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Abstract: Biological sequence analysis is an important basic research work in the field of 
bioinformatics. With the explosive growth of data, machine learning methods play an increasingly 
important role in biological sequence analysis. By constructing a classifier for prediction, the input 
sequence feature vector is predicted and evaluated, and the knowledge of gene structure, function 
and evolution is obtained from a large amount of sequence information, which lays a foundation for 
researchers to carry out in-depth research. At present, many machine learning methods have been 
applied to biological sequence analysis such as RNA gene recognition and protein secondary 
structure prediction. As a biological sequence, RNA plays an important biological role in the 
encoding, decoding, regulation and expression of genes. The analysis of RNA data is currently 
carried out from the aspects of structure and function, including secondary structure prediction, 
non-coding RNA identification and functional site prediction. Pseudouridine (У) is the most 
widespread and rich RNA modification and has been discovered in a variety of RNAs. It is highly 
essential for the study of related functional mechanisms and disease diagnosis to accurately identify 
У sites in RNA sequences. At present, several computational approaches have been suggested as an 
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alternative to experimental methods to detect У sites, but there is still potential for improvement in 
their performance. In this study, we present a model based on twin support vector machine (TWSVM) 
for У site identification. The model combines a variety of feature representation techniques and uses 
the max-relevance and min-redundancy methods to obtain the optimum feature subset for training. 
The independent testing accuracy is improved by 3.4% in comparison to current advanced У site 
predictors. The outcomes demonstrate that our model has better generalization performance and 
improves the accuracy of У site identification. iPseU-TWSVM can be a helpful tool to identify У sites. 

Keywords: pseudouridine sites; twin support vector machine; max-relevance and min-redundancy; RNA 
 

1. Introduction 

Various chemical modifications, including cytosine modification, uridine isomerization, and 
adenosine methylation, have been found in cellular RNA [1] and have been linked to important 
biological and physiological functions in cells [2]. У modification is a common posttranscriptional 
RNA modification known as the fifth base in RNA [3]. It is commonly present in a variety of species, 
and research has revealed that tRNA and rRNA contain large amounts of it [4]. Numerous biological 
processes have shown У to be crucial, and distinct У modifications serve different purposes at 
various places [5–7]. Therefore, the discovery of У sites in RNA sequences is crucial for both 
fundamental and applied biological research. 

Initially, researchers identified У modification sites based on biochemical experiments. At first, 
researchers used paper chromatography to find У modification sites in the RNA of yeast, which was 
achieved by using RNA decomposition enzymes to decompose RNA and electrophoresis to separate 
out column chromatography on the upper layer of paper [3–8]. Later researchers successively used 
high-performance liquid chromatography and mass spectrometry to detect modification sites [9]. 
With the growing interest in this field, researchers have proposed a variety of high-throughput 
sequencing technologies, including Ψ-seq [10,11], PseudoU-seq [12] and CeU-Seq [13], and 
successfully used them to detect У sites. However, the methods described above are reliant on 
time-consuming, expensive, and difficult biochemical experiments, which are susceptible to 
environmental factors, and the sequencing process becomes increasingly difficult as the sequence 
length increases. Therefore, robust, fast, and inexpensive calculation methods are needed to predict 
У sites in RNA sequences. 

First, Panwar and colleagues proposed a tRNAmod model to predict У sites in tRNA [14]. Then, 
a web server (PPUS) based on support vector machine (SVM) was proposed by Li et al. to identify У 
sites in S.cerevisiae and H.sapiens [15]. The frequency composition of nucleotides and the pseudo 
K-tuple nucleotide composition (PseKNC) were merged for feature representation in the iRNA-PseU 
model that Chen et al. created [16]. Subsequently, He et al. developed the SVM model (PseUI) to 
identify У sites in H.sapiens, S.cerevisiae and M.musculus, which combined a variety of feature 
extraction techniques including position-specific dinucleotide propensity (PSDP) [17]. Later, 
utilizing convolutional neural networks, Tahir et al. created a predictor (iPseU-CNN) [18]. Extreme 
gradient boosting (XGboost) was used by Liu et al. to create a new model known as XG-PseU [19]. 
Lv et al. also proposed a method called RF-PseU, which utilizes the LGBM algorithm for feature 
selection while combining the random forest algorithm for classification [20]. Saad et al. proposed a 
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convolutional neural network model MU-PseUDeep [21], which combines sequence and secondary 
structural features to predict У sites. Li et al. built the model Porpoise by utilizing multiple type 
features and inputting them into the stacked ensemble learning framework [22]. Although the 
aforementioned techniques have proven successful in correctly identifying У sites in RNA sequences, 
they might still use more work in comparison to high-performance predictors [23–28]. 

