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Abstract: An analysis of steady two-dimensional boundary layer MHD (magnetohydrodynamic)
nanofluid flow with nonlinear thermal radiation across a horizontally moving thin needle was
performed in this study. The flow along a thin needle is considered to be laminar and viscous. The
Rosseland estimate is utilized to portray the radiation heat transition under the energy condition.
Titanium dioxide (TiO2) is applied as the nanofluid and water as the base fluid. The objective of this
work was to study the effects of a magnetic field, thermal radiation, variable viscosity and thermal
conductivity on MHD flow toward a porous thin needle. By using a suitable similarity transformation,
the nonlinear governing PDEs are turned into a set of nonlinear ODEs which are then successfully
solved by means of the homotopy analysis method using Mathematica software. The comparison
result for some limited cases was achieved with earlier published data. The governing parameters
were fixed values throughout the study, i.e., k1 = 0.3, M = 0.6, Fr = 0.1, δµ = 0.3, χ = 0.001, Pr = 0.7,
Ec = 0.5, θr = 0.1, ε = 0.2, Rd = 0.4 and δk = 0.1. After detailed analysis of the present work, it was
discovered that the nanofluid flow diminishes with growth in the porosity parameter, variable
viscosity parameter and magnetic parameter, while it upsurges when the rate of inertia increases. The
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thermal property enhances with the thermal conductivity parameter, radiation parameter, temperature
ratio parameter and Eckert number, while it reduces with the Prandtl number and size of the needle.
Moreover, skin friction of the nanofluid increases with corresponding growth in the magnetic
parameter, porosity parameter and inertial parameter, while it reduces with growth in the velocity
ratio parameter. The Nusselt number increases with increases in the values of the inertia parameter
and Eckert number, while it decliens against a higher estimation of the Prandtl number and magnetic
parameter. This study has a multiplicity of applications like petroleum products, nuclear waste
disposal, magnetic cell separation, extrusion of a plastic sheet, cross-breed powered machines, grain
storage, materials production, polymeric sheet, energy generation, drilling processes, continuous
casting, submarines, wire coating, building design, geothermal power generations, lubrication, space
equipment, biomedicine and cancer treatment.

Keywords: MHD flow; nonlinear thermal radiation; thin needle; thermal boundary layer analysis;
HAM

1. Introduction

There is the transmission of heat from a solid body to a gas or liquid flow in a problem whose
consideration involves the science of fluid motion. A flow of heat is layered on the physical motion of
a fluid, and the two fields interact. In order to obtain the temperature distribution and the heat transfer
rate, it is important to connect the equation of motion with the energy conservation equation.
However, a comprehensive solution for the flow of a viscous fluid around a body involves significant
mathematical difficulties for all fluid flow geometries. To overcome such difficulties, in the year 1904
the German aerodynamicist Ludwig Prandtl [1] introduced the concept of a boundary layer. The
boundary layer idea fills a gap between the theories and practices that had previously existed (for one
thing, it introduces the theoretical possibilities of drag). Furthermore, the boundary layer approach
allowed the solution of viscous flow problems that would have been difficult to solve through the
application of the Navier-Stokes equation to the entire flow field. Prandtl [1] showed that several
viscous flow problems may be investigated by splitting them into two areas, one near solid boundaries
and the other spanning the rest of the flow. Only in the thin region near a solid boundary (the
boundary layers) is the influence of viscosity important. The influence of viscosity is insignificant in
the region outside of the boundary layers and the fluid can be viewed as non-viscous.

Heat transfer analysis and Darcy-Forchheimer flow in porous media are utilized in a wide range
of applications. Porous media can be naturally formed (e.g., wood, sponges, sand beds, rocks) or
fabricated (e.g., wicks, insulation, catalytic pellet). Schaefer [2] provided an overview of engineered
porous materials, while Shafer et al. [3] covered the chemistry and physics of porous media. Bilal
et al. [4] investigated the convective Casson fluid flow with homogeneous–heterogeneous reactions
in a Darcy-Forchheimer medium. The analysis of heat transfer and entropy generation in a stratified
MHD (magnetohydrodynamic) Carreau nanofluid with gyrotactic microorganisms was performed by
Naz et al. [5]. They also studied the thermal and species transportation of Eyring-Powell material over
a rotating disk with swimming microorganisms [6]. A numerical investigation of Darcy-Forchheimer
and EMHD nanofluid flow toward a porous medium was performed by Rasool et al. [7]. Flow of porous
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Nomenclature
x: coordinate measure in axial direction (m)
r: coordinate measure in radial direction (m)
u: velocity component along axial direction (ms−1)

v:
velocity component along radial direction
(ms−1)

uw: velocity of the moving needle (ms−1)
u∞: velocity outside the boundary layer (ms−1)
uc: composite velocity (ms−1)
T : temperature of fluid (K)
Tw: wall temperature (K)
T∞: ambient temperature (K)
K(T ): thermal conductivity (m2s−1)
µ(T ): dynamic viscosity (kgm−1s−1)
ρ f : density of fluid (kgm−3)
Cb: drag coefficient (Jkg−1K−1)
σs: Boltzman constant (Wm−2K−4)
ρCp: effective heat capacitance (Jm−3K−1)
ψ: stream function (m2s−1)
υ f : kinematic viscosity (m2s−1

χ: needle size
B0: applied magnetic field
k∗: permeability of porous medium
ke: mean absorption coefficient
M: magnetic parameter
k1: porosity parameter
Rd: radiation parameter
~: convergence control parameter
Fr: inertia parameter
ε: velocity ratio parameter
δk: thermal conductivity parameter
δµ: variable viscosity parameter
Re: Reynolds number
Ec: Eckert number
Pr: Prandtl number
L : auxiliary linear operator

media can find extensive industrial and scientific uses in numerous natural settings such as geothermal
energy systems, hydrology, petroleum reservoirs, crude gas and oil productions, granular insulation,
catalytic reactors, water movements in reservoirs, grain storage, fermentation processes and so on (see,
for example, Das et al. [8], Dogonchi et al. [9], Ajarostagi [10] and Abdelmalek et al. [11]).

