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Abstract: Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and 
cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer 
treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic 
programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study 
analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. 
Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results 
of gene enrichment analysis confirmed the good prediction performance for enriched signatures in 
cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to 
construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, 
and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 
chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness 
inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were 
first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, 
mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators. 
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1. Introduction 

Cancer stemness refers to the stem-cell-like phenotypes, such as self-renew and differentiation, 
of cancer cells [1], which is a crucial property of cancer stem cells (CSCs) [2]. CSCs contribute to 
tumor initiation, progression, metastasis, and therapeutic resistance through stem cell programs [3,4]. 
In particular, the aberrant expression of central stemness transcription factors, such as NANOG, OCT4, 
KLF4, SOX2, and c-MYC, is associated with the initiation and progression of poorly differentiated 
aggressive human tumors [5]. KLF4 is involved in the brain metastasis of breast cancer stem-like 
cells [6]. MYC targeted CDK18-mediated PARP inhibitor resistance in glioblastoma by promoting 
ATR and homologous recombination [7]. Therefore, understanding and targeting cancer stemness 
might provide a significant cornerstone for the cancer therapy [8–12]. 

To better understand cancer stemness, it is necessary to identify stemness genes. The wet 
experiment is the most accurate way to identify stemness genes. Genetic manipulation using 
knockdown, knockout, and overexpression strategies are commonly used to discover stemness genes, 
contributing to identifying YAP/TAZ as glioblastoma stemness master [13], and Alk, Bclaf3, and Prkra 
as gastric stemness genes [14]. On the other hand, computational analysis provides a cost-effective 
alternative to exploring stemness genes via systematic investigation of omics data. The current 
computational strategies for predicting stemness genes mainly rely on transcriptome analysis [15–19] 
and epigenetic analysis [15]. Notably, mRNA expression-based (transcriptome level-based) stemness 
index shows a positive correlation with DNA methylation-based (epigenetic level-based) stemness 
index, and both indices show good correspondence for a majority of tumors [15]. Thus, information 
extracted from transcriptome data could greatly help stemness gene identification. Combined with 
known stemness markers, co-expression analysis on transcriptome data could further investigate gene-
stemness marker interaction, thus identifying novel stemness genes. 

Cancer and embryonic stem cells share genetic fingerprints [20]. Abundant signaling pathways 
overlap in cancer and embryonic stem cells [21]. Furthermore, more and more recent studies showed 
that embryonic stemness gene-coding proteins such as Oct4/Pou5f1 [22], Klf4 [23], Sox2 [24], Myc [25], 
and Nanog [26], also played regulatory roles in cancer stemness, which supported the possibility of 
mining embryonic stem cell data in identifying novel cancer stemness genes. 

Given these, we developed an approach called Transcriptome-based Stemness Regulator 
Prediction (TSRP), which integrated co-expression and regression analysis on embryonic stem cell 
data, and accurately predicted cancer stemness genes, regulators, and networks. 

2. Materials and methods 

2.1. Stemness markers curation 

In this study, we curated 21 well-known stemness markers from the Cell paper [15]. 

2.2. Transcriptome profiles for 73 different knockout and wildtype mouse embryonic stem cell lines 

We curated 319 samples from GSE145653 [27]. These mouse embryonic stem cell samples 
were cultured in either 2i (2i for two inhibitors, CHIR99021 and PD0325901) medium to maintain 
the naïve pluripotency state, or N2B27 medium to go through differentiation. Read counts obtained 
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from GSE145653 were normalized with the Trimmed Mean of M-values (TMM) method [28] using 
edgeR [29] for further analysis. 

2.3. Public RNA-seq data 

Dabrafenib data were downloaded from GSE162045 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162045), and the processed abundance 
values were used directly for gene set enrichment analysis (GSEA) [30]. Data of Rigosertib, Triptolide, 
and Chaetocin were downloaded from GSE149737 [31], GSE157927 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157927), and GSE97215 [32], 
respectively. The downloaded count data were then normalized with the TMM method as described 
above for GSEA. Proscillaridin A data were downloaded from GSE89154 [33], and the processed 
expression values were used directly for GSEA. 