In this study, we build a У site identification model (iPseU-TWSVM) based on TWSVM, and 
Figure 1 depicts the model construction process. The model combines multiple feature representation 
methods, including Kmer, ENAC and EIIP. To obtain the best subset of features, the mRMR 
approach is utilized. The model is then evaluated using 10-fold cross-validation (10-CV) and 
independent testing (I-testing). The average I-testing accuracy of the iPseU-TWSVM is 3.4% higher 
than that of current advanced predictors, demonstrating the better generalization performance of our 
model. Therefore, iPseU-TWSVM may become an effective tool for У site identification. 

 

Figure 1. The flowchart of iPseU-TWSVM. 

2. Materials and methods 

2.1. Datasets 

In this work, we train and evaluate our models using datasets created by Chen et al. [29]. The 
steps of constructing the benchmark dataset were as follows: 1307 positive samples and 33,280 
negative samples were obtained at first, and then the subset-balancing treatment was adopted to 
reduce the number of negative samples according to Euclidean distance. The obtained distance 
values were sorted in ascending order, and the first 1307 negative samples were selected to form the 
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negative subset. The training datasets contained data from three species, namely, H.sapiens, 
S.cerevisiae and M.musculus. The H.sapiens training dataset included 495 positive samples and 495 
negative samples; the S.cerevisiae dataset included 314 positive samples and 314 negative samples; 
and the M.musculus dataset included 944 samples, half of which were positive samples. There were 
just two species in the I-testing datasets: H.sapiens and S.cerevisiae. Each of them included 200 
samples, of which only half were positive and half were negative. 

2.2. Feature extraction 

Different types of features reflect biological significance from different perspectives, including 
sequence composition and physicochemical properties. In this work, a variety of types of features are 
used to comprehensively consider the composition, distribution and physicochemical properties of 
nucleotides in the sequence from various aspects to further improve the prediction performance of 
subsequent work. 

2.2.1. Kmer 

One effective technique for extracting RNA sequence characteristics is Kmer, which reflects the 
frequency of k adjacent nucleotides in the sequence. The frequencies of the k-neighboring 
nucleotides are used to generate the feature vector [30]. The method is provided by the web server 
Pse-in-One2.0 (http://bioinformatics.hitsz.edu.cn/Pse-in-One2.0/) [31]. 

2.2.2. PC-PseDNC-General 

The approach offers 22 different physicochemical properties to create the pseudo-dinucleotide 
composition [32–34]. It overwrites the local sequence order and the global sequence order 
information into the feature vector. The relevant features are expressed in this form: 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑚 𝑚 ⋯ 𝑚 𝑚 ⋯ 𝑚                                                  (1) 

with 

𝑚
∑ ∑

                      1 𝑖 16

∑ ∑
     16 1 𝑖 16 𝜆

                                  (2) 

where 𝑞 𝑖 1,2, ⋯ ,16   represents the 16 dinucleotides’ normalized frequency of occurrence; 
𝛼 0 𝛼 1  is the weight factor; and 𝜆 is the highest counted rank. 𝜌   is the k-tier correlation factor. 

𝜌  displays the relationship between the sequence orders of all neighboring dinucleotides along 
a specific RNA sequence, which can be written as  

𝜌 ∑ 𝐶 𝑅 , 𝑅   𝑘 1,2, ⋯ , 𝜆; 𝜆 𝑙 1                             (3) 

where 𝐶 𝑅 , 𝑅  indicates the correlation function expressed as  
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𝐶 𝑅 , 𝑅 ∑ 𝑃 𝑅 𝑃 𝑅                                                    (4) 

where parameter 𝜎 is the number of physicochemical properties studied; 𝑃 𝑅  and  𝑃 𝑅  are 
the related values of the gth property for the dinucleotides 𝑅  at position j and 𝑅  at position j+k. 