Heat transfer and boundary layer flow across a thin needle has become a topic of interest in current
studies because of their significant applications in hot-wire anemometers, biomedicine, extrusion of a
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plastic sheet, wire coating, continuous casting, submarines, geothermal power generation, lubrication
and the cooling of electronic devices. The thin needle is considered as a body of revolution with
a thickness that is less than the thickness of the boundary layer. Lee [12] initially considered the
boundary layer formation adjacent to a thin needle in a viscous fluid. Chen and Smith [13] investigated
the analytical solution of a steady forced convective laminar flow across a non-isothermal thin needle.
Grosan and Pop [14] used the bvp4c programming in MATLAB software to investigate the forced
convective flow across a thin needle in a nanofluid. The mixed convective boundary layer flow across
vertically moving thin needles was explored by Wang [15] who calculated the numerical solution for
assisting and opposing flow and discovered that the solution for assisting flow is unique, but the solution
for opposing flow may be unique, dual or non-existent. The formation of boundary layer flow across
a non-isothermal needle which moves in a parallel free stream, has been studied in the work [16]
in which the Keller box approach was used to calculate the numerical solution to discover that dual
solutions occur when a needle moves in the reverse direction of the free stream. The mixed convective
flow of a water base and ethylene glycol nanofluid across a non-isothermal thin needle was investigated
by Nayak et al. [17] by using a generalized differential quadrature approach. They discovered that the
copper ethylene glycol based nanofluid shows the greatest improvement in the heat transfer rate. The
effect of Lorentz forces and Darcy-Forchheimer on radiative nanofluid flow toward a slippery curved
geometry was analyzed by Algehyne et al. [18]. A collection of the boundary layer flow across a thin
needle with different physical effect in nanofluid can be seen in the works by Hayat et al. [19], Ahmad
et al. [20], Narain and Uberoi [21], Ahmad et al. [22], Afridi et al. [23] and Sulochana et al. [24, 25].

The investigation of exchanges of thermal flow of a fluid through different objects has attracted
researchers because of its essential physical applications including air flow past an aircraft and wind
engineering. Moreover, thermal radiation is also used in different fields of technology, including
biomedicine, space equipment, drilling processes, cancer treatment, and higher temperature
procedures. Nadeem et al. [26] investigated the influence of thermal radiation on the boundary layer
flow of a Jeffrey fluid across an exponential stretch surface by using the homotopy analysis method
(HAM) to solve the problem analytically. The effects of chemical reactions and thermal radiation on
MHD nanofluid have been investigated by Arulmozhi et al. [27]. In the presence of thermal radiation
and a heat source/sink, a steady boundary layer flow of Powell-Eyring nanofluid toward a stretching
sheet was numerically explored by Manvi et al. [28]. Tayebi et al. [29] performed numerical analysis
for thermal natural convection as well as the entropy generation of (Al2O3-H2O) nanoparticles toward
a circular cylinder. Chamkha et al. [30] investigated the natural convection MHD nanofluid in a cavity
with a radiation effect and shape factor of nanoparticles. Seyyedi et al. [31] examined the natural
convection heat transfer and entropy generation for hexagonal cavities with a magnetic field and
(Cu-H2O) nanoliquid. Dogonchi et al. [32] studied MHD nanofluid flow in parallel disks during a
suction/blowing process with radiation and viscous dissipation effects. Wakif [33] investigated a
steady 2D MHD convective flow of a radiative Casson fluid toward a horizontal stretching sheet.
Sandeep et al. [34] investigated the effect of nonlinear thermal radiation on MHD hybrid nanofluid
flow with a heat source. Salleh et al. [35] investigated the impact of a magnetic field across a
vertically moving thin needle in nanofluid. With MHD radiative nanofluid and stability analysis, the
researchers in [36] examined the boundary layer flow and heat transmission rate through a traveling
thin needle. Khan et al. [37] investigated magnetohydrodynamic thin film flow through a porous
stretching sheet by focusing on the impact of thermal radiation and viscous dissipation. Jawad et
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al. [38] discussed the analysis of hybrid nanofluid stagnation point flow over a stretching surface by
focusing on melting heat transfer. Ramzan et al. [39] investigated the effect of melting heat transfer on
the flow across a moving needle with a magnetic field. Kumar and Upreti [40] described the MHD
nanofluid flow across a thin needle by employing the Joule heating effect. The researchers in [41]
explored two-dimensional (2D) forced convective MHD nanofluid flow across a horizontally traveling
thin needle with viscous dissipation and a heat source or sinks. Hamid [42] used chemical reactions
and nonlinear thermal radiation to study the MHD Casson nanofluid flow along a vertically positioned
thin needle. The impact of the Darcy-Forchheimer flow for visco-elastic fluid across a thin needle was
explored by Raju et al. [43]. Using viscous dissipation, the researchers in [44] investigated the
formation of entropy for hybrid nanofluid flow across a needle. Nazar et al. [45] explored the hybrid
nanofluid flow of Au-TiO2 nanoparticles across a thin needle in the presence of thermal radiation and
magnetic field effects with duality solution and stability analysis. The rate of heat transfer on the
MHD Casson nanofluid toward a thin needle embedded in a porous medium with non-linear radiation
effects was explored by Akinshilo et al. [46]. The researchers in [47] studied dynamic control by
applying the HAM for nonlinear shallow water wave equations. Based on the stochastic arithmetic,
Noeiaghdam et al. [48] found optimal convergence control parameters in the HAM for integral
equations. In another work [49], the authors combined the HAM with Laplace transform method to
produce a new powerful method named the homotopy analysis transform method. They also
combined the HAM with Wazwaz’s regularization method to produce the homotopy regularization
method for solving integral equations (see [50]).