2.4. Differentially expressed genes following small molecule perturbation 

The “LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules” 
dataset, consisting of 31,028 differentially expressed downregulated gene sets by small-molecule 
perturbation, was curated from the Harmonizome database [34,35]. 

2.5. Stemness marker clustering 

Since different stemness markers could regulate stem-like features through different pathways, 
we investigated the co-expression relationship among these markers. Pearson correlation coefficient 
(Pcc) was computed using Eq (1) for each pair of makers: 

 
,

cov ,

i j

i j

i j
v v

v v
Pcc

 
                                                (1) 

Here, with vi and vj as the vector containing expression values of marker i and j under all conditions. Then, 
K-means clustering was conducted to group these 21 stemness markers into three clusters. Stemness 
owns the ability of a cell to perpetuate its lineage, and the adult mammalian organs are developed from 
three lineages during embryogenesis [2]. Thus, we set the K as three in the present study. 

2.6. Transcriptome-based stemness regulator prediction (TSRP) 

The TSRP prediction algorithm was divided into two parts, namely stemness gene prediction and 
stemness inhibitor prediction. The stemness gene prediction algorithm consists of two steps. In step 
one, 21 known stemness markers and transcriptome data were used as input, and the correlation of a 
new gene with all 21 known stemness markers was evaluated by StemScore (Stemness Score). In step 
two, high correlation genes with StemScores passing the threshold were predicted as stemness genes. 
When a gene is correlated with different groups of stemness markers, we use a regression forecasting 
model to determine whether the gene is a potential stemness gene. In detail, the StemScore of a new 
gene x, which is not included in the list of 21 stemness markers, was computed with the overall effect 
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on known marker genes by the following formulas (Eqs (2)–(5)): 
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Here, clusters 1–3 were defined by the above clustering analysis. Scorec1,x, Scorec2,x, and Scorec3,x 
represent relevance scores of the gene x with three clusters, respectively. The relevance scores were 
further weighted by a, b, and c to comprehensively consider their relevance with three maker clusters. 
To obtain a, b, and c, we solved the following matrix equation (Eq (6)) of 21 known stemness markers: 
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We assigned StemScore 1, 0, and -1 to three clusters of 21 known stemness markers. For stemness 
markers in the same cluster, they were assigned the same score. In addition, the Pcc of a known 
stemness marker with itself was assigned to 0. We changed the order of assigned StemScores, and 
different sets of [a b c] were calculated to evaluate the prediction errors using L1-Norm distances 
between predicted and assigned StemScores. When the model achieved the lowest average prediction 
error, the used set was taken for the following study. 

After obtaining the StemScore for each gene, these genes were divided into two groups, namely 
genes with StemScore large than 0 or small than 0. For each group, z-score normalization was used, 
and genes with z-score large than 1.65 or small than -1.65 were predicted as stemness genes. 

2.7. Stemness gene prediction evaluation 

To evaluate the performance of stemness gene prediction algorithm, we computed the overlap 
between the predicted stemness genes with curated chemical and genetic perturbation gene sets in 
MsigDB using the “Investigate Gene Sets” function [36]. 
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2.8. Stemness inhibitor prediction of TSRP 

To further predict the stemness inhibitors, we compared the overlap between differentially 
expressed downregulated genes by a small molecule perturbation and the stemness marker gene set. 
The hypergeometric test was used to test whether the perturbated genes were enriched with stemness 
markers, and p-value was obtained using the following formula (Eq (7)): 
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N is the array size, n is the number of perturbated genes, m is the number of stemness marker gene 
sets, k is the number of perturbated genes with the annotation as the stemness markers. 

The p-value was further adjusted using a two-stage step-up method of Benjamini, Krieger and 
Yekutieli in Prism (version 9) to obtain a q-value. Only chemicals with a q-value less than 0.05 were 
used for the following analysis. For stemness inhibitor-like chemical prediction, the ratio of targeting 
stemness markers in downregulation signature was required to be larger than 0.1. For stemness 
inducer-like chemicals, the percentage of targeting stemness markers in the upregulation signature was 
required to be larger than 0.1. Then, we removed the overlapped chemicals from each group to obtain 
predicted stemness inhibitors and inducers, respectively. 