2.2.3. Nucleotide chemical properties (NCP) 

The coding method reflects that each nucleotide in the sequence has different chemical 
structures and binding properties. The ring structures of the four RNA nucleotides (ACGU) differ 
from one another, hydrogen bond, and functional group. Based on these differences, they may be 
represented with a 3D coordinate [35]. 

2.2.4. Accumulated nucleotide frequency (ANF) 

The method incorporates data on each nucleotide’s distribution in the RNA sequence as well as 
its frequency [35]. We can calculate the density 𝑑  of an RNA sequence’s ith prefix subsequence. It is 
defined as  

𝑑 ∑ 𝑓 𝑥 ,   𝑤ℎ𝑒𝑟𝑒 𝑓 𝑥  
1,   𝑖𝑓 𝑥  𝑥
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (5) 

where 𝑖 is the length of the sliding string and 𝑥  represents the nucleotide at the jth position. 

2.2.5. Electron-Ion Interaction Pseudopotentials (EIIP) 

The EIIP values represent the energy of the delocalized electron in the nucleotide. The nucleotides 
in the DNA sequence have previously been denoted by the EIIP values of A, G, C and T [36]. In the 
RF-PseU method [20], each nucleotide in an RNA sequence was also coded by EIIP feature vectors. 

2.2.6. Enhanced Nucleic Acid Composition (ENAC) 

Using a fixed length window, the approach was used to determine the nucleotide 
composition [20,35]. Afterward, RNA sequences were converted into equally long feature vectors. 
Sequence length and sliding window size are two factors that affect the dimension of ENAC coding. 

𝐸 𝑏 , 𝑏 , ⋯ , 𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑏  , 𝑖 ∈  𝐴, 𝐶, 𝐺, 𝑈                                      (6) 

where N is the sliding window size and n is the coding dimension. 

2.2.7. Nucleotide binary profiles (NBP) 

Binary profiles provide the position specific composition of nucleotides in RNA fragments [35,36]. 
A four-digit binary vector is used to encode each nucleotide. Dibinary profiles are different from 
binary profiles in that they are encoded for 16 dinucleotides, i.e., AA is denoted by (0,0,0,0). 
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2.3. Feature selection 

2.3.1. Max-relevance and min-redundancy (mRMR) 

mRMR [37] is a commonly used feature selection method for compressing feature vector space. 
The goal of this technique is to identify a subset of features from the initial feature set that have the 
lowest correlation between features and the highest correlation with the output result. It considers the 
connection between features as well as the association between features and labels. The mechanism 
of feature selection is as follows. 

The mutual information is used to find the feature subset S containing m features first, so that the 
m features found have the maximum correlation with the category c. The correlation between the 
feature subset S and the category c is defined by the average value of all mutual information between 
each feature and category as shown in (7). 

𝑚𝑎𝑥𝐷 𝑆, 𝑐 , 𝐷
| |

∑ 𝐼 𝑥 ; 𝑐∈                         (7) 

where 𝐼 𝑥 ; 𝑐  is mutual information; 𝑆 is a subset of features of length m; 𝑥  is the ith feature in 𝑆 
and 𝑐 is category variable. 

Then the features selected by the maximum correlation may be redundant, and (8) is used to 
eliminate the redundancy among m features. 

𝑚𝑖𝑛𝑅 𝑆 , 𝑅
| |

∑ 𝐼 𝑥 ; 𝑥, ∈                         (8) 

The final feature subset S is obtained by combining the maximum correlation D with the 
minimum redundancy R. 

𝑚𝑅𝑀𝑅 max 
| |

∑ 𝐼 𝑥 ; 𝑐
| |

∑ 𝐼 𝑥 ; 𝑥, ∈∈               (9) 

Compared with other feature selection methods, the proposed algorithm considers the 
redundancy among features, further optimizes the feature subset, and solves the problem that the 
maximum dependency is difficult to achieve. However, only approximate optimal solutions can be 
obtained in practical applications. 

