CEC-8 CEC-9 CEC-10 

30 

IWOA 1.37E+06 1.91E+01 6.46E+05 1.90E+02 2.97E+06 

MFA 3.98E+04 4.65E+00 2.40E+04 1.02E+02 1.95E+04 

ISOWOA 1.06E+05 4.98E+00 3.79E+04 1.02E+02 1.78E+04 

50 

IWOA 2.84E+06 1.20E+02 2.84E+06 3.63E+02 4.50E+06 

MFA 2.46E+05 3.81E+01 1.52E+05 1.04E+02 6.73E+03 

ISOWOA 4.96E+05 4.38E+01 2.14E+06 1.04E+02 2.03E+04 

90 

IWOA 2.12E+07 4.66E+02 1.05E+07 1.05E+03 2.30E+07 

MFA 1.54E+06 1.28E+02 6.73E+05 1.08E+02 7.63E+03 

ISOWOA 4.47E+06 2.79E+02 2.46E+06 1.37E+02 3.49E+05 

Table 16. Average fitness value obtained by algorithms on IEEE CEC-2015 function. 

Dim Algorithms CEC-11 CEC-12 CEC-13 CEC-14 CEC-15 

30 

IWOA 8.64E+02 1.46E+02 6.12E-02 3.64E+04 1.15E+02 

MFA 4.32E+02 1.04E+02 2.64E-02 3.30E+04 1.00E+02 

ISOWOA 4.46E+02 1.02E+02 1.98E-02 2.08E+04 1.00E+02 

50 

IWOA 1.76E+03 1.81E+02 3.45E-01 8.53E+04 1.15E+02 

MFA 8.13E+02 1.54E+02 8.58E-02 6.51E+04 1.00E+02 

ISOWOA 1.03E+03 1.47E+02 7.42E-02 5.96E+04 1.00E+02 

90 

IWOA 4.00E+03 2.03E+02 5.39E-01 2.21E+05 1.51E+04 

MFA 2.03E+03 1.55E+02 6.48E-02 1.09E+05 1.03E+02 

ISOWOA 3.21E+03 1.52E+02 4.27E-02 1.09E+05 1.08E+02 

In order to better demonstrate the proposed ISOWOA, a set of 15 real-parameter single-objective 
optimization problems of IEEE CEC 2015 (CEC-1-CEC-15) is considered. The efficiency of the 
ISOWOA is compared against improved whale optimization algorithm (IWOA) [40] and modified 
firefly algorithm [41]. For minimum interference, each algorithm is executed for 51 runs over three 
dimensions, i.e., 30, 50, and 90. The best results for all tests are in bold in Tables 14–16. 

When executed on 30 and 50 dimensions, it can be clearly seen from Tables 14–16 that the 
proposed ISOWOA is superior to the comparison algorithm in CEC-1, CEC-2, CEC-3, CEC-4, CEC-
5, CEC-9, CEC-10, CEC-12, CEC-13, CEC-14 and CEC-15 benchmark functions. In addition, from 
any dimension, the results obtained by the proposed algorithm on CEC-1, CEC-3, CEC-4, CEC-5, 
CEC-12, CEC-13 and CEC-14 functions are always equal to or exceeded all other algorithms. To sum 
up, the proposed ISOWOA also performs the compared algorithms on most benchmark problems. 
Therefore, the test function set of CEC-2015 proves the superiority of ISOWOA algorithm again. 

According to the analysis of the above experimental data, through the verification of CEC 2005 
and CEC 2017 standard test function sets of different dimensions and scales, it can be concluded that 
the ISOWOA algorithm proposed in this paper has greatly improved the convergence effect compared 
with the original algorithm and other similar intelligent optimization algorithms. Among them, the 
average value obtained by ISOWOA algorithm in the unimodal function is closer to the theoretical 
optimal value, and the standard deviation is stable, which indicates that the improved algorithm has 
stronger exploration ability and makes the result closer to the global optimal value. In the multimodal 
function, both the function value and the standard deviation reach the minimum, which indicates that 
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ISOWOA algorithm still has excellent optimization ability in the limited search space, and reflects that 
the algorithm proposed in this paper has better stability while ensuring higher performance. In addition, 
in the composite function, the improved algorithm also has different degrees of competitive advantages, 
which shows that the algorithm also has robustness in solving global optimization problems. The above 
indicates that the proposed algorithm is a satisfactory optimization algorithm with good performance 
and stability. 