It is well known that perturbation and asymptotic approximations of nonlinear problems are often
broken down as nonlinearity becomes strong. Therefore, they are only valid for weakly nonlinear
ODEs and PDEs in general. The HAM is an analytic approximation method for highly nonlinear
problems; unlike perturbation techniques, the HAM is independent of any small/large physical
parameters at all. Second, different from all of the other analytic techniques, the HAM provides us a
convenient way to guarantee the convergence of the solution series so that it is valid even if
nonlinearity becomes rather strong. Besides, based on the homotopy of topology, it provides us much
freedom to choose the base functions, initial guesses and so on, so that complicated nonlinear ODEs
and PDEs can often be solved in a simple way.

In summary, the HAM has the following advantages and disadvantages:

• Independent of small/large physical parameters.
• Guarantee of convergence.
• Flexibility on choice of base function and initial guess.
• Great generality.
• It can always provide analytic approximation efficiently, but it does not give an exact solution.
• More convergence control parameters might give better approximation, but it needs much more

CPU time.

There are many publications dealing with heat transfer relating to nanofluid flow across a thin needle
in the above-mentioned and other related literature, but there is hardly any study of 2D boundary
layer MHD nanofluid flow across a horizontally moving thin needle with nonlinear thermal radiation.
Therefore, the current study aims to fill this gap. The novelty of this work is the study of the effects
of thermal radiation, a magnetic field, variable viscosity parameters, temperature ratio parameter and
thermal conductivity parameters on the MHD boundary layer flow of a nanofluid across a porous thin
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needle. To studies these effects we dissolved titanium dioxide (TiO2) in water to make (TiO2-H2O)
nanofluid. In the presence of viscous dissipation, the governing PDEs are described and are then
transformed into a system of nonlinear ODEs by using an appropriate similarity transformation. The
HAM algorithm is utilized to determine the solution of the modeled equations. To ensure that our
code is proper, we conducted a comparison study with several earlier findings. The study presented
here possesses step implementation in several engineering and industrial processes and is provides
responses to the following questions below:

1) How does the rate of heat transfer improve with the addition of titanium dioxide (TiO2) in the base
fluid water?

2) What is the behavior of the velocity and temperature profiles against the decreasing size of the
needle?

3) What is the behavior of the velocity and temperature profiles against the varying values of variable
viscosity and thermal conductivity parameters, respectively?

2. Physical description and mathematical modeling

In this section, we will present our problem in both physical and mathematical forms. Initially
the problem will be explained physically through a schematic diagram and then the obtained physical
descriptions will be modeled mathematically. The main physical quantities of this study are discussed
in the next subsection. Throughout this phenomenon, some relevant parameters will be encountered
that will be defined mathematically with a physical explanation in the conclusion part of this section.

2.1. Physical description of the problem

We consider a steady 2D boundary layer MHD nanofluid flow across a thin needle with nonlinear
thermal radiation. The thin needle flow is also considered to be laminar and viscous. The needle is
considered to be moving horizontally with uniform velocity uw in a uniform stream velocity u∞ as
illustrated in Figure 1. We assume that v(x, r) and u(x, r) are the components of the velocity along the
radial and axial directions, respectively. The constant wall temperature at the thin needle surface and
their corresponding ambient temperature are respectively, denoted by Tw and T∞, where T∞ < Tw. For
the given flow system, the radius of a thin needle is defined by

r = R(x) =
√

χυx
uc
, (2.1)

where χ represent the needle size and uc = uw + u∞ is the composite velocity. With a low Reynolds
number assumption (see [51]), a magnetic field with magnetic intensity B0 is applied, which eventually
results in the induced magnetic field being ignored. We further assume that the size of the needle is
thin as compared to the boundary layer thickness that forms over it, so that the pressure gradient of the
needle is neglected, while the impact of curvature in the transverse direction cannot be ignored.
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Figure 1. Geometry of the flow problem.

2.2. Mathematical modeling of the problem

Keeping in view all of the assumptions described in subsection (2.1), the governing boundary layer
equation of the nanofluid flow problem transforms as follows (see [52] and [53]):

∂
∂x (ru) + ∂

∂r (rv) = 0, (2.2)

u∂u
∂x + v∂v

∂r =
µ(T )
ρ f

[
1
r
∂u
∂r + ∂2u

∂r2

]
+ 1

ρ f

∂u
∂r

∂µ(T )
∂T −

υ f

k∗ u −
Cb

ρ f
√

k∗
u2 −

σB2
0

ρ f
u, (2.3)

and

u∂T
∂x + v∂T

∂r =
K(T )
ρCp

[
1
r
∂
∂r

(
r ∂T
∂r

)
−

16σsT 3
∞

3K(T )ke

1
r
∂
∂r

(
r ∂T
∂r

)]
+ 1

ρCp

(
∂T
∂r

)2 ∂K(T )
∂T +

µ(T )
ρCp

(
∂u
∂r

)2
+

σB2
0

ρCp
u2, (2.4)

subjected to the physical boundary conditions (BCs) given by

u = uw, v = 0, T = Tw, at r = R(x) and u→ u∞, T → T∞ as r → ∞. (2.5)