2.4. Classifiers 

2.4.1. Twin support vector machine (TWSVM) 

Consider the binary classification issue using the training datasets 

𝐷 𝑢 , 1 , 𝑢 , 1 , ⋯ , 𝑢 , 1 , 𝑢 , 1 , 𝑢 , 1 , ⋯ , 𝑢 , 1 ,   (10) 

where 𝑢 ∈ 𝑅 , 𝑖 1,2, ⋯ , 𝑚 𝑛. 
Let  𝑇 𝑢 , 𝑢 , ⋯ , 𝑢 ∈ 𝑅 , 𝐹 𝑢 , 𝑢 , ⋯ , 𝑢 ∈ 𝑅  and 𝑙 𝑚 𝑛. 
TWSVM [38] looks for a pair of nonparallel hyperplanes in the linear case. 
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𝑤 𝑢 𝑏 0  and 𝑤 𝑢 𝑏 0                                                   (11) 

where 𝑤 ∈ 𝑅 , 𝑤 ∈ 𝑅 , 𝑏 ∈ 𝑅, 𝑏 ∈ 𝑅 by solving the following pair of QPPs: 

                     min
, ,

𝑇𝑤 𝑒 𝑏 𝑇𝑤 𝑒 𝑏 𝑐 𝑒 𝜉    

𝑠. 𝑡. 𝐹𝑤 𝑒 𝑏 𝜉 𝑒 , 𝜉 0                                            (12) 

and 

                     min
, ,

𝐹𝑤 𝑒 𝑏 𝐹𝑤 𝑒 𝑏 𝑐 𝑒 𝜉   

𝑠. 𝑡. 𝑇𝑤 𝑒 𝑏 𝜉 𝑒 , 𝜉 0                                              (13) 

where 𝑐 , 𝑐  are the penalty parameters, 𝑒 , 𝑒  are all 1 vectors ( 𝑒 , 𝑒 1 ⋯ 1 ) whose 

dimensions are the same as the number of positive and negative samples respectively, and 𝜉 , 𝜉  are 

slack vectors of appropriate dimension. 
Minimizing the objective function means making a hyperplane as close as possible to one type 

of data, and the constraint requires that the distance between the hyperplane and the other type of 
data is at least greater than 1. Their corresponding Lagrange dual problems are 

                            max 𝑒 𝛼 𝛼 𝐽 𝐾 𝐾 𝐽 𝛼 

𝑠. 𝑡. 0 𝛼 𝑐 𝑒                                                                                   (14) 

and 

                        max 𝑒 𝛾 𝛾 𝐾 𝐽 𝐽 𝐾 𝛾 

𝑠. 𝑡. 0 γ 𝑐 𝑒                                                                                 (15) 

where 

𝐾 𝑇 𝑒 ∈ 𝑅 , 𝐽 𝐹 𝑒 ∈ 𝑅 .                 (16) 

The solution to the primary problem can be acquired by addressing the dual problem, which can 
be obtained by 

𝑤 , 𝑏 𝐾 𝐾 𝐽 𝛼,                                                                 (17) 

𝑤 , 𝑏 𝐽 𝐽 𝐾 𝛾.                                                                  (18) 

Therefore, an unknown point 𝑢 ∈ 𝑅  is predicted to the Class by 

𝐶𝑙𝑎𝑠𝑠 arg min
,

|𝑤 𝑢 𝑏 |,                             (19) 

where |∙| is the perpendicular distance of point 𝑢 from the planes 𝑤 𝑢 𝑏 0, 𝑠 , . 
This method not only divides a large quadratic programming problem into two small quadratic 

programming problems, which improves the training speed, but also is not very sensitive to noise. 
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2.5. Model evaluation metrics and methods 

Five indicators were widely used to assess how well the built models performed [39–41], 
accuracy (ACC), sensitivity (SN), specificity (SP), Matthew correlation coefficient (MCC), and 
integral area under the receiver operating characteristic curve (auROC), which were calculated using 
the following equations. 