4.9. Computational complexity analysis of the ISOWOA algorithm 

The computational complexity of ISOWOA algorithm includes the following three main parts: 
1) Population initialization. The computational complexity of this part depends on the population 

size N and the population dimension D, which generally does not exceed O (N*D). The ISOWOA pro-
posed in this paper can be compared with other algorithms, which is O (N*D). 

2) Calculation of initial population fitness. The computational complexity of this part depends on 
the population size N and the target fitness F, which generally does not exceed O (N*F). The ISOWOA 
proposed in this paper can be compared with other algorithms, which is O (N*F). 

3) In the main cycle, the computational complexity of this part depends on the number of iterations 
T, the population size N, the population dimension D and the target fitness F, which generally does not 
exceed O (T*N*D + T*N*F).  

The computational complexity of the algorithm proposed in this paper depends on the population 
location update and fitness calculation. The population location update is determined to adopt any of 
the three predator-prey methods through the cycle judgment conditions. As shown in the figure, when 
the algorithm meets the execution conditions, the left branch is executed, that is, randomly searching 
prey and surrounding prey. When the algorithm does not meet the execution conditions, it executes the 
right branch, that is, bubble prey. The computational complexity of this part does not exceed O 
(T*N*D), and the calculation of fitness does not exceed O (T * N * F). Therefore, the computational 
complexity of the main cycle can be expressed as O (T*N*D + T * N * F), which can also be compared 
with other algorithms. From the above analysis, we can conclude that the time complexity of the 
proposed ISOWOA algorithm is equivalent to that of other algorithms. 

In general, the computational complexity of the ISOWOA algorithm proposed in this paper is as 
follows: O (ISOWOA) = O (Initialization whale population) + T * O (Estimate the fitness of whales) 
+ T*O (Update the position of all whales). Where O (Steps to initialize whale population) = O (N), 
T*O ( steps to estimate the fitness of whales) = T*O (N)，and T*O (Steps to update the position of all 
whales) = T*O (N*D). So, the total time complexity is O (ISOWOA) = O (N) + T*O (N) + T*O (N*D) 
= O (T*N*D). 

5. Applications in building DNA storage codes 

5.1. DNA coding 

DNA coding refers to mapping a binary string into a corresponding base sequence by a certain 
coding method, that is, a sequence composed of A, T, C and G. Recently a group of new concepts 
were designed for DNA codes. DNA coding is used in technologies such as DNA computing [42], 
DNA nanostructures, data encryption, data storage, and DNA microarray technology and image 
encryption [43]. In these applications, information is always represented by a unique sequence of DNA, 
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and processing is accomplished by hybridization between these DNA codes. The quality of the codes 
directly determines the success or failure of the application. Recently a group of new concepts were 
designed for DNA codes. Hong et al. [44] used theory to construct DNA coding sets and attempted to 
construct them by irreducible cyclic codes. Wang et al. [45] designed a new image encryption scheme 
combined with DNA encoding using chaotic sequence and diffusion operations of a DNA matrix, which 
can resist common attack methods. Song et al. [46] proposed a conversion method to achieve a storage 
rate of 1.9 bit/base. This method greatly meets the requirements of low encoding complexity. 