2.9. Drug combination prediction of TSRP 

For all predicted stemness inhibitors, they were randomly combined into two-inhibitor 
combinations. The signature for the combination was the union of downregulation signatures from 
both drugs. Then, we calculated the p-value for enrichment significance of stemness marker genes in 
the combination signature and the ratio of targeting stemness markers in the combination signature. 
Only combinations with ratio > 0.05 and p-value < 0.05 were used for following analysis. Next, we 
removed the drug combinations that either had repeated mechanisms of action (MOA) or unknown MOA 
since drugs from most synergistic drug combinations target different targets [37], and the combinations 
that passed the above requirements were predicted as stemness inhibitor drug combinations. 

2.10. The overall workflow 

TSRP employed co-expression analysis on prior knowledge of stemness markers and 
transcriptome data to predict different clusters of stemness genes. Furthermore, perturbation signatures 
of small molecules were used to select monotherapy and drug combinations based upon enrichment 
analysis (Figure 1). 
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Figure 1. The overall workflow of TSRP. 

3. Results 

3.1. Three stemness marker clusters 

We obtained a list of 21 stemness markers as defined previously in cancer and stem cells [15]. A 
gene co-expression analysis combined K-means clustering using RNA-seq data [27] in mouse 
embryonic stem cells identified three clusters (Figure 2A, the reason we chose three was described in 
the Method section). The first cluster (cluster 1) consisted of five genes, namely Nanog, Sox2, Klf4, 
Zfp42, and Notch1; the second cluster (cluster 2) consisted of seven genes, namely Cd44, Bmi1, 
Zscan4c, Cd34, Nes, Prom1, and Twist1; the third cluster (cluster 3) consisted of nine genes, namely 
Kdm5b, Pou5f1, Ctnnb1, Lgr5, Epas1, Myc, Abcg2, Ezh2, and Hif1a (Figure 2A). Based on these 
three clusters, we tried to find stemness genes similar to one of them. The co-expression analysis on 
stemness markers (Figure 2A) indicates that it may be excluded or likely to exhibit properties of the 
other two types of stemness genes when a stemness gene is similar to one of these three types. Such a 
situation may lead to genes (such as Prom1, as also indicated by the ward. D2 clustering result, Figure 
A1) located at the cluster’s boundary. Therefore, we designed a simple regression formula (Eq (2)). 
The weights a, b, and c can be used to reflect this and help find these stemness genes that may locate 
at boundaries. To further understand the biological roles of the co-expressed genes of the above three 
clusters, we performed cell type enrichment analysis using Enrichr [38]. For cluster 1, the top 200 
(around 1% of all genes) co-expressed genes (correlation coefficient ranged from 0.734 to 0.812, 
Figure 2B and Table S1) were enriched with cell type terms like gastrointestinal and intestinal cancer 
stem cells (Figure 2C and Table S2). Indeed, Notch1 from cluster 1 (Figure 2A) has been shown to 
play important roles in the gastric and intestinal stem cells [39]. The top 200 co-expressed genes of 
cluster 2 (correlation coefficient ranged from 0.449 to 0.540, Figure 2B and Table S1) were enriched 
with cardiovascular progenitor and tumor-propagating cell genes (Figure 2D and Table S2). The top 200 
co-expressed genes of cluster 3 (correlation coefficient ranged from 0.437 to 0.516, Figure 2B and 
Table S1) were enriched with neural stem cell and pluripotent stem cell genes (Figure 2E and Table 
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S2). Overall, the above results perfectly reflect the stemness feature difference originating from three-
lineage differentiation in embryogenesis. Of note, all these three groups were enriched in tumor-
propagating cells (Figure 2F), which are well known for their role in delivering cancer stemness [40–43]. 

 

Figure 2. Three stemness marker clusters. (A). Clustering of 21 stemness markers; (B). Co-
expressed genes of three stemness marker clusters; (C). Cell types enriched by cluster 1 co-
expressed genes; (D). Cell types enriched by cluster 2 co-expressed genes; (E). Cell types 
enriched by cluster 3 co-expressed genes; (F). Veen diagram of cell types enriched by three 
groups of co-expressed genes. 