𝐴𝐶𝐶                                                                          (20) 

𝑆𝑁                                                                                        (21) 

𝑆𝑃                                                                                        (22) 

𝑀𝐶𝐶                                              (23) 

where TP, TN, FP, and FN represent true positive, true negative, false positive and false negative, 
respectively. 

We use 10-CV for comparison [42–62]. The training datasets are equally divided into ten 
subsets. The remaining one subset is tested after the proposed model has been trained using nine 
subsets. After each subset is tested once, the procedure is repeated ten times, and the average results 
represent the final performance. Finally, I-testing was used in the testing datasets to evaluate the 
training model. 

3. Results and discussion 

3.1. Comparison with different feature combinations 

Feature extraction affects the results of subsequent sequence classification. To obtain better 
performance, this paper studied seven different features, including Kmer, PC-PseDNC-General and 
ANF, EIIP, ENAC, NCP + NBP from the RF-PseU method [20]. These features were first used in the 
experiment separately, and then multiple features were selected for different combinations according 
to the test results to obtain better experimental results. 

Table 1 lists the results of feature combination for the H_990 dataset using the TWSVM 
methods. The first six rows are the performance of single features, with Kmer, EIIP, ENAC and NCP 
+ NBP returning the best results, which are roughly distributed in the range of 0.57–0.59. Since the 
test results of single features were lower than those of the RF-PseU predictor, we combined several 
features that perform well and used the mRMR method to select the best feature for model 
construction. For the H_990 dataset, the combined characteristics listed in Table 1 have four results, 
including Kmer + ENAC, Kmer + EIIP, Kmer + NCP + NBP and Kmer + PC-PseDNC-General + 
ANF + EIIP + ENAC + NCP + NBP. Using the TWSVM method, the result of combined features 
was usually approximately 1–3% higher than that of single features, with a maximum ACC value 
of 0.65 and the best feature combination being KMER + PC-PseDNC-Generel +ANF + EIIP + 
ENAC + NCP + NBP. Compared with the RF-PseU predictor, the accuracy was improved by 0.7%. 
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We chose this feature combination for the 10-CV of the training set H_990 and applied it to the 
I-testing of the testing set H_200. 

Table 1. Results of feature combination for the H_990 dataset using the TWSVM method. 

Feature Subset TWSVM 
ACC MCC SN SP AUC

Kmer 0.59 0.181 0.533 0.646 0.618
PC-PseDNC-General 0.534 0.07 0.434 0.635 0.543 
ANF 0.526 0.053 0.568 0.485 0.518 
EIIP 0.572 0.144 0.525 0.618 0.6 
ENAC 0.587 0.178 0.472 0.7 0.59 
NCP + NBP 0.584 0.172 0.53 0.639 0.582 
Kmer + NCP + NBP  0.59 0.182 0.532 0.648 0.587 
Kmer + ENAC 0.603 0.208 0.582 0.624 0.62 
Kmer + EIIP 0.606 0.212 0.585 0.626 0.625 
Kmer + PC-PseDNC-Generel +  
ANF + EIIP + ENAC + NCP + NBP 

0.65 0.301 0.697 0.602 0.682 

Table 2 lists the test results of different feature combinations on the S_628 dataset using the 
TWSVM method. Similar to the results in Table 1, the test results of Kmer, EIIP, ENAC and NCP 
+ NBP were better. We combined those features that reported better performance. Except for Kmer 
+ NCP + NBP, the results of other combined features were improved compared with the single 
feature results. Among them, the performance of the feature combination Kmer + PC – PseDNC – 
Generel + ANF + EIIP + ENAC + NCP + NBP was the best, with test results improved by 
approximately 6% compared to other combinations. We also used the independent test set S_200 to 
test this feature combination. 

Table 2. Results of feature combination for the S_628 dataset using the TWSVM method. 