The thermal conductivity and kinematic viscosity of the nanofluid are respectively, denoted by K(T )
and µ(T ) and are defined as follows (see [54]):

K(T ) = K0

[
1 + δk

T−T∞
Tw−T∞

]
, µ(T ) =

ρυ f

1+δµ(T−T∞) . (2.6)

In Eqs (2.2) to (2.6), the velocity components in the radial and axial directions are given, respectively,
by v and u. Here ρ, uw, Cp, T , Tw, T∞, k∗, Cb, B0, u∞, δµ and δk represent the density, velocity of the
moving needle, specific heat, temperature, constant surface temperature, ambient temperature,
permeability of porous medium, drag coefficient, applied magnetic field, velocity outside the
boundary layer, variable viscosity and thermal conductivity parameter.

To convert the model described by Eqs (2.2) to (2.4) with the BCs in Eq (2.5), we shall use the
following set of similarity variables (see [55]):

η = ucr2

υx , ψ = υxF(η), Θ = T−T∞
Tw−T∞

. (2.7)
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After applying the Rosseland approximation, the heat flux is simplified as follows:

qr = −4σs
3ke

∂T 4

∂r , (2.8)

where σs is the Boltzman constant and ke is the mean absorption coefficient. Expanding T∞ by means
of the Taylor series and neglecting the higher-order terms, the preceding equation can be expressed in
the following form:

qr = −16σs
3ke

T 3
∞
∂T
∂r . (2.9)

The present study is streamlined, so ψ represents a stream function in Eq (2.7). Thus the flow
characteristic component for the proposed stream function are as follows:

u = 1
r
∂ψ

∂r , v = −1
r
∂ψ

∂x . (2.10)

After incorporating Eqs (2.7) and (2.10) with the relation given by Eq (2.6) into Eqs (2.2) to (2.4), we
obtain the following sets of ODEs after some simplification:[

2η
1+δµΘ

]
F′′′ + 1

1+δµΘ
(F′′ − 2ηF′′Θ) − 1

2 (M + k1)F′ − FrF′ + ηF′F′′ + FF′′ = 0, (2.11)

1+δkΘ

Pr

[
1 + 4Rd

3(1+δkΘ)

(
((1 + θr)Θ3)(ηΘ′)

)′]
+ 2ηΘ′F′ + 2Θ′F + 4

Pr (1 + δkΘ)ηΘ′
2

+16EcF′′
2
+ MEcF′

2
= 0.

(2.12)

The dimensionless form of the subjected BCs are given by

F(η) =
χε

2 , Θ(η) = 1, F′(η) = ε
2 at η = χ,

F′(η)→ 1−ε
2 , Θ(η)→ 0 as η→ ∞.

(2.13)

It should be noticed that the parameter ε = uw
uc

represents a significant characteristic for the flow system
which is described as (a) when ε = 0, then the needle is static and the fluid is moving; (b) when
ε = 1, then the needle is moving and the fluid is static; (c) when 0 < ε < 1, then the fluid and
the needle are moving in the same directions. Furthermore, in Eqs (2.11) to (2.13) we have various
emerging parameters which are present in Table 1 along with the mathematical description and physical
interpretation of each of them.

2.3. Skin friction and Nusselt number

The skin friction coefficient and the local Nusselt number for our flow system are expressed as
follows:

C f =
2µ(T )
ρ(uc)2 ur

∣∣∣∣
r=χ

, Nu = −xTr
Tw−T∞

+ qr

∣∣∣∣
r=χ

. (2.14)

Using Eq (2.7) in Eq (2.14), we have these physical quantities in dimensionless form as given below
(see [56]):

Re
1
2 C f =

8
√
χ

1+δµ
Fηη

∣∣∣∣
η=χ

, Re−
1
2 Nu = −2

√
χ
(
1 + 4

3(1+δkΘ)Rd
)

(((θr − 1)Θ)3 Θη)
∣∣∣∣
η=χ

. (2.15)

Here Re = xuc
υ f

denotes the Reynolds number.
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Table 1. Information of physical parameters.

Symbolic notations Mathematical description Physical interpretation

M σB2
0 x

ρ f uc
Magnetic parameter

k1
υ f x
k∗uc

Porosity parameter

Rd 4σsT 3
∞

ke
Radiation parameter

Fr
Cb x
√

k∗ρ f uc
Inertia parameter

ε uw
uc

Velocity ratio parameter
θr

Tw
T∞

Temperature ratio parameter
δµ δ∗µ(Tw − T∞) Variable viscosity parameter
Pr ρCpυ f

K0
Prandtl number

Re xuc
υ f

Reynolds number

Ec uc
2

Cp(Tw−T∞) Eckert number

Table 2. Thermophysical properties of TiO2 and H2O [57].