3.2. Stemness gene prediction with TSRP 

We trained a regression model based on the above-calculated co-expression relationships to 
obtain the group information of predicted stemness genes (see Methods for details). Briefly, we 
assigned StemScores 1, 0, and -1 to represent three groups as indicated above, and then compared 
three models with StemScores set as below: model 1:0 for cluster B, and either 1 or -1 for cluster 
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A/C (Figure 3A left part); model 2:0 for cluster A, and either 1 or -1 for cluster B/C (Figure 3A middle 
part); model 3:0 for cluster C, and either 1 or -1 for cluster A/B (Figure 3A right part). With the L1-
Norm distance to evaluate the model prediction performance, model 1 was shown to have the lowest 
prediction error (Figure 3A). This model was used for the following prediction. With model 1, each 
gene’s StemScore (see Method for detail) was calculated and normalized into a z-score. The absolute 
z-score reflects a gene’s relatedness to stemness. After the filtering with absolute z-score > 1.65 
(equivalent to obtaining genes with confidence level high than 90%), 242, 280, and 298 genes were 
predicted as cluster 1, cluster 2, and cluster 3-like stemness genes, respectively (Figure 3B,C and Table 
S3). To evaluate the predicted stemness genes, enrichment analysis was conducted to compare the 
overlap between predicted genes and upregulated genes in stem cell vs. non-stem cell samples using 
the “Investigate Gene Sets” function from the MsigDB website (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). As expected, stemness-related gene sets were enriched by all three 
predicted cluster-like stemness genes (Figure 3D–F, see the detailed description of these data sets in 
Table S4–S6). The above results suggest good prediction performance of the TSRP approach in 
predicting stemness genes. 

 

Figure 3. Stemness gene prediction and bioinformatic validation. (A). Evaluation of 
different regression models; (B). Prediction of cluster 1 and 2-like stemness genes; (C). 
Prediction of cluster 3-like stemness genes; (D–F). Enriched gene signature terms by 
predicted cluster 1 (D), 2 (E), 3 (F) -like stemness genes. 
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3.3. Stemness inhibitor and inducer prediction via TSRP 

 

Figure 4. Stemness inhibitor prediction and validation. (A). Prediction of inhibitor-like 
chemicals by Transcriptome-based Stemness Regulator Prediction (TSRP); (B). Prediction 
of inducer-like chemicals by TSRP; (C). Overlap of predicted inhibitor- and inducer-like 
chemicals in B and C; (D). Reduced stemness signatures enriched by Dabrafenib, 
Rigosertib, Triptolide, and Proscillaridin A. NES for the normalized enrichment score in 
the gene set enrichment analysis. 

To further test whether TSRP could identify the chemicals that can downregulate or upregulate 
stemness markers, we collected the “LINCS L1000 CMAP Signatures of Differentially Expressed 
Genes for Small Molecules” dataset from the Harmonizome database [34,35], which was then used for 
the prediction using TSRP. As a result, we predicted 118 stemness inhibitor-like chemicals (Figure 4A) 
and 203 stemness inducer-like chemicals (Figure 4B). The overlapped (i.e., both inhibitor as well as 
inducer; n = 51) chemicals were then removed, resulting in 67 predicted stemness inhibitors (Table S7) 
and 152 predicted stemness inducers (Table S8, Figure 4C). To evaluate the prediction performance, 
we searched the literature for above 67 predicted stemness inhibitors and only assigned a “TRUE” 
label for those that had been confirmed by published literature. Literature evaluation showed that 52 
out of 67 chemicals had been validated as potential stemness inhibitors (Table S7). On the other hand, 
we found that a lot of phase 2 or 3 trial and approved drugs were predicted as stemness inducers, 
including seven glucocorticoid receptor agonists (Budesonide, Fluocinonide, Diflorasone Diacetate, 
Fluorometholone, Medrysone, Desoximetasone, and Prednicarbate), two mTOR inhibitors (Dactolisib, 
and Sapanisertib), two histone deacetylase inhibitors (Mocetinostat and Entinostat), and two 
MAPKK1/2 (MEK1/2) inhibitors (CI-1040 and Selumetinib). Following literature support, 
glucocorticoid receptor agonists [44–46], mTOR inhibitors [47,48], HDAC inhibitors [49], and MEK 
inhibitors [50] did show potential roles in enhancing the stemness. To prove that the identified drugs 
target stemness, we further mined the 67 predicted stemness inhibitors in the GEO database to collect 
available RNA-seq data of drug treatment and corresponding untreated control transcriptional profiles. 
We collected data for Dabrafenib, Rigosertib, Triptolide, Chaetocin, and Proscillaridin A. GSEA was 
conducted to compare drug-treated vs. untreated profiles. Four (Dabrafenib, Rigosertib, Triptolide, 
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and Proscillaridin A) out of the five above drugs investigated showed reduced stemness signature 
(Figure 4D). More importantly, Rigosertib and Proscillaridin A were first suggested by our study to 
inhibit the stemness of melanoma and colon cancer, respectively. Overall, TRSP performed very well 
in predicting the chemical inhibitors and inducers for stemness and thus shows its usability as a tool 
for investigating the relatedness of certain chemicals with stemness. 