Feature Subset TWSVM
ACC MCC SN SP AUC

Kmer 0.627 0.259 0.625 0.63 0.67
PC-PseDNC-General 0.574 0.153 0.666 0.483 0.589 
ANF 0.584 0.175 0.716 0.452 0.584 
EIIP 0.614 0.238 0.473 0.755 0.632 
ENAC 0.634 0.326 0.435 0.836 0.693 
NCP + NBP 0.669 0.34 0.659 0.678 0.711 
Kmer + NCP + NBP 0.664 0.33 0.653 0.675 0.683 
Kmer + ENAC 0.653 0.308 0.631 0.675 0.683 
Kmer + EIIP 0.631 0.263 0.628 0.634 0.662 
Kmer + PC-PseDNC-Generel+ 
ANF + EIIP + ENAC + NCP + NBP 

0.722 0.45 0.656 0.786 0.758 

Table 3 shows the test results for the dataset M_994. The feature combination Kmer + 
PC-PseDNC-Generel + ANF + EIIP + ENAC + NCP + NBP had the best performance, and all test 
indicators were higher than the rest of the feature combinations. The combination was increased by 
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approximately 5%, the MCC was increased by approximately 10%, and the AUC was also 
significantly improved. 

Table 3. Results of feature combination for the M_944 dataset using the TWSVM method. 

Feature Subset TWSVM
ACC MCC SN SP AUC

Kmer 0.584 0.17 0.676 0.49 0.614
PC-PseDNC-General 0.541 0.084 0.517 0.566 0.539
ANF 0.553 0.113 0.71 0.396 0.527
EIIP 0.625 0.276 0.826 0.424 0.632
ENAC 0.664 0.329 0.667 0.661 0.7
NCP + NBP 0.662 0.326 0.636 0.688 0.703
Kmer + NCP + NBP  0.677 0.36 0.623 0.731 0.73
Kmer + ENAC 0.662 0.326 0.657 0.667 0.704
Kmer + EIIP 0.636 0.274 0.697 0.574 0.667
Kmer + PC-PseDNC-Generel +  
ANF + EIIP + ENAC + NCP + NBP 

0.728 0.462 0.795 0.661 0.775 

3.2. Comparison of different feature selection methods 

In this study, we contrast the mRMR approach and the LightGBM method [64] since feature 
selection is a crucial component of model construction. Figure 2 shows their accuracy on the training 
datasets of the three species. The findings demonstrate that the performance of the mRMR technique 
is superior, which further enhances the classification accuracy of the model. The accuracy of the 
mRMR method on the three species is greater than that of the LightGBM approach. 

 

Figure 2. Contrasting various approaches to feature picking. 
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3.3. Optimization with different feature dimensions 

 

(a) H.sapiens 

 

(b) S.cerevisiae 

 

(c) M.musculus 

Figure 3. Accuracy of the twin support vector machine predictor varied with feature 
dimension for all three species: (a) H.sapiens; (b) S.cerevisiae; (c) M.musculus. 
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The accuracy of classification results may be successfully increased by feature selection. We 
initially utilized the mRMR technique to pick feature subsets with high correlation with class labels 
and low feature redundancy to obtain the optimum feature dimension. To further obtain the feature 
dimension with the best precision, the incremental feature selection approach was applied. After 
many experiments, we found that the accuracy of I-testing and 10-CV fluctuates as the number of 
characteristics rises and the highest accuracy mostly appeared within 100 or 150 dimensions, as 
illustrated in Figure 3. The accuracy of each species initially increases rapidly as the feature 
dimension increases, and then fluctuates continuously. For H.sapiens species, the highest 10-CV 
accuracy of 0.65 was obtained when the feature dimension reached 33, while the highest 
independent test accuracy of 0.763 was obtained at relatively low dimensions. The highest 10-CV 
accuracy of 0.722 and independent test accuracy of 0.825 for S. cerevisiae species were between 60–80 
dimensions, obtained in 72 and 76 dimensions, respectively. M. musculus species only showed 10-CV 
results with the highest value at a feature dimension of 62. 

Table 4. Results of feature subsets selection of H.sapiens species. 

Feature The original dimension The dimension after feature selection 
NCP 63 14
EIIP 21 21
NBP 84 15 
ENAC 105 41
ANF 21 8
Kmer 64 1
PC-PseDNC-general 22 0

Table 5. Results of feature subsets selection of S.cerevisiae species. 

