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Abstract: Schistosomiasis is a parasitic disease caused by Schistosoma worm infection. Some
species of snails can serve as the intermediate hosts for the parasite. Numerous interventions have been
performed to repress the snail population. One of them is the use of molluscicide. Nevertheless, it is
debated that molluscicide intervention has negative impacts on the ecosystem. To investigate the impact
of more environmentally friendly interventions, we develop a schistosomiasis model with treatment,
habitat modification and biological control. The biological control agent examined in our model is
a snail predator. Moreover, to investigate the impact of snail habitat modification, we assume that
the snail population grows logistically. We show that all solutions of our model are non-negative
and bounded. We also study the existence and stability conditions of equilibrium points. The basic
reproduction numbers are determined using the next-generation operator. Linearization combined with
the Routh-Hurwitz criterion is used to prove the local stability condition of disease-free equilibrium
points. Bifurcation theory is applied to investigate the local stability condition of the endemic
equilibrium points. To examine the global behavior of our model, we use asymptotically autonomous
system theory and construct a Lyapunov function. We perform several numerical simulations to
validate and support our deductive results. Our results show that early treatment can reduce the basic
reproduction number and schistosomiasis cases. In addition, modifying snail habitat and releasing
the snail predator at the snail habitat can reduce schistosomiasis prevalence. We suggest using snail
predators which can hunt and kill snails effectively as a biological control agent.
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1. Introduction

Schistosomiasis is a neglected tropical disease caused by parasitic helminths of the genus
Schistosoma [1]. Approximately 250 million people are infected with schistosomiasis [2].
Schistosomiasis is commonly found in parts of the Middle East, South America, Southeast Asia and
Africa [1]. This disease is mostly found in low-income neighborhoods that lack access to clean water
and adequate sanitation [3]. The three main species infecting humans are Schistosoma haematobium,
S. japonicum and S. mansoni [4]. S. japonicum causes intestinal schistosomiasis and hepatosplenic
schistosomiasis in China, The Philippines and Indonesia, while urogenital schistosomiasis in Africa
and parts of the Middle East is caused by S. haematobium infection. In Africa, the Arabian peninsula
and Latin America, S. mansoni causes intestinal and liver disease [2]. Colley et al. [5] stated that S.
japonicum is a zoonotic species, while S. mansoni can infect baboons and rodents. On the other hand,
S. haematobium is declared to be not a zoonotic species because its definitive host is
exclusively humans.

As a parasite, the Schistosoma worm has an elaborate life cycle. To accomplish its life cycle,
Schistosoma requires two types of host, namely, intermediate hosts and definitive hosts. Some species
of snails can act as intermediate hosts for the parasite. S. japonicum used the Oncomelania snail as an
intermediate host while the Bulinus snail could serve as an intermediate host for S. haematobium.
Meanwhile, S. mansoni can infect and make Biomphalaria snails intermediate hosts [2]. Humans can
serve as a definitive host for the parasite [6]. In the human body, parasites reproduce sexually. The
transmission cycle process occurs when the eggs of adult Schistosoma worm pairs are excreted
through the feces and urine by infected humans. After some time, the eggs that survive in the wild
hatch and release miracidia which can infect suitable snails. The parasites reproduce asexually in the
snail body [7]. Inside the snail’s body, miracidia develop and then produce cercariae which will be
released from the snail’s body. Cercariae that successfully infect humans can develop into adult
worms [2].

Some researchers stated that molluscicide can be used to manage snail populations and
schistosomiasis spread [8–10]. This intervention is very effective in decreasing the prevalence of
schistosomiasis. However, it is believed that molluscicide may damage the ecosystem [11]. Some
researchers recommended the use of snail predators or snail competitors as biological control agents
of the snail population [12–14]. Secor [15] stated that several types of fish are predators of host snails.
An example is the Cichlid fish in Senegal. In addition, Sokolow et al. [13] reported that prawns in
Senegal are predators of host snails, while Mkoji et al. [16] found that the introduction of Red Swamp
Crayfish in schistosomiasis endemic areas in Kenya could reduce snail populations and
schistosomiasis cases. Different interventions that can be used to control a snail population are snail
habitat modification, such as turning farmland to fish ponds, digging and dredging canals, planting of
proper trees such as cotton in high-altitude lands or poplar in marshlands. These interventions can
reduce snail habitats, which results in a decrease in snail density and survival [17]. Meanwhile, the
elimination of snails in some areas in China is achieved after the construction of lake embankments.
The construction of the lake embankment prevents flooding which results in a reduced spread of
snails around the lake [18]. This suggests that snail habitat modification is related to the
environmental carrying capacity of the snail population.

To study the dynamics of schistosomiasis spread, Macdonald [19] proposed a mathematical model.
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It is well recognized that the model is the first mathematical model of schistosomiasis. Since then,
many researchers have proposed mathematical models which are related to schistosomiasis.
Schistosomiasis models that take into account the parasite density in the environment are discussed
in [20–23]. In these works, the parasite is divided into two distinct classes, i.e., miracidia and
cercariae. Miracidia and cercariae are the parasite stages that can infect snails and humans,
respectively. To control vector-borne disease spread, we can use any biological control agents, e.g.,
predator, competitor or parasites of the vector [24, 25]. A schistosomiasis model considering
competitor resistant snails as biological control agents is discussed by Diaby et al. [26]. They found
that the introduction of competing snails that are resistant to Schistosoma infection could reduce the
population of snails that could serve as intermediate hosts for Schistosoma. In 2021, Nur et al. [27]
extended the model proposed in [23] by adding a snail predator population as a biological control
agent. Their results showed that the introduction of snail predators in the host snail habitat could
reduce the host snail population, cases of schistosomiasis in humans and snails and the number of
parasites in the environment. In this paper, we extend the model developed in [27] by adding treated
human compartments. In addition, to study the impact of snail habitat modification on the spread of
schistosomiasis, we assume that the snail population grows logistically. The rest of the paper is
organized as follows. Section 2 describes the model formulation and some of the basic properties of
the model. The stability analysis of the equilibrium points is discussed in Section 3. In Section 4,
several numerical simulation results are presented. The paper ends with some conclusions in
Section 5.

2. Model formulation and basic properties of the model

2.1. Model formulation

In this subsection, we describe the basis and assumptions used in model formulation. We only
consider schistosomiasis caused by S. haematobium. Therefore, in our model, only humans are the
definitive hosts, because S. haematobium is not zoonotic. We construct the schistosomiasis model
based on the life cycle of the Schistosoma worm [6,7,28]. There is a latent period because the parasites
need time to migrate through the body, mature and pair up to begin producing eggs. Further, we
constructed the model to study the impact of early treatment of exposed humans (humans who have
been infected but are still in the prepatent period). Consequently, it is essential to include the exposed
human compartment in the model constructed. Thus, we divide the human population into susceptible
humans (S h), exposed humans (Eh), infectious humans (Ih) and treated humans (Th). People who have
been treated can be reinfected; therefore, in Figure 1 which shows the compartment diagram, there is a
flow from the treated human to the susceptible human. Anderson et al. [29] stated that the latent period
of the snail intermediate host is very dependent on the ambient temperature. High temperatures cause
a short latent period. In this article, we assume that the environment has a high temperature so that the
latent period in snails is short enough to be negligible. Thus, the snail population is only divided into
susceptible snails (S v) and infectious snails (Iv). Similar to [20–23], we only consider two stages of
Schistosoma worm development, i.e., miracidia and cercariae. Therefore, the parasite is divided into
miracidia (M) and cercariae (C). According to the epidemiology of schistosomiasis [7, 28], miracidia
can infect snails and cercariae have the ability to infect humans. Hence, susceptible humans and
susceptible snails may get infected after adequate contact with cercariae and miracidia, respectively.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13799–13828.



13802

We assume that snails that can serve as intermediate host is the only food for the predator. It should
be noted that S. haematobium in the infectious human can produce 100–200 per day per pair. Some of
which will be excreted from the infected human body [30]. Moreover, an infectious snail can release
about 200 cercariae into the environment for the cases of S. haematobium infection [7]. Therefore, the
decrease of the parasites in the environment on account of direct interaction with susceptible humans
and susceptible snails is neglected. In addition, we assume that there is no recovery for infectious snail
and no disease-induced death. Figure 1 shows the transition and interaction between compartments.

Figure 1. Compartment Diagram.

Based on the assumptions and Figure 1, we get the schistosomiasis model as follows:

dS h
dt = Ωh − w1βchCS h + θtsTh − dhS h

dEh
dt = w1βchCS h − w2Eh

dIh
dt = θeiEh − w3Ih
dTh
dt = θetEh + θitIh − w4Th

dS v
dt = φ(S v + Iv) − βmvMS v − ρS v(S v + Iv) − w5S v − ξPS v

dIv
dt = βmvMS v − w5Iv − ρIv(S v + Iv) − ξPIv
dC
dt = σIv − dcC
dM
dt = w6Ih − dmM

dP
dt = τP(S v + Iv) − dpP,

(2.1)
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where

w1 = 1 − ϕeϕ

w2 = θei + θet + dh

w3 = θit + dh

w4 = θts + dh

w5 = dv + dr

w6 = αhhgh,

ϕe, ϕ ∈ [0, 1) and the other parameters are positive. The definition of all parameters is given in Table 1.