Thermophysical properties Titanium dioxide water
Cp (J/kg K) 686.2 4179
K (W/mK) 8.9538 0.613
σ (S/m) 2.6×106 5.5×10−6

β × 10−5(1/K) 0.9 21
ρ (kg/m3) 4250 997.1

3. Main idea of HAM

It is well known that nonlinear ODEs and PDEs for boundary value problems are much more
difficult to solve than linear ODEs and PDEs, especially by means of analytic methods. Traditionally,
perturbation and asymptotic techniques are widely applied to obtain analytic approximations of
nonlinear problems in science, finance and engineering. Unfortunately, perturbation and asymptotic
techniques are too strongly dependent upon small/large physical parameters in general, and thus are
often valid only for weakly nonlinear problems. Thus, it is necessary to develop some analytic
approximation methods, which are independent of any small/large physical parameters at all and valid
for strongly nonlinear problems. Therefore, in 1992, one of such kind of analytic approximation
methods was proposed by the author of [58], namely the HAM.

First of all, based on the homotopy of topology, the HAM is independent of any small/large physical
parameters at all. So, unlike asymptotic/perturbation techniques, the HAM can be applied to solve most
nonlinear problems in science, finance and engineering, especially those without small/large physical
parameters. Second, unlike all other analytical techniques, the HAM provides us a convenient way
to guarantee the convergence of the solution series so that it is valid for highly nonlinear problems.
Third, the HAM provides us much freedom to choose the auxiliary linear operator and base functions.
Using such kind of freedom, some complicated nonlinear problems can be solved in a much easier
way. Finally, the HAM logically contains the Lyapunov small artificial parameter method, Adomian
decomposition method, the δ-expansion method and the Euler transform. Thus, it has great generality.
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Let us first consider a nonlinear differential equation

N [u(x, t)] = 0, (3.1)

where N is a nonlinear operator, x is a vector of all spatial independent variables, t denotes the
temporal independent variable and u(x, t) is an unknown function, Liao [58] constructed a
two-parameter family of equations in the embedding parameter q ∈[0,1], called the zeroth-order
deformation equation

(1 − q)L [φ(x, t; q) − u0(x, t)] = ~qN [φ(x, t; q)], (3.2)

where L is an auxiliary linear operator, ~ is a non-zero auxiliary parameter, φ(x, t; q) is an unknown
function and u0(x) is an initial guess. At q = 0 and q = 1 we have

φ(x, t; 0) = u0(x, t), (3.3)

φ(x, t; 1) = u(x, t). (3.4)

As the embedding parameter q ∈[0,1] increases from 0 to 1, the solution φ(x, t; q) of the zeroth-order
deformation equation deforms from the initial guess u0(x, t) to the exact solution u(x, t) of the original
nonlinear differential equation N [u(x, t)] = 0. Such kind of continuous variation is called deformation
in topology, and this is the reason why we call Eq (3.2) the zeroth-order deformation equation. Since
φ(x, t; q) is also dependent upon the embedding parameter q ∈[0,1], we can expand it into Maclaurin
series with respect to q:

φ(x, t; q) ∼ u0(x, t) +
∑∞

n=1 un(x, t)qn, (3.5)

where
un(x, t) = 1

n!
∂nφ(x,t;q)

∂qn

∣∣∣∣
q=0

. (3.6)

Here, Eq (3.5) is called the homotopy-Maclaurin series of φ(x, t; q). Especially, we have at q = 1 the
homotopy series

φ(x, t; 1) ∼ u0(x, t) +
∑∞

n=1 un(x, t). (3.7)

If the above homotopy series is convergent to φ(x, t; 1), then according to Eq (3.4), we have the
homotopy series solution

u(x, t) = u0(x, t) +
∑∞

n=1 un(x, t), (3.8)

which satisfies the original equation N [u(x, t)] = 0, as proved by Liao in general. The governing
equation un(x, t) is completely determined by the zeroth-order deformation given by Eq (3.2).
Differentiating Eq (3.2) n times with respect to the embedding parameter q, then dividing by n! and
finally setting q = 0, we have the so called nth-order deformation equation

L [un(x, t) − χnun−1(x, t)] = ~Dn−1N [φ(x, t; q)], (3.9)

where
Dn−1 = 1

(n−1)!
∂n−1

∂qn−1

∣∣∣∣
q=0

, (3.10)

and

χn =

{
0, if n ≤ 1
1, if n > 1.

(3.11)

All of these high-order deformation equations are linear with respect to the unknown un(x, t), and thus
are easy to solve by means of a computer algebra system such as Mathematica, Maple and so on.
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4. HAM solution

Here, we will apply the well-known HAM for the solution of Eqs (2.11) and (2.12) with the BCs in
Eq (2.13). For this aim, we utilized the Mathematica software. The basic model equation through the
HAM is given below.

Linear operators in the HAM are found to be as follows:

LF̂(F̂) = F̂′′′, LΘ̂(Θ̂) = Θ̂′′, (4.1)

which have the subsequent applicability

LF̂(e1η
2 + e2η + e3) = 0, LΘ̂(e4η + e5) = 0. (4.2)

The nonlinear operators were chosen as NF̂ and NΘ̂.