Feature The Original Dimension The dimension after feature selection
NCP 93 22 
EIIP 31 31
NBP 124 25
ENAC 155 53
ANF 31 19 
Kmer 256 0
PC-PseDNC-general 18 0

Table 6. Results of feature subsets selection of M.musculus species. 

Feature The original dimension The dimension after feature selection
NCP 63 11 
EIIP 21 21
NBP 84 17
ENAC 105 43
ANF 21 7 
Kmer 64 1
PC-PseDNC-general 22 0

Tables 4–6 show the changes of feature dimensions after feature selection and the distribution 
of feature subsets after optimization for the three species. It can be found that ENAC and EIIP 
occupy a large number in the optimized feature subset of the three species, followed by NCP and 
NBP, ANF and Kmer occupy a small number, and there is no PC-PseDNC-General in the optimized 
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feature subset. It indicates that each feature has different contributions in the model, and ENAC and 
EIIP play an important role in the model. 

3.4. Comparison with SVM classifier 

Since many previous researchers built У sites recognition models based on support vector 
machines, we employed SVM [65] as a classifier in the same feature space to compare the 
performance of TWSVM with that of SVM. Figure 4 displays how it performed. The ACC, MCC, 
and AUC based on the TWSVM model were found to be larger than those based on the SVM model 
for the 10-CV results of the three species, while the independent test results may have more clearly 
indicated the difference between the two. All of the evaluation metrics outperformed the SVM model. 
As a result, we concluded that the TWSVM model performs much better than the SVM model, 
suggesting that it may be better suited for identifying У sites in RNA sequences. 

 
(a) 

 
(b) 

Continued on next page 
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(c) 

 
(d) 

 
(e) 

Figure 4. Comparison of 10-CV scores and I-testing scores for SVM and TWSVM. (a) is 
for the training datasets of H.sapiens; (b) is for the training datasets of S.cerevisiae; (c) is 
for the training datasets of f M.musculus; (d) is for the testing datasets of H.sapiens; (e) 
is for the testing datasets of S.cerevisiae. 
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3.5. Comparison with previous methods 

Table 7. Comparison of cross-validation scores of current advanced У sites predictors 
and iPseU-TWSVM. 

Species Classifier Cross-validation 
ACC MCC SN SP AUC

H.sapiens iRNA-PseU 0.604 0.21 0.61 0.598 0.64
PseUI 0.642 0.28 0.649 0.636 0.68
iRNA-CNN 0.667 0.34 0.65 0.688 / 
XG-PseU 0.661 0.32 0.635 0.687 0.7
RF-PseU 0.643 0.29 0.661 0.626 0.7
iPseU-TWSVM 0.65 0.301 0.697 0.602 0.682

S.cerevisiae iRNA-PseU 0.645 0.29 0.647 0.643 0.81
PseUI 0.641 0.3 0.647 0.675 0.69
iRNA-CNN 0.682 0.37 0.664 0.705 / 
XG-PseU 0.682 0.37 0.668 0.695 0.77
RF-PseU 0.748 0.49 0.772 0.724 0.81
iPseU-TWSVM 0.722 0.45 0.656 0.786 0.758

M.musculus iRNA-PseU 0.691 0.38 0.733 0.648 0.75
PseUI 0.704 0.41 0.799 0.703 0.71
iRNA-CNN 0.718 0.44 0.748 0.691 / 
XG-PseU 0.72 0.45 0.765 0.676 0.74
RF-PseU 0.748 0.5 0.731 0.765 0.796
iPseU-TWSVM 0.728 0.462 0.795 0.661 0.775

Table 8. Comparison of I-testing scores of current advanced У sites predictors and iPseU-TWSVM. 