Table 1. Definitions of model parameters.

Parameter Definition
Ωh Recruitment rate of humans
ϕe The effectiveness of education implementation
ϕ Education coverage
βch Cercariae infection rate on humans
θit Average waiting time for infectious humans to receive treatment−1

θet Average waiting time for exposed humans to receive treatment−1

θts Average treatment time−1

dh Natural death rate of humans
θei Latent period−1

φ Birth rate of snails
βmv Miracidia infection rate on snails
dv Natural death rate of snail
dr Molluscicide induced death rate of snails
ξ Predation rate
ρ Competition rate of snail
τ Conversion rate
σ Cercaria production rate
α Schistosoma egg hatch rate
hh The number of Schistosoma eggs per ml urine
gh Average volume of human urine per day
dp Natural death rate of snail predator
dc Natural death rate of cercariae
dm Natural death rate of miracidia

2.2. Non-negativity and Boundedness

Theorem 2.1. Solutions of system (2.1) with non-negative initial conditions are non-negative.

Proof. To prove this theorem, we use the method used in [31, 32]. From system (2.1), we have
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dS h
dt

∣∣∣
ζ(S h)
= Ωh + θtsTh > 0, dEh

dt

∣∣∣
ζ(Eh)
= w1βchCS h ≥ 0,

dIh
dt

∣∣∣
ζ(Ih)
= θeiEh ≥ 0, dTh

dt

∣∣∣
ζ(Th)
= θetEh + θitIh ≥ 0,

dS v
dt

∣∣∣
ζ(S v)
= φ(S v + Iv) ≥ 0, dIv

dt

∣∣∣
ζ(Iv)
= βmvMS v ≥ 0,

dC
dt

∣∣∣
ζ(C)
= σIv ≥ 0, dM

dt

∣∣∣
ζ(M)
= w6Ih ≥ 0,

dP
dt

∣∣∣
ζ(P)
= 0,

where ζ(x) = {x = 0 and S h, Eh, Ih,Th, S v, Iv,C,M, P ∈ C (R+0,R+0)}. Based on Lemma 2 presented
in [33], the invariant region of system (2.1) is R9

+0. Hence, solutions of system (2.1) with non-negative
initial conditions are non-negative. □

Theorem 2.2. Solutions of system (2.1) with non-negative initial values are bounded.

Proof. Here, Nh and Nv are the total number of humans and the total number of snails, respectively. It
is clear that Nh = S h + Eh + Ih + Th and Nv = S v + Iv. From system (2.1), we get

dNh
dt = Ωh − dhNh,

dNv
dt = (φ − w5)Nv − ρN2

v − ξNvP,
dP
dt = τNvP − dpP.

(2.2)

Using the technique of an integrating factor, we obtain the solution of the first equation of (2.2).

Nh(t) =
Ωh

dh
+

(
Nh(0) −

Ωh

dh

)
e−dht.

It is clear that 0 ≤ Nh(t) ≤ Ωh
dh

for t ≥ 0 whenever 0 ≤ Nh(0) ≤ Ωh
dh

. Thus, Nh is bounded.
Now, letΠ = Nv+P. We will show thatΠ = Nv+P is bounded. From the second and third equations

of (2.2), we have
dΠ
dt =

dNv
dt +

dP
dt

=
(
(φ − w5)Nv

(
1 − ρNv

φ−w5

)
− ξNvP

)
+

(
τNvP − dpP

)
=

(
φNv − ρN2

v − w5Nv − ξNvP
)
+

(
τNvP − dpP

)
≤ φNv − (ξ − τ)PNv − q(Nv + P)
= φk̄ − qΠ,

where ξ ≥ τ, q = min{w5, dp} and k̄ = φ−w5
ρ

. According to Gronwall’s Inequality Lemma, it is found

that Π = Nv + P ≤ φk̄
q . Hence, Nv and P are bounded. Now, we use the previous results to show that C

and M are bounded. Taking into account that Ih ≤ Nh ≤
Ωh
dh

and Iv ≤ P + Nv ≤
φk̄
q , we have

dC
dt = σIv − dcC ≤ σ

φk̄
q − dcC,

dM
dt = αhhghIh − dmM ≤ αhhgh

Ωh
dh
− dmM.

According to Gronwall’s Inequality Lemma, we get C ≤ σφk̄
qdc

and M ≤ αhhghΩh
dhdm

. Thus, the solutions of
system (2.1) are bounded. □

Therefore, we have the following invariant region of system (2.1).

Ξ+ = {(S h, Eh, Ih,Th, S v, Iv,C,M, P) ∈ R9
+0|Nh ≤

Ωh
dh

; Nv + P ≤ φk̄
d ; C ≤ σφk̄

qdc
; M ≤ αhhghΩh

dhdm
}.

The solutions of system (2.1) with initial value in Ξ+ are always in Ξ+.
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2.3. Equilibrium points and basic reproduction number

System (2.1) has five equilibrium points. The first equilibrium point is the snail and predator
extinction point Y0 =

(
S ∗0h , E

∗0
h , I

∗0
h ,T

∗0
h , S

∗0
v , I

∗0
v ,C

∗0,M∗0, P∗0
)
=

(
Ωh
dh
, 0, 0, 0, 0, 0, 0, 0, 0

)
, which

always exists in R9
+0. The second equilibrium point is predator extinction and disease-free point

Ya
0 = (S a∗

h , E
a∗
h , I

a∗
h ,T

a∗
h , S

a∗
v , I

a∗
v ,C

a∗,Ma∗, 0) =
(
Ωh
dh
, 0, 0, 0, φ−w5

ρ
, 0, 0, 0, 0

)
, which exists in R9

+0 if
φ

w5
> 1. The third equilibrium point is predator extinction-endemic point

Ya
1 = (S a∗∗

h , E
a∗∗
h , I

a∗∗
h ,T

a∗∗
h , S

a∗∗
v , I

a∗∗
v ,C

a∗∗,Ma∗∗, 0), where

S a∗∗
h = w4w3w2dcΩh

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

Ea∗∗
h =

w1βchσw4w3ΩhIa∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

Ia∗∗
h =

θeiw1βchσw4ΩhIa∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

T a∗∗
h =

(w3θet+θitθei)w1βchσΩhIa∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

S a∗∗
v =

φ−w5
ρ
− Ia∗∗

v ,

Ia∗∗
v =

(Ra
e−1)dmdhdcw4w3w2(w5+ρNa

v )
w1βchσ(βmvw6θeiΩhw4+dm(w5+ρNa

v )(w3w4w2−(θtsw3θet+θtsθitθei))) ,

Ca∗∗ =
σIa∗∗

v
dc
,

Ma∗∗ =
w6θeiw1βchσw4ΩhIa∗∗

v

dm((w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc) ,

Ra
e =

βmvNa
v w6θeiw1βchσΩh

dmdhdcw3w2(w5+ρNa
v ) ,

Na
v =

φ−w5
ρ
.

It is easy to see that Ya
1 exists in R9

+0 if Ra
e > 1 and φ

w5
> 1. The fourth equilibrium point is disease-free

point Yb
0 = (S b∗

h , E
b∗
h , I

b∗
h ,T

b∗
h , S

b∗
v , I

b∗
v ,C

b∗,Mb∗, Pb∗) =
(
Ωh
dh
, 0, 0, 0, dp

τ
, 0, 0, 0, τ(φ−w5)−ρdp

ξτ

)
which exists in

R9
+0 if τ(φ−w5)

ρdp
> 1. The last equilibrium point is endemic point

Yb
1 = (S b∗∗

h , E
b∗∗
h , I

b∗∗
h ,T

b∗∗
h , S

b∗∗
v , I

b∗∗
v ,C

b∗∗,Mb∗∗, Pb∗), where
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S b∗∗
h = w4w3w2dcΩh

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

Eb∗∗
h =

w1βchσw4w3ΩhIb∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIb∗∗
v +dhw4w3w2dc

,

Ib∗∗
h =

θeiw1βchσw4ΩhIb∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc

,

T b∗∗
h =

(w3θet+θitθei)w1βchσΩhIb∗∗
v

(w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIb∗∗
v +dhw4w3w2dc

,

S b∗∗
v =

dp

τ
− Ib∗∗

v ,

Ib∗∗
v =

(Rb
e−1)dhdmdcw4w3w2(w5+ρNb

v+ξP
b∗)

w1βchσ(βmvw6θeiΩhw4+dm(w5+ρNb
v+ξPb∗)(w3w4w2−(θtsw3θet+θtsθitθei))) ,

Cb∗∗ =
σIb∗∗

v
dc
,

Mb∗∗ =
w6θeiw1βchσw4ΩhIb∗∗

v

dm((w4w3w2−(θtsw3θet+θtsθitθei))w1βchσIa∗∗
v +dhw4w3w2dc) ,

Rb
e =

βmvNb
v w6θeiw1βchσΩh

dmdhdcw3w2(w5+ρNb
v+ξPb∗)

,

Nb
v =

dp

τ
.