NF̂

[
F̂(η; q), Θ̂(η; q)

]
=

[
2η

1+δµΘ̂

]
F̂ηηη + 1

1+δµΘ̂
(F̂ηη − 2ηF̂ηηΘ̂) − 1

2 (M + k1)F̂η − FrF̂η

+ηF̂ηF̂ηη + F̂F̂ηη,
(4.3)

NΘ̂

[
F̂(η; q), Θ̂(η; q)

]
= 1+δkΘ̂

Pr

[
1 + Rd

(1+δkΘ̂)

(
((1 + θr)Θ̂3)(ηΘ̂η)

)′]
+ 2ηΘ̂ηF̂η + 2Θ̂ηF̂

+ 4
Pr (1 + δkΘ̂)ηΘ̂2

η + 16EcF̂2
ηη + MEcF̂2

η .
(4.4)

The 0th-order deformation equations can be written as

(1 − q)LF̂

[
F̂(η; q) − F̂0(η)

]
= q~F̂NF̂

[
F̂(η; q), Θ̂(η; q)

]
, (4.5)

(1 − q)LΘ̂

[
Θ̂(η; q) − Θ̂0(η)

]
= q~Θ̂NΘ̂

[
F̂(η; q), Θ̂(η; q)

]
, (4.6)

with the BCs given by

F̂(η; q)
∣∣∣∣
η=χ

=
χε

2 , Θ̂(η; q)
∣∣∣∣
η=χ

= 1 ∂F̂(η;q)
∂η

∣∣∣∣
η=χ

= ε
2 ,

∂F̂(η;q)
∂η

∣∣∣∣
η=∞

= 1−ε
2 , Θ̂(η; q)

∣∣∣∣
η=∞

= 0.
(4.7)

Here q is the embedded parameter such that q ∈ [0, 1] in order to standardize the convergence of the
solutions of ~F̂ and ~Θ̂. Furthermore, we chose q = 0 and q = 1 so that

F̂(η; 0) = F̂0(η), Θ̂(η; 0) = Θ̂0(η), (4.8)

F̂(η; 1) = F̂(η), Θ̂(η; 1) = Θ̂(η). (4.9)

Developing the Maclaurin series for F̂(η; q) and Θ̂(η; q) at q = 0, we have

F̂(η; 0) = F̂0(η) +
∑∞

n=1 F̂n(η)qn, (4.10)

Θ̂(η; 0) = Θ̂0(η) +
∑∞

n=1 Θ̂n(η)qn, (4.11)

where
F̂n(η) = 1

n!
∂nF̂(η;q)
∂qn

∣∣∣∣
q=0

, Θ̂n(η) = 1
n!
∂nΘ̂(η;q)
∂qn

∣∣∣∣
q=0

. (4.12)
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The nth-order deformation equations are follows

LF̂

[
F̂n(η) − χnF̂n−1(η)

]
= ~F̂R

F̂
n (η), (4.13)

LΘ̂

[
Θ̂n(η) − χnΘ̂n−1(η)

]
= ~Θ̂R

Θ̂
n (η), (4.14)

with the BCs given by

F̂(η) =
χε

2 , Θ̂(η) = 1, F̂′(η) = ε
2 at η = χ, F̂′(η)→ 1−ε

2 , Θ̂(η)→ 0 at η = ∞, (4.15)

where

RF̂
n (η) =

[
2η

1+δµΘ̂

]
F̂′′′n−1 +

∑w−1
j=0

1
1+δµΘw−2− j

(F̂′′j − 2ηF̂′′j Θ̂w−1− j) − 1
2 (M + k1)F̂′n−1 − FrF̂′n−1

+η
∑w−1

j=0 F̂′w−1− jF̂
′′
j +

∑w−1
j=0 F̂′w−1− jF̂

′′
j ,

(4.16)

RΘ̂
n (η) =

∑w−1
j=0

1+δkΘ̂w−1− j

Pr

[
1 + Rd

(1+δkΘ̂w−2− j)

(
((1 + θr)Θ̂3

w−3− j)(ηΘ̂ j)
)′]

+ 2η
∑w−1

j=0 Θ̂′w−1− jF̂
′
j

+2
∑w−1

j=0 Θ̂′w−1− jF̂ j + 4
Pr (1 + δkΘ̂)ηΘ̂2

n−1 + 16EcF̂2
n−1 + MEcF̂2

n−1.
(4.17)

5. Results and discussion

In this section, we discuss the graphical interpretation of a steady 2D boundary layer MHD
nanofluid flow across a thin needle with nonlinear thermal radiation. The HAM algorithm has been
used to find the solution of the modeled equations. All of the calculation have been made over a wide
range of governing parameter values: χ = 0.2,0.1,0.01,0.001; δµ = 0.0,1.0,2.0,3.0; δk =

0.5,1.5,2.5,3.5; Ec = 1.0,2.0,3.0,4.0; ε = 0.0,0.3,0.6,0.9; Fr = 0.5,0.10,0.15,0.20; k1 = 0.1,0.2,2.0,3.0;
M = 0.1,0.2,0.3,0.4; Pr = 0.7,2.3,3.7,6.8; Rd = 0.4,0.6,0.8,1.0; θr = 1.0,1.3,1.6,1.9. In order to test the
correctness of the current method, our results were compared to those obtained in earlier studies (see
Ishak et al. [16] and Qasim et al. [52]) for various values of the needle size χ. Also, validation of the
current code has been carried out by computing the numerical result of Re

1
2 C f and Re−

1
2 Nu for

different values of δµ and δk. A comparison of analytical and numerical methods exist in the literature
(see [59]), therefore, we compared the HAM with the numerical method for the validity of our result.
The convergence of the 0th-order deformation as given by Eqs (4.5) and (4.6), wholly particular by the
secondary restrictions ~F , ~Θ. It is a choice in a way to control and converge the series solution. The
probability of ~ is represented by ~-curves for the 25th order approximated HAM solution. The
effective regions of ~ were -1.5< ~F <0.0 and -1.5< ~Θ <0.0. The convergence of the HAM by
~-curves was used for F′′(0) and Θ′(0) as shown in Figures 2 and 3.