3.4. Stemness inhibitor combination design via TSRP 

Monotherapy may be limited in its effectiveness, but drug combinations are supposed to 
overcome drug resistance and induce a more durable response in patients [37]. We, therefore, used the 
TSRP approach to identify whether this approach could be used to predict the outcomes of chemical 
combinations. We used the LINCS dataset [34] and performed chemicals-combinatorial analysis and 
monitored which chemical combinations mostly affected the expression of stemness genes. We 
identified 52 chemical combinations that affected the expression of stemness genes the most (Figure 5A). 
Next, we removed the drug combinations that either had repeated mechanisms of action (MOA) or 
MOA was unknown since drugs from most synergistic drug combinations target definite targets [37] 
and obtained 31 stemness inhibitor drug combinations (Figure 5B, Table S9). 14 out of these 31 
combinations (45%) had the theoretical support from literature where one drug could help to overcome 
drug resistance of the second drug (Table S9). For example, the TSRP identified a combination of 
EGFR inhibitor (Allitinib) with SRC inhibitor (Bosutinib). The previous finding supports that the SRC 
inhibitor can overcome the EGFR inhibitor resistance in lung cancer cells [51,52]. Similarly, the TSRP 
identified a combination of B-raf inhibitor (Dabrafenib) and SRC inhibitor (Bosutinib), which is also 
supported by the finding that inhibiting SRC family kinase signaling overcomes BRAF inhibitor 
resistance in melanoma [53]. Furthermore, the combinatorial effects from the drug-combination 
analysis also reveal the common stemness gene targets of both drugs compared with monotherapy 
(Figure 5C,D). Taken together, TSRP can help rationally design drug combinations and reveal 
potential mechanisms for combating cancer stemness. 

 

Figure 5. Stemness inhibitor combination prediction and validation. (A). Prediction of 
stemness inhibitor combinations by TSRP; (B). Filtering strategy in the combination 
prediction of TSRP; (C,D). The potential mechanism of combination Allitinib+Bosutinib 
(C) and Dabrafenib+Bosutinib (D) in combating drug resistance. 
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3.5. MCF-7 stemness network 

 

Figure 6. MCF-7 stemness network. The network is visualized by the Cytoscape software. 
Red nodes for significantly upregulated genes, green nodes for significantly 
downregulated genes, and grey nodes for no significantly changed genes. Two 
subnetworks, as indicated by arrows, are identified for connecting red nodes. 