It is clear that Yb
1 exists in R9

+0 if Rb
e > 1 and τ(φ−w5)

ρdp
> 1.

In epidemiology, there is an important number recognized as the basic reproduction number. In
this paper, we employ the next-generation matrix method described in [34] to investigate the basic
reproduction number. First, we establish F and V , explained in [34]. F relates to the new infection
terms, while V represents the transition terms. We consider that the infected classes in our model are
Eh, Ih, Th, Iv, C and M. Consequently, we obtain the following F and V .

F =



w1βchCS h

0
0

βmvMS v

0
0


and V =



w2Eh

w3Ih − θeiEh

w4Th − θetEh − θitIh

w5Iv + ρIv (S v + Iv) + ξPIv

dcC − σIv

dmM − w6Ih


.

We now determine the Jacobian matrix of F and V at arbitrary disease-free equilibrium point(
S ∗h, 0, 0, 0, S

∗
v, 0, 0, 0, P

∗
)

and obtain the following results.
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F0 =



0 0 0 0 w1βchS ∗h 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 βmvS ∗v
0 0 0 0 0 0
0 0 0 0 0 0


and V0 =



w2 0 0 0 0 0
−θei w3 0 0 0 0
−θet −θit w4 0 0 0

0 0 0 w5 + ρS ∗v + ξP
∗ 0 0

0 0 0 −σ dc 0
0 −w6 0 0 0 dm


.

According to [34], the basic reproduction number is the dominant eigenvalue of F0V−1
0 .

F0V−1
0 =



0 0 0 βchw1S ∗hσ
dc(w5+ρS ∗v+ξP∗)

βchw1S ∗h
dc

0
0 0 0 0 0 0
0 0 0 0 0 0

βmvS ∗vw6θei

w2w3dm

βmvS ∗vw6
w3dm

0 0 0 βmvS ∗v
dm

0 0 0 0 0 0
0 0 0 0 0 0


.

Obviously, the dominant eigenvalue of F0V−1
0 is given by

ρ(F0V−1
0 ) =

√
w1βchS ∗hσβmvS ∗vw6θei

w2w3dmdc(w5 + ρS ∗v + ξP∗)
. (2.3)

Substituting Ya
0 into (2.3) produces the basic reproduction number when the snail survives but the

predator goes to extinction.

Ra
0 =

√
βmvNa

v w6θeiw1βchσΩh

dmdhdcw3w2(w5 + ρNa
v )
.

Substituting Yb
0 into (2.3) yields the basic reproduction number when the snail and predator survive.

Rb
0 =

√
βmvNb

v w6θeiw1βchσΩh

dmdhdcw3w2(w5 + ρNb
v + ξPb∗)

.

We notice that Ra
e = (Ra

0)2 and Rb
e = (Rb

0)2. Since Ra
0 and Rb

0 are always positive, it is clear that Ya
1 exists

in R9
+0 if Ra

0 > 1 and φ

w5
> 1. Furthermore, Yb

1 exists in R9
+0 if Rb

0 > 1 and τ(φ−w5)
ρdp

> 1.

3. Stability analysis

3.1. Local stability

The general Jacobian matrix of system (2.1) at arbitrary equilibrium point
E =

(
S ∗h, E

∗
h, I
∗
h,T

∗
h , S

∗
v, I
∗
v ,C

∗,M∗, P∗
)

is given by

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13799–13828.



13808

JE =



− (w1βchC∗ + dh) 0 0 θts 0 0 −w1βchS ∗h 0 0
w1βchC∗ −w2 0 0 0 0 w1βchS ∗h 0 0

0 θei −w3 0 0 0 0 0 0
0 θet θit −w4 0 0 0 0 0
0 0 0 0 A1 φ − ρS ∗v 0 −βmvS ∗v −ξS ∗v
0 0 0 0 βmvM∗ −A2 0 βmvS ∗v −ξI∗v
0 0 0 0 0 σ −dc 0 0
0 0 w6 0 0 0 0 −dm 0
0 0 0 0 τP∗ τP∗ 0 0 τ(S ∗v + I∗v ) − dp


,

where
A1 = φ − βmvM∗ − (w5 + ρ(2S ∗v + I∗v ) + ξP∗), A2 = w5 + ρ(S ∗v + 2I∗v ) + ξP∗.

First, we present the local stability condition for Y0.

Theorem 3.1. If φw5
< 1, then Y0 is locally asymptotically stable. If φw5

> 1, then Y0 is unstable.

Proof. The Jacobian matrix of system (2.1) at Y0 is

JY0 =



−dh 0 0 θts 0 0 −w1βchS ∗0h 0 0
0 −w2 0 0 0 0 w1βchS ∗0h 0 0
0 θei −w3 0 0 0 0 0 0
0 θet θit −w4 0 0 0 0 0
0 0 0 0 φ − w5 φ 0 0 0
0 0 0 0 0 −w5 0 0 0
0 0 0 0 0 σ −dc 0 0
0 0 w6 0 0 0 0 −dm 0
0 0 0 0 0 0 0 0 −dp


. (3.1)

The eigenvalues of matrix (3.1) are the roots of polynomial (3.2).

L0(λ) = (λ + dp)(λ + dm)(λ + dh)(λ + dc)(λ + w5)(λ − (φ − w5))(λ + w2)(λ + w3)(λ + w4). (3.2)

It easy to see that all eigenvalues of matrix (3.1) are negative if φw5
< 1. Moreover, if φw5

> 1, then one
eigenvalue of matrix (3.1) is positive. The proof is completed. □

Now, we investigate the local stability condition of Ya
0. The Jacobian matrix of system (2.1) at Ya

0
is given as

JYa
0
=



−dh 0 0 θts 0 0 −w1βchS a∗
h 0 0

0 −w2 0 0 0 0 w1βchS a∗
h 0 0

0 θei −w3 0 0 0 0 0 0
0 θet θit −w4 0 0 0 0 0
0 0 0 0 w5 − φ φ − ρS a∗

v 0 −βmvS a∗
v −ξS a∗

v

0 0 0 0 0 −(w5 + ρS a∗
v ) 0 βmvS a∗

v 0
0 0 0 0 0 σ −dc 0 0
0 0 w6 0 0 0 0 −dm 0
0 0 0 0 0 0 0 0 (τS a∗

v − dp)


. (3.3)
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Therefore, we get the following characteristic polynomial

L(λ) = (λ − (τS a∗
v − dp))(λ + dh)(λ − (w5 − φ))(λ + w4)L1(λ), (3.4)

where L1(λ) = λ5 + l1λ
4 + l2λ

3 + l3λ
2 + l4λ + l5 and

l1 =
5∑

i=1
Ki, l4 =

5∑
1≤i<...<m

KiK jKkKm,

l2 =
5∑

1≤i< j
KiK j, l5 =

(
1 − (Ra

0)2
)

w2w3(w5 + ρS a∗
v )dcdm.

l3 =
5∑

1≤i< j<k
KiK jKk.

Here K1 = w2,K2 = w3,K3 = w5 + ρS a∗
v ,K4 = dc, and K5 = dm. It is clear that matrix (3.3) has three

negative eigenvalues, i.e., λ1 = −dh, λ2 = −w3, and λ3 = −(φ − w5). Moreover, λ4 = τS a∗
v − dp < 0 if

τS a∗
v

dp
=
τ(φ−w5)
ρdp

< 1. The other eigenvalues of matrix (3.3) are zeros of L1(λ). It is easy to see that li > 0
for i = 1, 2, 3, 4. Further, if Ra

0 < 1, then l5 > 0. Notice that l5 < 0 if Ra
0 > 1. Based on Descartes’ rule

of signs [35], matrix (3.3) has exactly one positive eigenvalue if Ra
0 > 1. Thus Ya

0 is unstable if Ra
0 > 1.

We observe that l5 = 0 if Ra
0 = 1. It indicates that one root of L1(λ) is zero if Ra

0 = 1. As a result, if
τS a∗

v
dp
=
τ(φ−w5)
ρdp

< 1 and Ra
0 = 1 then one eigenvalue of matrix (3.3) is zero. We now use Routh-Hurwitz

test [36] to investigate the local stability condition of Ya
0. Firstly we establish Routh’s array.

Table 2. Routh’s array associated to characteristic polynomial L1(λ).

Column 1 Column 2 Column 3 Column 4
λ5 1 l2 l4 0
λ4 l1 l3 l5 0
λ3 hz1 =

l1l2−l3
l1

hz2 =
l1l4−l5

l1
0 0

λ2 hz3 =
hz1l3−l1r2

hz1
l5 0 0

λ1 hz4 =
hz2hz3−l5hz1

hz3
0 0 0

λ0 l5 0 0 0

Obviously, l1 > 0 always holds. According to the Routh-Hurwitz condition [36, 37], all roots of
L1(λ) have negative real part if all entries in column 1 of Table 2 have the same sign. We observe that
hz1 > 0 always holds. Clearly, l5 is positive if Ra

0 < 1. Hence, all eigenvalues of matrix (3.3) have
negative real parts if hz3 > 0, hz4 > 0, Ra

0 < 1, and τ(φ−w5)
dpρ

< 1.