5.1. Flow characteristics

In this subsection, we discuss the effects of various physical factors such as M, k1, Fr, δµ and χ

upon flow characteristics as shown in Figures 4–8. From Figure 4 we observe that the fluid flow
diminishes with increase in the magnetic field. Actually, applying the magnetic effect to a flow system
causes the Lorentz force that opposes the flow velocity and hence, any velocity decreases would
increase the magnetic parameter. Also the Lorentz force and viscous force is the ratio of hydro
magnetic as suggested by M, where a higher estimation of M shows a greater Lorentz force which,
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Figure 2. ~F-curve of F′′(0) when M = 0.1, Pr = 0.7 and Rd = 0.4.
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Figure 3. ~Θ-curve of Θ′(0) when M = 0.1, Pr = 0.7 and Rd = 0.4.

has the capability to slow down the flow characteristics. The variation of the porosity parameter
according to the fluid properties is illustrated in Figure 5. Enhancing the porosity reduced the
nanofluid velocity in the boundary layer region. It is important to note that from the appearance of an
increase in the value of k1, there was a reduction in the porous medium. Therefore, a small gap was
obtained for the fluid to flow and thus we find that the flow characteristics were reduced. The
nanofluid velocity for the inertia parameter is presented in Figure 6. It was discovered that, when the
rate of Fr increases, the velocity function decreases. Actually, porous gaps with larger pore sizes
increase viscous interference which causes a better flow resistance for greater estimation of Fr. Figure
7 illustrates the impact of a variable viscosity parameter upon the fluid properties. By increasing the
value of δµ, the fluid becomes thicker as the resistance between the boundary layer increases;
therefore, the velocity diminishes. Variation in the fluid velocity against various values of the size of
the needle is displayed in Figure 8. It was observed that when the rate of χ decreases, the velocity of
the fluid rises. Velocity was enhanced near the surface of the needle and decreased far away from it.

5.2. Thermal characteristics

In this subsection, we discuss the impact of Pr, Ec, θr, ε, Rd, δk and χ upon the thermal properties
as shown in Figures 9–15. The impact of Pr on the dimensionless temperature is examined in Figure
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Figure 4. Variations of F′(η) for several values of M.
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Figure 5. Variations of F′(η) for several values of k1.

9. The ratio of molecular diffusivity of momentum to the molecular diffusivity of heat demonstrated
the relative thickness of the momentum boundary layers to the thermal boundary layers. The rises in
the values of Pr decreases the fluid temperature. By enhancing the values of Pr, the thermal
conductivity of the fluid diminishes and, as a result, the heat transfer rate from the needle reduces.
Consequently, the thermal boundary layer and the fluid’s temperature decrease. The effect of Ec on
the fluid temperature is illustrated in Figure 10. The Ec parameter is a particular parameter that
should be created to determine a special type of situation such that the heat enhances for larger values
or reduces for smaller values. Here we have focused on the enhancing amount of Ec, and due to the
dissipation heat near the thin needle surface in fast-moving flow, the thermal boundary layer thickness
upsurges, which results in the temperature of the fluid increasing. The effect of θr on the fluid
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Figure 6. Variations of F′(η) for several values of Fr.

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

η

F
'(η

)

δμ = 0.0, 1.0, 2.0, 3.0

Ec = 0.4, k1 = 0.4, Pr = 0.7, δk = 0.3, χ = 0.1

Figure 7. Variations of F′(η) for several values of δµ.

temperature is illustrated in Figure 11. θr is the quotient of the wall temperature and the ambient
temperature. Larger estimation of θr indicates that the wall temperature is more stable than the
ambient temperature. Therefore, higher values of θr result in a rise in fluid temperature. Figure 12
shows that the fluid’s temperature and the thermal boundary layers upsurge by enhancing the values
of ε. The effects of Rd on the nanofluid temperature can be seen in Figure 13. In the case of high
radiation, more heat is conveyed to the nanofluid. Eventually, the augmented temperature in the case
of the nanofluid is witnessed. The influence of δk on the fluid’s temperature is illustrated in Figure 14
which exhibits an enhancement in the fluid’s temperature with the upsurges in the values of δk. It is a
well-known fact that a higher thermal conductivity fluid has a higher temperature, while a lower
thermal conductivity fluid has a lower temperature, that is, kinetic energy is transformed into thermal
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Figure 8. Variations of F′(η) for several values of χ.

energy more rapidly; hence more heat will be lost. The influence of χ on the fluid’s temperature is
depicted in Figure 15. Reductions is the size of the thin needle results in the reduction of the fluid’s
temperature.

0 1 2 3 4 5 6 7

-2

0

2

4

6

8

η

Θ
(η
)

Pr = 0.7, 2.3, 3.7, 6.8

Ec = 0.5, M = 0.7, ϵ = 0.4, δμ = 0.1, δk = 0.3, χ = 0.1,
Rd = 1.0

Figure 9. Variations of Θ(η) for several values of Pr.