For the DNA coding problem, the current research content is mainly divided into two aspects: 
coding quality and coding quantity. When solving practical problems, we need to choose the coding 
direction according to the focus of the problem: 1) Under the condition of sufficient coding quantity, 
the research goal is to improve the coding quality; 2) Under the premise that the coding quality has 
reached the requirements, the research goal is to improve the number of codes. In general, quality 
optimization and the number of DNA codes often fail to achieve a win-win situation. There is no good 
way to solve this NP-complete problem because the number of DNA codes always decreases with 
increasing constraints. Recently, Nguyen et al. [47] designed constrained codes with error-correction 
capability, which were capable of correcting a single insertion / edited. wang et al. [48] presented novel 
similarity significance (SS) model to measure the similarity between DNA sequences. With this model, 
they constructed thermodynamically stable DNA codes using a sorting-based algorithm. The coding 
quality is improved at the expense of the number of codes. It has strong limitations in practical 
applications, and only meets certain specific scenarios without considering the DNA storage coding 
rate. In addition, Cao et al. [49] improved the DNA storage coding rate by improving the MVO 
algorithm. Under the fixed sequence length, more DNA sequences were screened out, which reduced 
the storage cost to a certain extent. Limited by the performance of the algorithm, it cannot achieve a 
big breakthrough in the lower bound of the DNA storage coding set. How-ever, WOA algorithm has 
the advantage of strong global search ability in discrete problems. Under the premise of ensuring 
sequence quality, it can effectively improve the number of DNA coding storage coding sets. Based on 
this, WOA was introduced to DNA computing to construct DNA storage codes. The ISOWOA 
algorithm with three novel strategies can search for codes that meet the constraints in a wider range, 
realizing the construction of a larger number of coding sets within a certain base length, The in-crease 
in the size of the coding set means that shorter DNA strands can be used to store more data, which 
greatly improves the coding rate of storage and reduces the cost of data storage. 

For the construction of DNA storage codes, we aim to further improve the size of coding set and 
the coding rate under the same constraint requirements [49]. According to the characteristics of DNA 
storage coding set, this paper models the combination constraint as a multi-objective problem of the 
algorithm, and converts the DNA sequence from A, T, C, G to 0, 1, 2, 3. Secondly, in order to match 
the transformation mechanism, the original continuous whale optimization algorithm is discretized. 
Finally, the improved ISOWOA is applied to screen the DNA storage coding sets that meet the four 
constraints of uncorrelated address, edit distance, no run length, and GC content. 

5.2. Constraints of DNA storage coding set 

The constraints of DNA coding sets are categorized as combinatorial [50], application-oriented, 
and thermodynamic [51]. Combinatorial constraints include Hamming distance (HD), GC-content, 
forbidden constraints, and so on. Application-oriented constraints include uncorrelated and run-length 
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constraints. Thermodynamic constraints include free energy, melting temperature, and minimum 
energy constraints. Our experiments have shown that reliable DNA codes designed with uncorrelated 
address, edit distance, no run-length, and GC-content. The experimental results show that the number 
of multi-constraint storage codes with different lengths constructed in this paper increases by 2–18%, 
reaching or exceeding the previous optimal construction [49]. 

5.2.1. Editing distance constraint 

The minimum edit distance (MED), or levenshtein distance, is the minimum operand required to 
convert one string to another. We set the minimum editing distance [49] as a similarity calculation 
function, which is used for the construction of DNA storage codes. There are two strings in 𝑉, and 
𝑢 𝑎𝑛𝑑 𝑣 satisfy 

𝜂 𝑢, 𝑣 𝑑.                                      (10) 

where 𝑑 is an integer, and 𝜂 is the set of editing distance constraints for DNA sequences. 
By introducing editing distance to the construction of a DNA storage code, problems, such as 

substitution, insert, and delete in nanopore sequencing technology, are well solved. Sequencing errors 
are minimally avoided. 𝐺 𝑢, 𝑣   represents the editing distance between 𝑢  and 𝑣 . The objective 
function is 

𝑈𝐸 𝑢 𝑚𝑖𝑛
,

𝐺 𝑢 , 𝑣 𝑑.                        (11) 

where UE 𝑢  defines the minimum 𝐺 𝑢 , 𝑣 . 