Theorem 3.2. Ya
0 is locally asymptotically stable if hz3 > 0, hz4 > 0, Ra

0 < 1, and τ(φ−w5)
dpρ

< 1. If Ra
0 > 1

then Ya
0 is unstable.

The method developed in [38] is used to study the stability condition of Ya
1. Similar approach is

used in [20, 21]. Firstly, we investigate the conditions so that assumption A1 of Theorem 4.1 in [38] is
fulfilled. Let us choose βmv as the bifurcation parameter. We determine the bifurcation point when Ra

0 =

1 and obtain βa∗
mv =

dmdhdcw3w2(w5+ρNa
v )

Na
v w6θeiw1βchσΩh

. Substituting βa∗
mv into (3.4) produces the following characteristic
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polynomial of JYa
0

(
βa∗

mv
)
.

L(1a)(λ) = (λ − (τS a∗
v − dp))(λ + dh)(λ − (w5 − φ))(λ + w4)λL(1a)

1 (λ), (3.5)

where L(1a)
1 (λ) = λ4 + l(1a)

1 λ
3 + l(1a)

2 λ
2 + l(1a)

3 λ
1 + l(1a)

4 and

l(1a)
1 =

5∑
i=1

K(1a)
i , l(1a)

2 =
5∑

1≤i< j
K(1a)

i K(1a)
j ,

l(1a)
3 =

5∑
1≤i< j<k

K(1a)
i K(1a)

j K(1a)
k , l(1a)

4 =
5∑

1≤i<...<m
K(1a)

i K(1a)
j K(1a)

k K(1a)
m ,

K(1a)
1 = w2,K

(1a)
2 = w3,K

(1a)
3 = w5 + ρS a∗

v ,K
(1a)
4 = dc, and K(1a)

5 = dm. Clearly, polynomial (3.5)
has three negative roots and a simple zero root. Furthermore, the fourth root is also negative, i.e.,
λ4 = τS a∗

v − dp < 0 if τ(φ−w5)
dpρ

< 1. The other roots of (3.5) are roots of L(1a)
1 (λ). The Routh’s array

associated with L(1a)
1 (λ) is shown in Table 3.

Table 3. Routh’s array associated to L(1a)
1 (λ).

Column 1 Column 2 Column 3
λ4 1 l(1a)

2 l(1a)
4

λ3 l(1a)
1 l(1a)

3 0

λ2 hr1 =
l(1a)
1 l(1a)

2 −l(1a)
3

l(1a)
1

l(1a)
4 0

λ1 hr2 =
hz1l(1a)

3 −l(1a)
1 l(1a)

4
hz1

0 0
λ0 l(1a)

4 0 0

Based on Routh-Hurwitz condition [36, 37], all roots of L(1a)
1 (λ) have negative real part if hr2 >

0, since the other entries in column 1 are always positive. Thus, if hr2 > 0 and τ(φ−w5)
dpρ

< 1 then
JYa

0
(βa∗

mv) has one zero eigenvalue while the other eigenvalues have negative real part, which implies
that assumption A1 of Theorem 4.1 [38] is met. The right eigenvector of JYa

0
(βa∗

mv) corresponding to
zero eigenvalue is

v⃗ =



v1

v2

v3

v4

v5

v6

v7

v8

v9


=



σβa∗
mvS a∗

v w1βchS a∗
h (θts(θetw3+θitθei)−w2w3w4)

dh(w5+ρS a∗
v )dcw4w2w3

v8
w1βchS a∗

h σβ
a∗
mvS a∗

v

w2(w5+ρS a∗
v )dc

v8
θeiw1βchS a∗

h σβ
a∗
mvS a∗

v

w3w2(w5+ρS a∗
v )dc

v8
w1βchS a∗

h σβ
a∗
mvS a∗

v

w4w2(w5+ρS a∗
v )dc

(
θet +

θitθei
w3

)
v8

((w5+ρS a∗
v )−(φ−ρS a∗

v ))βa∗
mvS a∗

v
(w5+ρS a∗

v )(w5−φ) v8
βa∗

mvS a∗
v

(w5+ρS a∗
v )v8

σβa∗
mvS a∗

v
dc(w5+ρS a∗

v )v8

v8

0



,

where v8 is arbitrarily positive. Obviously, v1 < 0 and vi > 0 for i = 2, 3, 4, 5, 6, 7. The left eigenvector
of JYa

0
(βa∗

mv) corresponding to zero eigenvalue is k⃗ = (k1, k2, k3, k4, k5, k6, k7, k8, k9), where k1 = k4 = k5 =
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k9 = 0, k2 =
θeiw6β

a∗
mvS a∗

v
w2w3dm

k6, k3 =
w6β

a∗
mvS a∗

v
w3dm

k6, k7 =
w1βchS a∗

h θeiw6β
a∗
mvS a∗

v

dcw2w3dm
k6, k8 =

βa∗
mvS a∗

v
dm

k6, and k6 is chosen, such

that k⃗.⃗v = 1. It is easy to show that k6 > 0. Hence, k j > 0 for j = 2, 3, 7, 8.
Set x1 = S h, x2 = Eh, x3 = Ih, x4 = Th, x5 = S v, x6 = Iv, x7 = C, x8 = M, x9 = P and fi =

dxi
dt for

i = 1...9. Now, we calculate a and b, where

a =
9∑

l,i, j=1
klviv j

∂2 fl(Ya
0,β

a∗
mv)

∂xi∂x j
, b =

9∑
l,i=1

klvi
∂2 fl(Ya

0,β
a∗
mv)

∂xi∂βmv
.

The only non-zero terms of a and b obtained are

k2v1v6
∂2 f2(Ya

0,β
a∗
mv)

∂x1∂x6
= k2v1v6βch < 0, k2v6v1

∂2 f2(Ya
0,β

a∗
mv)

∂x6∂x1
= k2v6v1βch < 0,

k6v5v8
∂2 f6(Ya

0,β
a∗
mv)

∂x5∂x8
= v5v8k6β

a∗
mv > 0, k6v8v5

∂2 f6(Ya
0,β

a∗
mv)

∂x8∂x5
= k6v8v5β

a∗
mv > 0,

k6v5v6
∂2 f6(Ya

0,β
∗
mv)

∂x5∂x6
= −k6v5v6ρ < 0, k6v6v5

∂2 f6(Ya
0,β

a∗
mv)

∂x6∂x5
= −k6v6v5ρ < 0,

k6v6v6
∂2 f6(Ya

0,β
a∗
mv)

∂x6∂x6
= −k6v6v6ρ < 0, k6v8

∂2 f6(Ya
0,β

a∗
mv)

∂x8∂βmv
= k6v8S a∗

v > 0.

Since v1 < 0, we have

a = k2v1v6
∂2 f2(Ya

0,β
a∗
mv)

∂x1∂x6
+ k2v6v1

∂2 f2(Ya
0,β

a∗
mv)

∂x6∂x1
+ k6v5v8

∂2 f6(Ya
0,β

a∗
mv)

∂x5∂x8
+ k6v8v5

∂2 f6(Ya
0,β

a∗
mv)

∂x8∂x5
+ k6v5v6

∂2 f6(Ya
0,β

a∗
mv)

∂x5∂x6

+k6v6v5
∂2 f6(Ya

0,β
a∗
mv)

∂x6∂x5
+ 2k6v6v6

∂2 f6(Ya
0,β

a∗
mv)

∂x6∂x6

= 2
(
βchk2v1v6 −

k6v2
8β

a∗
mvS a∗

v (w5+S a∗
v )

((w5+ρS a∗
v ))2

)
< 0,

b = k6v8
∂2 f6(Ya

0,β
a∗
mv)

∂x8∂βmv
= k6v8S a∗

v > 0.

Based on Theorem 4.1 in [38], forward bifurcation occurs at Ra
0 = 1. Hence, the predator extinction-

endemic equilibrium point Ya
1 is locally asymptotically stable if Ra

0 > 1, hr2 > 0, and τ(φ−w5)
dpρ

< 1.

Theorem 3.3. Ya
1 is locally asymptotically stable if hr2 > 0, τ(φ−w5)

dpρ
< 1, and Ra

0 > 1 (near 1).

Now, we investigate the stability condition of Yb
0. The Jacobian matrix of system (2.1) at Yb

0 is

JYb
0
=



−dh 0 0 θts 0 0 −w1βchS b∗
h 0 0

0 −w2 0 0 0 0 w1βchS b∗
h 0 0

0 θei −w3 0 0 0 0 0 0
0 θet θit −w4 0 0 0 0 0
0 0 0 0 −

dpρ

τ
φ − ρS b∗

v 0 −βmvS b∗
v −ξS b∗

v

0 0 0 0 0 −(w5 + ρS b∗
v + ξP

b∗) 0 βmvS b∗
v 0

0 0 0 0 0 σ −dc 0 0
0 0 w6 0 0 0 0 −dm 0
0 0 0 0 τPb∗ τPb∗ 0 0 0


. (3.6)

The eigenvalues of (3.6) are the zeros of B(λ).