5.3. Table discussion

In this subsection, we discuss the influence of different physical factors numerically upon Re
1
2 C f

and Re−
1
2 Nu. The mathematical descriptions and physical interpretations of some physical parameters

are listed in Table 1. The thermophysical properties of titanium dioxide and water are shown in Table
2. Comparisons of F′′(η), Re

1
2 C f and Re−

1
2 Nu for some values of the needle size, variable viscosity
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Figure 10. Variations of Θ(η) for several values of Ec.
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Figure 11. Variations of Θ(η) for several values of θr.

parameter and thermal conductivity parameter, respectively, are shown in Tables 3 and 4. Table 5
shows the respective influences of the velocity ratio parameter, the magnetic parameter, the porosity
parameter and the inertia parameter upon skin friction numerically. For increasing values of k1 and Fr,
the skin friction is seen to enhance. Also, due to increase in the resistive force and the corresponding
increase in the magnetic factor, the value of the skin friction increases. It is also revealed from this table
that the skin friction reduces for upsurged values of ε. The variation of different physical factors on
the Nusselt number is described numerically in Table 6 . The Nusselt number increases with increases
in the Eckert number and inertia parameter, but it falls with a higher Prandtl number and magnetic
parameter. Table 7 shows the numerical outcome of the HAM solution at dissimilar approximations
based on the use of different values of embedding parameters. It is seen from the table that the HAM
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Figure 12. Variations of Θ(η) for several values of ε.
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Figure 13. Variations of Θ(η) for several values of Rd.

method is a quickly convergent technique.

Table 3. Comparison with existing literature for F′′(η) when δµ = δk = 0.

F′′(η) when ε = 0.0 F′′(η) when ε = -1.0
χ Ishak et al. [16] Qasim et al. [52] Present Ishak et al. [16] Qasim et al. [52] Present
0.1 1.2888 1.2887 1.2878 3.7162 3.7037 3.7024
0.01 8.4924 8.4912 8.4907 26.6021 26.5994 26.5986
0.001 62.1637 62.1573 62.1492 197.2699 196.8878 196.7682
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Figure 14. Variations of Θ(η) for several values of δk.
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Figure 15. Variations of Θ(η) for several values of χ.

6. Concluding remarks and observations

In the current work, a steady 2D boundary layer MHD nanofluid flow with nonlinear thermal
radiation over a horizontally moving thin needle has been analyzed. The needle was inserted
horizontally in the nanofluid under certain physical conditions. The governing PDEs have been
transformed into a set of ODEs by employing a similarity transformation and solving the equations
together with the BCs by using the HAM in Mathematica software. An analytical approach has been
carried out for the current flow problem. The influence of several physical factors upon the flow and
thermal profiles has been discussed and illustrated by means of graphs. After the detailed analysis of
the current study, the following points were identified:
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Table 4. Comparison with existing literature for Re
1
2 C f and Re−

1
2 Nu.

Re
1
2 C f when χ = 0.1, ε = 0.4 and Ec = 0.5 Re−

1
2 Nu when χ = 0.1, ε = 0.4 and Ec = 0.5

δµ δk Qasim et al. [52] Present Qasim et al. [52] Present
0.0 0.6549 0.1404 1.7283 0.86083
0.2 0.6003 0.1046 1.7298 0.86088
0.3 0.5882 0.0909 1.7303 0.86090
0.4 0.5601 0.0791 1.7307 0.86092

0.0 0.5756 0.0910 1.9169 0.92876
0.2 0.5715 0.0909 1.7503 0.87973
0.3 0.5803 0.0907 1.6577 0.86090
0.6 0.5846 0.0905 1.4914 0.81864

Table 5. Impact of Re
1
2 C f when δµ = 0.3, χ = 0.1 and Pr = 0.7.

ε M k1 Fr Re
1
2 C f

0.1 0.1 0.3 0.1 0.63731
0.2 0.44124
0.3 0.24427

0.2 1.09767
0.4 1.12209
0.6 1.14718

1.0 1.21409
1.5 1.28491
2.0 1.35999

0.15 0.91346
0.20 0.99803
0.25 1.00037

• When the magnetic effect is applied to a flow system, it produces a Lorentz force that opposes the
flow system’s velocity which results in decreasing the flow characteristics.
• Decreases in the values of χ results in a reduction of the fluid’s temperature and augmentation in

the fluid flow.
• The velocity of the nanofluid reduces by enhancing the values of the porosity and variable

viscosity parameters.
• The velocity profile trends upwards when the rate of inertia parameter increases.
• With growth in the radiation parameter, the temperature ratio parameter, thermal conductivity

parameter, velocity ratio parameter and Eckert number, there is an upsurge in the temperature
field.
• The growing value of the Prandtl number reduces the fluid’s temperature.
• Skin friction is increased by increasing the magnetic, porosity and inertial parameters, whereas

an opposite effect is noticed by varying the velocity ratio parameter.
• The Nusselt number increases by enhancing the inertia parameter and Eckert number, whereas an

opposite effect is noticed by varying the Prandtl number and the magnetic parameter.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 14116–14141.



14136

Table 6. Impact of Re−
1
2 Nu when δµ = 0.3, χ = 0.001 and θr = 0.1.

Pr Ec Fr M Re−
1
2 Nu

0.7 0.5 0.1 0.4 0.08830
3.0 0.08877
6.3 0.08893

1.0 0.08196
1.5 0.07814
2.0 0.07432

0.3 0.08961
0.5 0.08617
0.7 0.08555

0.6 0.08585
0.8 0.08590
1.0 0.08694

Table 7. Convergence of HAM for n = 0 and n = 1 when δµ=δk = 0.3 and Pr = 0.7.

when n = 0 when n = 1
Order of
approximation

F′′(0) Θ′(0) F′′(0) Θ′(0)

1 1.46317 1.39317 -0.96027 -0.86937
5 1.43102 1.39246 -0.95318 -0.86415
10 1.42635 1.37157 -0.91240 -0.85360
15 1.42326 1.36295 -0.90635 -0.84415
20 1.42015 1.36054 -0.84163 -0.83061
25 1.40361 1.32001 -0.84125 -0.83005

• Existing results in the literature were compared with those of the present study.
• The tendency of the HAM to converge with the variation in physical parameters was examined

numerically.
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