5.2.2. GC-content constraint 

DNA computing requires stable and uniform DNA molecules, composed of A, T, C, and G bases. 
GC content is the ratio of guanine and cytosine in four DNA bases in a DNA sequence, and the content 
constraint must meet the range in chemical determination, generally 40 𝐺𝐶 60. Thus, we set a 
standard of 50 for the sequence of GC-content.  

For a sequence of length 𝑠, 𝐺𝐶 𝑠  can be expressed as [49]: 

𝐺𝐶 𝑠
| |

| |
.                                       (12) 

where |𝐺 𝐶| is the fixed number that are either G or C within each code. 

5.2.3. Sub-subheading 

Run-length (RL) is the length formed by the repeated occurrence of each base in a data stream 
composed of sequences. Given the nature of DNA molecular synthesis and sequencing, repeated bases 
may lead to the failure of an experiment. For example, in ACGGGT, G is repeated; this sequencing 
can be misinterpreted as ACGT or ACGGT, which will lead to reading and writing errors. The 
constraint is defined as [49] 
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𝑆 𝑆       𝑖 ∈ 1, 𝑛 1 .                           (13) 

where 𝑆  is a DNA sequence 𝑆 𝑆 , 𝑆 , 𝑆 , … , 𝑆  of length 𝑛. 

5.2.4. Uncorrelated address constraint 

In computer science, basic units of memory used for data access are assigned unique serial 
numbers, also known as memory addresses, which refer to specific locations in a system. In DNA 
computing, to recover data information stored by DNA, molecules in the reaction pool must be 
prefixed with a specific address. Address sequences must not be similar, to avoid failed retrieval of 
data block information. Uncorrelated address constraints are defined as follows. 

In sequences 𝐿 𝑙 , 𝑙 , 𝑙 , … 𝑙  and 𝐻 ℎ , ℎ , ℎ , … , ℎ , the suffix of 𝐿 cannot appear as the 
prefix of 𝐻, and vice versa [52]. 

Assuming that we define an uncorrelated address constraint distance as 3, then CTAGAT and 
CGACTA cannot occur together in the entire sequence pool, because CTA is a related character [49]. 
The coding set B obtained by the uncorrelated address constraint can not only eliminate cross-
hybridization between addresses but can also avoid sequence selection errors in the sequencing process. 

5.3. Bounds on DNA storage codes 

The steps of constructing DNA storage codes are as follows:  
1) The required parameters and DNA sequence are initialized. Then, WOA is discretized. By 

evaluating their fitness, current optimal solution is screened out, and DNA sequences satisfying the 
constraint are incorporated to form the first-generation population.  

2) The populations are sorted in order of fitness, by using the correlation to select the individuals 
and dimensions to be opposed.  

3) The updated population is involved in iterative optimization, and the optimized result is taken 
as the input to determine whether the constraint conditions are met. If so, it is incorporated, otherwise 
iterative optimization is continued.  

4) Finally, when the maximum number of iterations is reached, the DNA storage coding set is 
outputted.  

Superscripts are presented in Table 17, where 𝑑  represents DMVO [49] and 𝑖  represent 
ISOWOA. In Table 18, 𝐴 , , 𝑛, 𝑑   represents a DNA coding set, which satisfies the editing 
distance, GC-content, no run-length, and uncorrelated address constraints. This value for 
𝐴 , , 𝑛, 𝑑  represents the maximum number of DNA storage codes constructed by ISOWOA, 
satisfying the same constraints, where 𝑑 represents the storage editing distance, and 𝑛 represents the 
length of the DNA storage coding. From the perspective of biological computing, we aim to screen out 
more DNA storage codes with the same combinatorial constraints.  

In fact, the combinatorial constraints applied in this paper can be regarded as a multi-objective 
application. Through the previous tests, it is verified that the ISOWOA proposed in this paper has 
strong equilibrium ability in solving multi-objective optimization problems. Because of this, ISOWOA 
is introduced as a method to construct the DNA storage coding set, and the reliability of the algorithm 
in practical application is further discussed. 
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Table 17. Meanings of superscripts. 