B(λ) = (λ + dh)(λ + w4)B1(λ), (3.7)
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where B1(λ) = λ7 + b1λ
6 + b2λ

5 + b3λ
4 + b4λ

3 + b5λ
2 + b6λ + b7 and

b1 =
dpρ

τ
+ q1,

b2 = τPb∗ξS b∗
v + q1

dpρ

τ
+ q2,

b3 = τPb∗ξS b∗
v q1 +

dpρ

τ
q2 + q3,

b4 = τPb∗ξS b∗
v q2 +

dpρ

τ
q3 + q4,

b5 = q3τPb∗ξS b∗
v +

dpρ

τ
q4 + q5 − w1βchS b∗

h θeiw6σβmvS b∗
v

= q3τPb∗ξS b∗
v +

dpρ

τ
q4 +

(
1 −

(
Rb

0

)2
)

q5,

b6 = q4τPb∗ξS b∗
v + q5

dpρ

τ
− w1βchS b∗

h θeiw6σβmvS b∗
v

dpρ

τ

= q4τPb∗ξS b∗
v +

(
1 −

(
Rb

0

)2
)

q5
dpρ

τ
,

b7 = q5τPb∗ξS b∗
v − w1βchS b∗

h θeiw6σβmvS b∗
v τP

b∗ξS b∗
v

=

(
1 −

(
Rb

0

)2
)

q5τPb∗ξS b∗
v ,

q1 =
5∑

i=1
K(0b)

i , q4 =
5∑

1≤i...<m
K(0b)

i K(0b)
j K(0b)

k K(0b)
m ,

q2 =
5∑

1≤i< j
K(0b)

i K(0b)
j , q5 = w2w3dm(w5 + ρS b∗

v + ξP
b∗)dc.

q3 =
5∑

1≤i< j<k
K(0b)

i K(0b)
j K(0b)

k ,

K(0b)
1 = w2,K

(0b)
2 = w3,K

(0b)
3 = (w5 + ρS b∗

v + ξP
b∗),K(0b)

4 = dc, and K(0b)
5 = dm. Noticeably, polynomial

(3.7) has two negative roots, i.e., λ1 = −dh and λ2 = −w4. The other roots of polynomial (3.7) are zeros
of B1(λ). It is easy to see that bi > 0 for i = 1, 2, 3, 4. Additionally, b5 > 0, b6 > 0 and b7 > if Rb

0 < 1.
It is easily recognized that b7 = 0 if Rb

0 = 1. Hence, if Rb
0 = 1 then one eigenvalue of matrix (3.6) is

zero. Now, we use Routh’s Table [36] to analyze the local stability condition of Yb
0.

Table 4. Routh’s array associated to B1(λ).

Column 1 Column 2 Column 3 Column 4 Column 5
λ7 1 b2 b4 b6 0
λ6 b1 b3 b5 b7 0
λ5 hs1 =

b1b2−b3
h1

hs2 =
b1b4−b5

b1
hs3 =

b6b1−b7
b1

0 0
λ4 hs4 =

hs1b3−b1hs2
hs1

hs5 =
hs1b5−b1hs3

hs1
b7 0 0

λ3 hs6 =
hs2hs4−hs1hs5

hs4
hs7 =

hs3hs4−hs1b7
hs4

0 0 0
λ2 hs8 =

hs5hs6−hs4hs7
hs6

b7 0 0 0
λ1 hs9 =

hs7hs8−hs6b7
hs8

0 0 0 0
λ0 b7 0 0 0 0

It is clear that b1 > 0. According to the Routh-Hurwitz criteria [36, 37], all roots of B1(λ) have
negative real parts if all entries in column 1 of Table 4 have the same sign. We recognize that hs1 is
always positive. It is obvious that b7 > 0 if Rb

0 < 1. Hence, all eigenvalues of (3.6) have negative real
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part if hs4 > 0, hs6 > 0, hs8 > 0, hs9 > 0, and Rb
0 < 1. Notice that b7 < 0 if Rb

0 > 1. Hence, if Rb
0 > 1

then Yb
0 is ustable.

Theorem 3.4. Yb
0 is locally asymptotically stable if hs4 > 0, hs6 > 0, hs8 > 0, hs9 > 0, and Rb

0 < 1. If
Rb

0 > 1, then Yb
0 is unstable.

We utilize center manifold theory [38] to investigate the local stability condition of Yb
1. It is shown

that if Rb
0 = 1 then matrix (3.6) has one zero eigenvalue. Let us pick βmv as bifurcation parameter.

We determine the bifurcation point when Rb
0 = 1 and obtain βb∗

mv =
dmdhdcw3w2(w5+ρNb

v+ξP
b∗)

Nb
v w6θeiw1βchσΩh

. Clearly, the

characteristic polynomial of JYb
0

(
βb∗

mv

)
is obtained by substituting βb∗

mv into (3.7). Hence we get (3.8) as

a characteristic polynomial of JYb
0

(
βb∗

mv

)
.

B(1b)(λ) = (λ + dh)(λ + w4)λB(1b)
1 (λ), (3.8)

where B(1b)
1 (λ) = λ6 + b(1b)

1 λ
5 + b(1b)

2 λ
4 + b(1b)

3 λ
3 + b(1b)

4 λ
2 + b(1b)

5 λ + b(1b)
6 and

b(1b)
1 =

dpρ

τ
+ q(1b)

1 , b(1b)
2 = τPb∗ξS b∗

v + q(1b)
1

dpρ

τ
+ q(1b)

2 ,

b(1b)
3 = τPb∗ξS b∗

v q(1b)
1 +

dpρ

τ
q(1b)

2 + q(1b)
3 , b(1b)

4 = τPb∗ξS b∗
v q(1b)

2 +
dpρ

τ
q(1b)

3 + q(1b)
4 ,

b(1b)
5 = τPb∗ξS b∗

v q(1b)
3 +

dpρ

τ
q(1b)

4 , b(1b)
6 = τPb∗ξS b∗

v q(1b)
4 ,

q(1b)
1 =

5∑
i=1

K(1b)
i , q(1b)

2 =
5∑

1≤i< j
K(1b)

i K(1b)
j ,

q(1b)
3 =

5∑
1≤i< j<k

K(1b)
i K(1b)

j K(1b)
k , q(1b)

4 =
5∑

1≤i<...<m
K(1b)

i K(1b)
j K(1b)

k K(1b)
m ,

K(1b)
1 = w2,K

(1b)
2 = w3,K

(1b)
3 = w5 + ρS b∗

v + τP
b∗,K(1b)

4 = dc, and K(1b)
5 = dm. Thus, JYb

0

(
βb∗

mv

)
has one

zero eigenvalue and two negative eigenvalues, i.e., −dh and −w4. The sign of the other roots of (3.8) is
studied by investigating the sign of the roots of polynomial B(1b)

1 (λ). Hence, we utilize Routh-Hurwitz
test.

Table 5. Routh’s array associated to B(1b)
1 (λ).

Column 1 Column 2 Column 3 Column 4 Column 5
λ6 1 b(1b)

2 b(1b)
4 b(1b)

6 0
λ5 b(1b)

1 b(1b)
3 b(1b)

5 0 0

λ4 ht1 =
b(1b)

1 b(1b)
2 −b(1b)

3

b(1b)
1

ht2 =
b(1b)

1 b(1b)
4 −b(1b)

5

b(1b)
1

b(1b)
6 0 0

λ3 ht3 =
ht1b(1b)

3 −b(1b)
1 ht2

ht1
ht4 =

ht1b(1b)
5 −b(1b)

1 b(1b)
6

ht1
0 0 0

λ2 ht5 =
ht2ht3−ht1ht4

ht3
b(1b)

6 0 0 0

λ1 ht6 =
ht4ht5−ht3b(1b)

6
ht5

0 0 0 0
λ0 b(1b)

6 0 0 0 0

According to Routh-Hurwitz condition [36, 37], all roots of B(1b)
1 (λ) have negative real part if ht1,

ht3, ht5 and ht6 are positive, since the other entries in column 1 of Table 5 are positive, i.e., b(1b)
1 > 0
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and b(1b)
6 > 0. Consequently, JYb

0

(
βb∗

mv

)
has a zero eigenvalue and the other eigenvalues have negative

real part if ht1 > 0, ht3 > 0, ht5 > 0 and ht6 > 0. Therefore, we now investigate the left and the
right eigenvector of JYb