Species Classifier Independent testing 
ACC MCC SN SP AUC

H.sapiens iRNA-PseU 0.65 0.3 0.6 0.7 / 
PseUI 0.655 0.31 0.63 0.7 / 
iRNA-CNN 0.69 0.4 0.777 0.68 / 
XG-PseU 0.675 / / 0.608 / 
RF-PseU 0.75 0.5 0.78 0.72 0.8
iPseU-TWSVM 0.763 0.529 0.825 0.7 0.786

S.cerevisiae iRNA-PseU 0.6 0.2 0.63 0.57 / 
PseUI 0.685 0.37 0.65 0.72 / 
iRNA-CNN 0.735 0.47 0.688 0.778 / 
XG-PseU 0.71 / / / / 
RF-PseU 0.77 0.54 0.75 0.79 0.838
iPseU-TWSVM 0.825 0.65 0.85 0.8 0.905

Table 9. Average accuracy comparison between iPseU-TWSVM and current advanced У sites predictors. 

Scores type iPseU-TWSVM RF-PseU XG-PseU iRNA-CNN PseUI iRNA-PseU
Cross-validation 0.7 0.713 0.687 0.689 0.662 0.647 
Independent testing 0.794 0.76 0.693 0.713 0.7 0.625 
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The effectiveness of iPseU-TWSVM was also evaluated in comparison to other advanced 
predictors, such as iRNA-PseU [16], PseUI [17], iPseU-CNN [18], XG-PseU [19] and RF-PseU [20]. 
The 10-CV and I-testing results of the advanced У site predictors using iPseU-TWSVM are 
contrasted in Tables 7 and 8, respectively. The 10-CV results reveal that the accuracy of 
iPseU-TWSVM on H.sapiens is 1.7% less accurate than that of the best predictor iPseU-CNN on 
this species, and the accuracy on S.cerevisiae and M.musculus is 0.722 and 0.728, respectively, 
which is 2.6 and 2.0% less accurate than that of the best predictor RF-PseU. Although 
iPseU-TWSVM does not perform optimally on the training set, iPseU-TWSVM has higher accuracy 
than other predictors on all species in terms of I-testing. H.sapiens and S.cerevisiae are 1.3 and 5.5% 
more accurate in I-testing than the best predictor RF-PseU, with corresponding accuracy values 
of 0.763 and 0.825, respectively. We also calculated the average accuracy of several species so that 
we could compare the predictors’ performance in depth. As shown in Table 9, the 10-CV accuracy of 
iPseU-TWSVM is 1.3% less than that of RF-PseU. In terms of I-testing, iPseU-TWSVM is 
significantly improved by 3.4% compared with RF-PseU. iPseU-TWSVM performs much better 
overall than the other predictors. The findings demonstrate that iPseU-TWSVM, a very practical 
technique, has greater generalization performance and is more appropriate for recognizing У sites in 
RNA sequences. 

4. Conclusions 

This work proposes the use of a novel model called iPseU-TWSVM to identify RNA У sites 
across various species. We have used an efficient feature selection method to obtain the best feature 
subset and selected TWSVM as the classifier to increase recognition accuracy. Finally, we compared 
advanced predictors and found that iPseU-TWSVM significantly improved the independent test 
accuracy by 3.4%, while the accuracy of cross validation was lower by 1.3%. Through 
comprehensive analysis, it was concluded that the relatively poor performance of the training 
datasets was due to the following two reasons. One is that the features used by the best predictor are 
different, and the other is that the classifier of the model is different. The above results indicate that 
iPseU-TWSVM had better generalization performance and could more accurately identify У sites from 
RNA sequences. It is anticipated that iPseU-TWSVM will be effective in identifying RNA У sites. 

The contribution of this work has the following three aspects: (i) the model uses TWSVM as a 
classifier, which improves the accuracy of the model and improves the training speed; (ii) the model 
has good generalization performance and can be applied to the prediction of other sites in the 
sequence; (iii) further accurate identification of У sites in the sequence lays the foundation for 
disease control and related drug development. At the same time, this work also has the following 
shortcomings: (i) in the feature selection part, only two algorithms are compared, and subsequent 
research can try other algorithms to further improve the feature subset; (ii) the model uses TWSVM 
as a classifier. In the original problem of TWSVM, only empirical risk is minimized, but structural 
risk is not minimized. Moreover, the algorithm can only obtain approximate solutions. Subsequent 
research can consider improving TWSVM or try other classification algorithms as the classifier of 
the model to improve the prediction performance. Future work will study emerging methods [66–81] 
to further improve the accuracy of the model. 
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