Superscript Meaning 

u DMVO algorithm 
i ISOWOA algorithm 

Table 18. Lower bounds of different lengths satisfying constraints (𝑨𝑮𝑪,𝑵𝑳,𝑼𝑨 𝒏, 𝒅 ). 

n\d 3 4 5 6 7 8 9 10 

4 
6u        
6i        

5 
12u 5u       
14i 5i       

6 
30u 11u 4u      
31i 12i 4i      

7 
53u 19u 6u 3u     
56i 19i 7i 3i     

8 
101u 38u 12u 5u 3u    
108i 43i 12i 5i 3i    

9 
167u 58u 19u 7u 3u 2u   
180i 67i 20i 7i 3i 2i   

10 
250u  110u 34u 11u 5u 3u 2u  

267i 118i 38i 13i 5i 3i 2i  

In Table 18, we see that under the same constraints, the number of different length coding sets 
constructed by ISOWOA all equaled or exceeded DMVO algorithm. The lower bounds generally 
increased by 2–18%, which shows that our work has been significantly improved compared with that 
of our predecessors. If the sequence length is equal to 5, 6, 7, 8, 9, 10, the coding lower bound of the 
proposed algorithm has been broken through. It is worth noting that if 𝑛 10 and 𝑑 6, the number 
of DNA storage codes in our result is 18% higher than that in the optimal result of DMVO, meeting 
the evaluation index of the DNA sequence coding set.  

In addition, the experimental data also show that the advantages of the algorithm are more 
significant with the increase of sequence length. When the editing distance constraint value is defined 
as 3, we can find that the lower bounds of DNA sequence length of 7, 8 and 9 constructed by the 
algorithm are increased by 5.7, 7 and 8% respectively. And the corresponding coding rate 𝑅
𝑙𝑜𝑔^4𝑀/𝑛 is also increased by more than 1%. If d = 3, our coding rate at n = 9 (0.416) exceeds that 
at n = 10 (0.403), which also means that the algorithm can effectively reduce the synthesis cost of 
sequences under the same performance requirements. As expected, the enhanced algorithm shows 
good performance. The results confirm the applicability of ISOWOA to biological computing.  

Finally, the non-payload DNA storage coding set after selection can avoid insertion, deletion, and 
replacement errors to the greatest extent in the process of nanopore sequencing. Based on this storage 
coding set, access to large DNA files can be successfully completed in the fourth generation of 
nanopore sequencing. 
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6. Conclusions 

In dealing with optimization problems, the whale optimization algorithm has the drawback that 
local optimal solutions are prone to precocious convergence, i.e., it is assumed to be the best solution 
when the global optimal solution has not been found. Based on this, the proposed algorithm integrates 
the strategies of enhanced quasi-opposition learning, a nonlinear convergence factor, and a new time-
varying inertia weight with collaborative convergence factor, giving it a stronger search ability in the 
whole algorithm optimization stage. The adaptability and convergence precision of each iteration are 
improved, and the inherent defect of premature convergence is eliminated, so that it becomes an 
equilibrium algorithm. Through 38 benchmark functions, the proposed algorithm was compared to 
modern metaheuristic algorithm and variants of WOA on test cases based on multiple dimensions, 
number of iterations, mean value, and variance. The experiment shows that the results of 17 functions 
of CEC 2005 obtained by ISOWOA were obviously better than those of EWOA in terms of mean and 
standard deviation, and the results of another four functions were the same. In addition, the algorithm 
is superior to other algorithms in 11 functions in the test function set of CEC 2015, which again proves 
the superiority of ISOWOA algorithm. In biological computing, based on the same combinational 
constraints, the multi-constraint DNA storage coding set constructed by ISOWOA has a better solving 
effect than DMVO. The results show that the number of DNA storage codes filtered by ISOWOA 
increased by 2–18%, and the coding set can realize access to DNA files in biological experiments. 

In future work, we will take DNA storage coding as the main research direction and apply various 
nature-inspired algorithms to address optimization problems, such as machine learning, engineering 
problems, networks, and benchmark functions. 
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