0

(
βb∗

mv

)
corresponding to zero eigenvalue. The right eigenvector of JYb

0

(
βb∗

mv

)
corresponding to zero eigenvalue is as follows:

m⃗ =



m1

m2

m3

m4

m5

m6

m7

m8

m9


=



σβb∗
mvS b∗

v w1βchS b∗
h

dc(w5+ρS b∗
v +ξPb∗)dh

(
θts(θetw3+θitθei)−w4w3w2

w2w4w3

)
m8

A3σβ
b∗
mvS b∗

v

w2dc(w5+ρS b∗
v +ξPb∗)

m8
θeiw1βchS b∗

h σβ
b∗
mvS b∗

v

w3w2dc(w5+ρS b∗
v +ξPb∗)

m8
w1βchS b∗

h σβ
b∗
mvS b∗

v (θetw3+θitθei)
w2dc(w5+ρS b∗

v +ξPb∗)w4w3
m8

−βb∗
mvS b∗

v

(w5+ρS b∗
v +ξPb∗)

m8
βb∗

mvS b∗
v

(w5+ρS b∗
v +ξPb∗)

m8
σβb∗

mvS b∗
v

dc(w5+ρS b∗
v +ξPb∗)

m8

m8

0



,

where m8 is arbitrarily positive. It is not difficult to show that m1 < 0, m5 < 0 and mi > 0 for
i = 2, 3, 4, 6, 7. The left eigenvector of JYb

0

(
βb∗

mv

)
corresponding to zero eigenvalue is

h⃗ = (h1, h2, h3, h4, h5, h6, h7, h8, h9), where h1 = h4 = h5 = h9 = 0, h2 =
θeiw6β

b∗
mvS b∗

v
w2w3dm

h6, h3 =
w6β

b∗
mvS b∗

v
w3dm

h6,

h7 =
w1βchS b∗

h θeiw6β
b∗
mvS b∗

v

dcw2w3dm
h6, h8 =

βb∗
mvS b∗

v
dm

h6, and h6 is chosen, such that h⃗.m⃗ = 1. It is easy to show that
h6 > 0. Obviously, h j > 0 for j = 2, 3, 7, 8.

Suppose x1 = S h, x2 = Eh, x3 = Ih, x4 = Th, x5 = S v, x6 = Iv, x7 = C, x8 = M, x9 = P and fi =
dxi
dt for

i = 1...9. Now, we compute a and b, where

a =
9∑

l,i, j=1
hlmim j

∂2 fl(Yb
0,β

b∗
mv)

∂xi∂x j
, b =

9∑
l,i=1

hlmi
∂2 fl(Yb

0,β
b∗
mv)

∂xi∂βmv
.

The only non-zero terms of a and b are

h2m1m6
∂2 f2(Yb

0,β
b∗
mv)

∂x1∂x6
= h2m1m6βch < 0, h2m6m1

∂2 f2(Yb
0,β

b∗
mv)

∂x6∂x1
= h2m6m1βch < 0,

h6m5m8
∂2 f6(Yb

0,β
b∗
mv)

∂x5∂x8
= h6m5m8β

b∗
mv > 0, h6m8m5

∂2 f6(Yb
0,β

b∗
mv)

∂x8∂x5
= h6m8m5β

b∗
mv > 0,

h6m5m6
∂2 f6(Yb

0,β
b∗
mv)

∂x5∂x6
= −h6m5m6ρ < 0, h6m6m5

∂2 f6(Yb
0,β

b∗
mv)

∂x6∂x5
= −h6m6m5ρ < 0,

h6m6m6
∂2 f6(Yb

0,β
b∗
mv)

∂x6∂x6
= −h6m6m6ρ < 0, h6m8

∂2 f6(Yb
0,β

b∗
mv)

∂x8∂βmv
= h6m8S b∗

v > 0.

Since m1 < 0, we obtain

a = h2m1m6
∂2 f2(Yb

0,β
b∗
mv)

∂x1∂x6
+ h2m6m1

∂2 f2(Yb
0,β

b∗
mv)

∂x6∂x1
+ h6m5m8

∂2 f6(Yb
0,β

b∗
mv)

∂x5∂x8
+ h6m8m5

∂2 f6(Yb
0,β

b∗
mv)

∂x8∂x5
+ h6m5m6

∂2 f6(Yb
0,β

b∗
mv)

∂x5∂x6

+h6m6m5
∂2 f6(Yb

0,β
b∗
mv)

∂x6∂x5
+ 2h6m6m6

∂2 f6(Yb
0,β

b∗
mv)

∂x6∂x6

= 2
(
βchh2m1m6 −

h6m2
8β

b∗
mvS b∗

v β
b∗
mv(w5+ρS b∗

v +ξP
b∗)

(w5+ρS b∗
v +ξPb∗)2

)
< 0,

b = h6m8
∂2 f6(Yb

0,β
b∗
mv)

∂x8∂βmv
= h6m8S b∗

v > 0.

Based on Theorem 4.1 in [38], forward bifurcation occurs at Rb
0 = 1. Hence, the endemic equilibrium

point Yb
1 is locally asymptotically stable if Rb

0 > 1, ht1 > 0, ht3 > 0, ht5 > 0 and ht6 > 0.
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Theorem 3.5. Yb
1 is locally asymptotically stable if ht1 > 0, ht3 > 0, ht5 > 0, ht6 > 0 and Rb

0 > 1 (near
1).

3.2. Global stability

To investigate the global behavior of system (2.1), we use the theory of asymptotically autonomous
systems [39, 40], i.e., by studying the limiting systems related to system (2.1). Diaby et al. [41] used
this theory to study the dynamics of schistosomiasis model. Since S v + Iv = Nv, system (2.1) is
equivalent to the following system.

dS h
dt = Ωh − w1βchCS h + θtsTh − dhS h

dEh
dt = w1βchCS h − w2Eh

dIh
dt = θeiEh − w3Ih
dTh
dt = θetEh + θitIh − w4Th

dIv
dt = βmvM (Nv − Iv) − w5Iv − ρIvNv − ξPIv
dC
dt = σIv − dcC
dM
dt = w6Ih − dmM

dNv
dt = (φ − w5)Nv − ρN2

v − ξNvP,
dP
dt = τPNv − dpP.

(3.9)

As mentioned in [42], global stability can be used as the basis for formulating a limiting system.
Nakata [43] studied the global dynamics of the total populations, though before constructing a limiting
system. Here, we consider studying the global dynamics of snail and snail predator populations before
we construct the limiting systems of (3.9), we examine the global behavior of the system formed by
the last two equations of (3.9), i.e., system (3.10).

dNv
dt = (φ − w5)Nv − ρN2

v − ξNvP,
dP
dt = τPNv − dpP.

(3.10)

The equilibrium points of system (3.10) are P0 = (0, 0), which always exists, P1 = (Na
v , 0) =(

φ−w5
ρ
, 0

)
which exists if φw5

> 1, and P1 = (Nb
v , P

b∗) =
( dp

τ
,
τ(φ−w5)−ρdp

ξτ

)
, which exists if τ(φ−w5)

dpρ
> 1.

Obviously, P0 and P2 represent the situation in which both snail and snail predator populations
become extinct and survive, respectively. In addition, the condition in which the snail population
survives but the snail predator population becomes extinct is denoted by P1. We now present the
stability condition of the equilibrium points of the system (3.10).

Theorem 3.6. (i). P0 is global asymptotically stable if φw5
< 1.

(ii). P1 is global asymptotically stable if τ(φ−w5)
dpρ

< 1.

(iii). P2 is global asymptotically stable if it exists.

Proof. (i). First, we prove the stability condition of P0. We define the following Lyapunov function.

V =
τ

ξ
Nv + P.
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The derivative of V with respect to t is given by

dV
dt = τ

ξ

(
(φ − w5)Nv − ρN2

v − ξNvP
)
+

(
τPNv − dpP

)
= τ

ξ
(φ − w5)Nv −

τ
ξ
ρN2

v − dpP
≤ τ

ξ
(φ − w5)Nv − dpP.

It is easy to see that dV
dt ≤ 0 if φ − w5 < 0. Furthermore, dV

dt = 0 if and only if Nv = 0 and P = 0.
Thus, P0 is global asymptotically stable if φw5

< 1.

(ii). Now, we prove the stability condition of P1. Consider the following Lyapunov function.

L =
τ

ξ

(
Nv − Na

v − Na
v ln

Nv

Na
v

)
+ P.

The time derivative of L is given by

dL
dt = τ

ξ

(Nv−Na
v )

Nv

(
(φ − w5)Nv − ρN2

v − ξNvP
)
+

(
τPNv − dpP

)
= τ

ξ

(
Nv − Na

v
) (
ρ
(
Na

v − Nv
)
− ξP

)
+

(
τPNv − dpP

)
= −

ρτ

ξ

(
Nv − Na

v
)2
+ dp

(
τNa

v
dp − 1

)
P.

Clearly, dL
dt ≤ 0 if τN

a
v

dp
< 1. Furthermore, dL

dt = 0 if and only if (Nv, P) = (Na
v , 0). Thus, P1 is

global asymptotically stable if τN
a
v

dp
=
τ(φ−w5)

dpρ
< 1.

(iii). We now prove the stability condition of P2. Consider the following Lyapunov function.

M =
τ

ξ

(
Nv − Nb

v − Nb
v ln

Nv

Nb
v

)
+

(
P − Pb∗ − Pb∗ ln

P
Pb∗

)
.

The time derivative of M is given by

dM
dt = τ

ξ

(Nv−Nb
v )

Nv

(
(φ − w5)Nv − ρN2

v − ξNvP
)
+

(P−Pb∗)
P

(
τPNv − dpP

)
= τ

ξ
(Nv − Nb

v ) ((φ − w5) − ρNv − ξP) + (P − Pb∗)
(
τNv − dp

)
.