Using the 820 predicted stemness genes and 21 known marker genes, we took coding proteins of 
these genes as input of STRING database [54]. From the database, we extracted high confidence 
protein-protein interactions (PPIs) with combined scores (defined by STRING database) > 0.7 and 
constructed a stemness PPI network consisting of 427 proteins and 937 PPIs (Figure 6 and Table S10). 
We mapped transcriptional profiles (GSE182532 [55]) of MCF-7-derived mammospheres and parental 
breast cancer cells onto the above network, and only significantly changed genes (log2FC > 1 or < -1, 
p-value < 0.05, and FC for fold change of expression values in mammospheres vs. parental cells) were 
mapped with colors using Cytoscape [56] (red for upregulation, and green for downregulation). The 
network showed a global upregulation of stemness genes with the network stemness score, namely the 
average log2FC of all significantly changed genes, increased to 0.786 while the baseline score is 0. To 
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further identify key stemness regulators in the MCF-7 stemness network, we extracted subnetworks 
consisting of more than four proteins. As a result, two subnetworks of significantly upregulated 
stemness gene-coding proteins were identified but 0 for significantly downregulated stemness gene-
coding proteins (Figure 6). CD44, SOX2, TWIST1, and DLG4 have more than two interactions with 
other upregulated stemness partners (Figure 6) and were suggested as key regulators in breast cancer 
stemness. In line with the above speculation, previous studies have demonstrated the roles of CD44 [57], 
TWIST1 [58], SOX2 [59] in promoting breast cancer stemness. There is no published report for DLG4 
in breast cancer stemness, which might need more exploratory studies. Therefore, the case study 
provides a good example of our predicted genes to study cancer stemness. 

4. Discussion 

Cancer stemness plays roles in metastasis, recurrence, and resistance to treatment, and targeting 
stemness has been proposed as a promising approach for the complete treatment of cancer [4,11,12,60,61]. 
However, cancer stemness is not governed by a single gene or pathway but by a complex network [12]. 
Thus, it is necessary to uncover the components within the network systematically. In this study, we 
explored the usage of embryonic stem cell data in identifying stemness genes. We further mapped 
transcriptome data of breast cancer to these genes to construct a breast cancer stemness network as a 
case study, thus identifying critical regulators for cancer stemness regulation. 

With the urgent need to develop therapies for combating cancer stemness, we further provide a 
computational strategy to predict stemness inhibitors that can significantly combat but not enhance 
stemness markers at the transcriptome level. Meanwhile, the strategy can exclude potential stemness-
inducing chemicals for identifying true stemness inhibitors. On the other hand, the current strategy 
might overlook some stemness-related chemicals due to their interactions with unknown stemness 
markers. Considering the advantage of combinatorial drugs in enhancing efficacy and reducing drug 
resistance induced by monotherapy, we provided a computational strategy to design stemness inhibitor 
combinations. In this strategy, we comprehensively investigate the ratio of downregulated stemness 
markers by two drugs compared to single drugs to priorate drug combinations. Thus, TSRP can 
simultaneously predict monotherapy and combination therapy, while most prediction approaches focus 
on either one [62–65]. TSRP can predict therapeutic drugs with good accuracy and owns the potential 
in unrevealing mechanisms, which is comparable with our previously developed drug repositioning 
approach, namely causal inference-probabilistic matrix factorization (CI-PMF) [66]. However, the CI-
PMF approach can only be applied to drugs with known target records. In terms of this, TSRP can be 
easily used on chemicals with transcriptome data, even for chemicals without a clear mechanism of 
action, such as in Traditional Chinese Medicine. In summary, the TSRP approach allows predicting 
stemness genes and discovering stemness inhibitors for combating cancer stemness. 

In the present study, we only chose the 21 known stemness markers that contribute to normal and 
cancer cells’ stemness [15]. In addition to these known stemness markers, targets reported with 
stemness-promoting roles can also be used, which might lead us to find novel stemness genes. Also, 
more advanced clustering, classification, and regression models, such as DBSCAN [67], Gaussian 
mixture model [68], BIRCH [69], SVM [70], Multinomial Logistic Regression [71] could be tested on 
larger-scale data sets to get a better stemness gene prediction performance. In addition, for the drug 
combinations study, drug-drug interactions are not considered. We would like to improve our approach 
further to incorporate the drug-drug interaction information and more comprehensive stemness 
markers to improve the prediction performance in our future work. 
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Appendix 

 

Figure A1. The heatmap of 21 stemness markers. The co-expression matrix is used for 
clustering 21 markers using the ward. D2 method. The clustering results are compared with 
K-means clustering, as shown by clusters 1–3. Nes and Prom1 are located at the boundary 
of cluster 2. 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