From the equilibrium P2, we have τNb
v = dp and φ − w5 = ξPb∗ +

ρdp

τ
. Hence, we obtain

dM
dt = τ

ξ
(Nv − Nb

v )
(
ξPb∗ +

ρdp

τ
− ρNv − ξP

)
+ (P − Pb∗)

(
τNv − τNb

v

)
= τ

ξ
(Nv − Nb

v )
(
ρ
(
Nb

v − Nv

)
− ξ

(
P − Pb∗

))
+ (P − Pb∗)τ

(
uNv − Nb

v

)
= −

τρ

ξ
(Nv − Nb

v )2 ≤ 0.

It is clear that dM
dt = 0 if and only if Nv = Nb

v . Substituting Nb
v into system (3.10) shows that

P = Pb∗. Thus, P2 is global asymptotically stable if it exists.
□

According to [40], we can investigate the dynamics of Systems (2.1) and (3.9) by studying the
dynamics of the limiting systems. Based on the global behavior of the equilibrium points of
System (3.10), we divide the process into three parts. In this paper, System (3.9) is called an
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asymptotically autonomous system with limit Systems (3.11)–(3.13). Theorem 3.6 (i) guarantees that
as t → ∞, (Nv, P) → (0, 0) if φ

w5
< 1. Notice that S v + Iv = Nv = 0 implies that S v = 0 and Iv = 0.

Hence, we obtain the following limiting system of (3.9).

dS h
dt = Ωh − w1βchCS h + θtsTh − dhS h

dEh
dt = w1βchCS h − w2Eh

dIh
dt = θeiEh − w3Ih
dTh
dt = θetEh + θitIh − w4Th

dC
dt = −dcC
dM
dt = w6Ih − dmM.

(3.11)

We now investigate the stability condition of the equilibrium point of limiting system (3.11), namely
Y0 =

(
S ∗0h , E

∗0
h , I

∗0
h ,T

∗0
h ,C

∗0,M∗0
)
=

(
Ωh
dh
, 0, 0, 0, 0, 0

)
.

Theorem 3.7. Y0 is global asymptotically stable.

Proof. We define the following Lyapunov function.

U =

(
S h − S ∗0h − S ∗0h ln S h

S ∗0h

)
+ Eh +

w2
θei

Ih +
w1βchS ∗0h

dc
C + w3w2

θeiw6
M.

The derivative of U with respect to t is given as follows:

dU
dt =

(
S h−S ∗0h

S h

)
(Ωh − w1βchCS h + θtsTh − dhS h) + (w1βchCS h − w2Eh)

+w2
θei

(θeiEh − w3Ih) + w1βchS ∗0h
dc

(−dcC) + w3w2
θeiw6

(w6Ih − dmM) ,

=

(
S h−S ∗0h

S h

)
(Ωh + θtsTh − dhS h) .

From the equilibrium point Y0, we have Ωh = dhS ∗0h . Thus, we obtain

dU
dt = − dh

S h

(
S h − S ∗0h

)2
+

(
S h−S ∗0h

S h

)
θtsTh.

Since S h ≤
Ωh
dh
= S ∗0h , we conclude that dU

dt ≤ 0. Further, dU
dt = 0 if and only if dU

dt is evaluated at Y0.
Therefore, Y0 is global asymptotically stable. □

Theorem 3.6 (ii) assures that (Nv, P)→ (Na
v , 0) as t → ∞ if τ(φ−w5)

dpρ
< 1. Thus, we have the following

limiting system of (3.9).
dS h
dt = Ωh − w1βchCS h + θtsTh − dhS h

dEh
dt = w1βchCS h − w2Eh

dIh
dt = θeiEh − w3Ih
dTh
dt = θetEh + θitIh − w4Th

dIv
dt = βmvM

(
Na

v − Iv
)
− w5Iv − ρIvNa

v
dC
dt = σIv − dcC
dM
dt = w6Ih − dmM.

(3.12)

We now investigate the global stability condition of the equilibrium point of System (3.12), i.e., Y a
0 =

(S a∗
h , E

a∗
h , I

a∗
h ,T

a∗
h , I

a∗
v ,C

a∗,Ma∗) =
(
Ωh
dh
, 0, 0, 0, 0, 0, 0

)
.
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Theorem 3.8. Y a
0 is global asymptotically stable if Ra

0 ≤ 1.

Proof. Consider the following Lyapunov function:

Z = z1

(
S h − S a∗

h − S a∗
h ln

S h

S a∗
h

)
+ z2Eh + z3Ih + z4Th + z5Iv + z6C + z7M,

where

z1 = z2 =
dc(w5+ρNa

v )
w1βchS a∗

h σ
, z3 = (1 − (Ra

0)2)
(

(w5+ρNa
v )w3w2θit

w1βchS a∗
h σ(w3θet+θitθei)

+
βmvNa∗

v w6
dm

)
,

z4 = (1 − (Ra
0)2) (w5+ρNa

v )w3w2

w1βchS a∗
h σ(w3θet+θitθei)

, z5 = 1,

z6 =
ρNa

v+w5
σ
, z7 =

βmvNa
v

dm
.

The time derivative of Z is

dZ
dt
≤

z1

S h

(
S h − S a∗

h
)

(Ωh − dhS h) + z1

(
S h − S a∗

h

S h

)
θtsTh − z4w4Th.

From the equilibrium point Y a
0 , we have Ωh = dhS a∗

h . Hence, we obtain

dZ
dt ≤ −

z1dh
S h

(
S h − S a∗

h

)2
+ z1

(S h−S a∗
h

S h

)
θtsTh − z4w4Th.

Certainly, S h ≤ S a∗
h . Hence, it is easy to see that dZ

dt ≤ 0 if Ra
0 ≤ 1. Notice that dZ

dt = 0 if and only
if S h = S a∗

h which implies that Eh = Ih = Th = 0. Hence, the largest invariant set contained in{
(S h, Eh, Ih,Th, Iv,C,M)|dZ

dt = 0
}

is a singleton set
{
Y a

0

}
. Therefore, Y a

0 is global asymptotically stable
if Ra

0 ≤ 1. □

Theorem 3.6 (iii) ensures that (Nv, P) → (Nb
v , P

b∗) as t → ∞ if τ(φ−w5)
dpρ

> 1. Thus, we have the
following limiting system of (3.9).

dS h
dt = Ωh − w1βchCS h + θtsTh − dhS h

dEh
dt = w1βchCS h − w2Eh

dIh
dt = θeiEh − w3Ih
dTh
dt = θetEh + θitIh − w4Th

dIv
dt = βmvM

(
Nb

v − Iv

)
− w5Iv − ρIvNb

v − ξIvPb∗

dC
dt = σIv − dcC
dM
dt = w6Ih − dmM.

(3.13)

Next, we determine the global stability condition of the equilibrium point of system (3.13), i.e., Y b
0 =

(S b∗
h , E

b∗
h , I

b∗
h ,T

b∗
h , I

b∗
v ,C

b∗,Mb∗) =
(
Ωh
dh
, 0, 0, 0, 0, 0, 0

)
.

Theorem 3.9. Y b
0 is global asymptotically stable if Rb

0 ≤ 1.

Proof. Consider the Lyapunov function as follows:

Z = Z1

(
S h − S b∗

h − S b∗
h ln

S h

S b∗
h

)
+Z2Eh +Z3Ih +Z4Th +Z5Iv +Z6C + z7M,
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where

Z1 = Z2 =
dc(w5+ρNb

v+ξP
b∗)

w1βchS b∗
h σ

, Z3 = (1 − (Rb
0)2)

(
(w5+ρNb

v+ξP
b∗)w3w2θit

w1βchS b∗
h σ(w3θet+θitθei)

+
βmvNb

v w6
dm

)
,

Z4 = (1 − (Rb
0)2) (w5+ρNb

v+ξP
b∗)w3w2

w1βchS b∗
h σ(w3θet+θitθei)

, Z5 = 1,

Z6 =
w5+ρNb

v+ξP
b∗

σ
, Z7 =

βmvNb
v

dm
.

The time derivative of Z is

dZ

dt
≤

Z1

S h

(
S h − S b∗

h

)
(Ωh − dhS h) +Z1

(
S h − S b∗

h

S h

)
θtsTh −Z4w4Th.

From the equilibrium point Y b
0 , we have Ωh = dhS b∗

h . Hence, we obtain

dZ
dt ≤ −

Z1dh
S h

(
S h − S b∗

h

)2
+Z1

(
S h−S b∗

h
S h

)
θtsTh −Z4w4Th.

Obviously, S h ≤ S b∗
h . Hence, it is easy to see that dZ

dt ≤ 0 if Rb
0 ≤ 1. Notice that dZ

dt = 0 if and
only if S h = S b∗

h which implies that Eh = Ih = Th = 0. Hence, the largest invariant set contained in{
(S h, Eh, Ih,Th, Iv,C,M)|dZ

dt = 0
}

is a singleton set
{
Y b

0

}
. Hence, Y b

0 is global asymptotically stable if
Rb

0 ≤ 1. □

Remark Y0 of system (3.11) is qualitatively equivalent to the equilibrium Y0 of system (2.1) when
φ

w5
< 1. Hence, we conclude that Y0 is globally asymptotically stable if φw5

< 1, since Y0 is globally
asymptotically stable if φ

w5
< 1. This result suggests that when the snail and the snail predator

populations become extinct, provided by φ

w5
< 1, schistosomiasis will be eradicated.

Y a
0 is qualitatively equivalent to the equilibrium Ya

0 of system (2.1) if τ(φ−w5)
dpρ

< 1. Thus, Ya
0 is

globally asymptotically stable if Ra
0 ≤ 1 and τ(φ−w5)

dpρ
< 1, since Y a

0 of is globally asymptotically stable
if Ra

0 ≤ 1. This result indicates that when the snail population survives and the population of snail
predators becomes extinct, provided by τ(φ−w5)

ρdp
< 1, schistosomiasis will be successfully eradicated if

Ra
0 ≤ 1.
Y b

0 is qualitatively equivalent to the equilibrium point of system (2.1), i.e., Yb
0 if τ(φ−w5)

dpρ
> 1. Thus,

Yb
0 is globally asymptotically stable if Rb

0 ≤ 1 and τ(φ−w5)
dpρ

> 1, since Y b
0 is globally asymptotically

stable if Rb
0 ≤ 1. This result implies that when both snail and snail predator populations survive,

provided by τ(φ−w5)
ρdp

> 1, the disease will die out if Rb
0 ≤ 1.

4. Numerical simulations

We conduct numerical simulations for system (2.1) to validate and support the previous theoretical
results. The numerical simulations are performed by using parameter values given in Table 6.
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Table 6. Parameter values.
Par. Definition Value Units Source
Ωh Recruitment rate of humans 1000×1%

365 human× day−1 Assumed
βch Cercariae infection rate on humans 1.914 × 10−5 cercariae−1×day−1 [22]
ϕe The effectiveness of health education 0.9 Assumed
ϕ Education coverage 0.9 Assumed
θit Average waiting time for infectious humans to receive treatment−1 1

1×4×7 day−1 Assumed
θet Average waiting time of exposed humans to receive treatment−1 1

3×4×7 day−1 Assumed
θts Average treatment time−1 1 day−1 Assumed
dh Natural death rate of humans 1

365×65 day−1 [23]
θei Average latent period−1 1

6×7 day−1 [23]
φ Birth rate of snail 0.4 day−1 Assumed
dv Natural death rate of snail 5.69 × 10−4 day−1 [23]
dr Molluscicide induced death rate of snail 0.0001 day−1 Assumed
ξ Predation rate 0.01 predator−1× day−1 Assumed
ρ Competition rate of snail 0.01 snail−1×day−1 Assumed
σ Cercariae production rate 200 cercariae× snail−1× day−1 [7]
α Schistosoma egg hatch rate 0.01 miracidia× egg−1 [22]
hh The number of Schistosoma eggs per ml urine 5 eggs× ml−1 Assumed
gh The average volume of human urine per day 800 ml× human−1× day−1 Assumed
dp Natural death rate of snail predator 1

2×12×4×7 day−1 Assumed
dc Natural death rate of cercariae 1 day−1 [22]
dm Natural death rate of miracidia 2 day−1 [22]

4.1. Snail and snail predator go to extinction

(a)

Y0

Figure 2. (a) Solution curve and (b) phase portrait (Ih, Iv, P) for φ

dv+dr
< 1.

We perform numerical simulation using parameter values given in Table 6 and τ = 0.00001. We set
dr = 0.8, which indicates the high use of molluscicides. These parameter values yield φ

dv+dr
= 0.4996 <

1. Based on Theorem 3.1, Y0 is locally asymptotically stable. This result is the same as the numerical
simulation result shown in Figure 2.

Figure 2(a) shows that snail and snail predator populations lead to zero. It suggests that both
populations go to extinction. Furthermore, the infectious human population tends to zero. It indicates
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that the disease will be eradicated. This result is also supported by the phase portrait displayed in
Figure 2(b). Notice that all solution trajectories are towards Y0.

Therefore, the use of molluscicides on a large scale has both positive and negative impacts. This
kind of intervention can suppress the spread of schistosomiasis, but it can disrupt the environmental
balance, e.g., snail predators may become extinct.

4.2. Snail survives but snail predator goes to extinction

Now, we present the second numerical simulation results. The parameter values used are presented
in Table 6 with τ = 0.00001, which gives φ

dv+dr
= 6.9084 × 102 > 1 and τ(φ−w5)

ρdp
= 0.2684 < 1. Thus,

the snail population survives, but the snail predator goes to extinction. Moreover, we get a bifurcation
point for βmv, i.e., βa∗

mv = 5.6887 × 10−5 which corresponds to Ra
0 = 1 and hr2 = 1.8276 > 0. Using

βmv = 5.6887 × 10−6 < βa∗
mv implies Ra

0 = 0.3162 < 1, hz3 = 1.8280 > 0, and hz4 = 0.1143 > 0.
Based on Theorem 3.2, Ya

0 is asymptotically stable. The numerical simulation result is shown in
Figure 3(a). If we set βmv = 5.6887 × 10−4 > βa∗

mv, we get Ra
0 = 3.1626 > 1. Based on Theorem 3.3,

Ya
1 is asymptotically stable. The numerical simulation result can be seen in Figure 3(b). Figure 3(a)

(a) (b)

Y0
a

Y0
a

Y1
a

Figure 3. Solution curve for (a) Ra
0 < 1 and (b) Ra

0 > 1. Three dimensional phase portrait
(Ih, Iv, P) for (c) τ(φ−w5)

ρdp
< 1, Ra

0 < 1 and (d) τ(φ−w5)
ρdp

< 1, Ra
0 > 1.

shows that the disease will be eradicated. On the other hand, Figure 3(b) shows that the disease will be
endemic. Furthermore, the snail population does not tend to zero, while the predator population tends
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to zero. These results tell us that we can eradicate schistosomiasis even though the snail population is
extant.

Figure 3(c) displays a phase portrait of system (2.1) when φ

dv+dr
= 6.9084 × 102 > 1, τ(φ−w5)

ρdp
=

0.2684 < 1, and Ra
0 = 0.3162 < 1. It is clear that all solution trajectories tend to the equilibrium point

Ya
0. Notice that Ya

1 does not exist. On the other hand, when Ra
0 = 3.1626 > 1, the equilibrium point Ya

1
exists, and all solution trajectories go to Ya

1 as illustrated in Figure 3(d).

4.3. Snail and snail predator survive

Now, we present the third numerical simulation result. The parameter values used are presented
in Table 6, and τ = 0.0001, which gives τ(φ−w5)

ρdp
= 2.6841 > 1, βb∗

mv = 1.5265 × 10−4. Substituting
βmv = 1.5265 × 10−5 < βb∗

mv gives Rb
0 = 0.3162 < 1, hs4 = 2.2101 > 0, hs6 = 0.4636 > 0, hs8 =

0.0263 >, and hs9 = 0.0003 > 0. Based on Theorem 3.4, Yb
0 is asymptotically stable. This result is

confirmed by Figure 4(a). If we use βmv = 1.5265 × 10−4 = βb∗
mv, we get Rb

0 = 1, ht1 = 5.1379 > 0,
ht3 = 1.1616 > 0, ht5 = 0.1338 > 0, and ht6 = 0.0071 > 0. Furthermore, Rb

0 = 3.1622 > 1 is
obtained if we set βmv = 1.5265 × 10−3 > βb∗

mv. Theorem 3.5 states that Yb
1 is locally asymptotically

stable. This result is similar to the numerical simulation result shown in Figure 4(b). Figure 4(a) shows

(a) (b)

Y0
a

Y1
aY0

b

Y0
a

Y1
a

Y0
b

Y1
b

Figure 4. Numerical solution for (a) Rb
0 < 1 and (b) Rb

0 > 1. Three dimensional phase portrait
(Ih, Iv, P) for (c) τ(φ−w5)

ρdp
> 1, Rb

0 < 1 and (d) τ(φ−w5)
ρdp

> 1, Rb
0 > 1.

that the disease will be eradicated. Nevertheless, Figure 4(b) shows that the disease will be endemic.
Furthermore, the snail and its predator population do not tend to zero. These results tell us that we can

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13799–13828.



13823

eradicate schistosomiasis even though the snail and snail predator populations are extant.
Figure 4(c) illustrates the phase portrait of the system (1) when τ(φ−w5)

ρdp
= 2.6841 > 1 and Rb

0 =

0.3162 < 1. We can notice that the equilibrium points Ya
0, Yb

0, and Ya
1 exist while Yb

1 does not exist.
It can be seen that all solution trajectories tend to the equilibrium point Yb

0. Otherwise, when Rb
0 =

3.1622 > 1, Ya
0, Yb

0, Ya
1 and Yb

1 exist. However, it can be witnessed, from Figure 4(d), that all solution
trajectories go to Yb

1.

4.4. Effect of control measures

In this section, we investigate the effect of control measures, i.e., θet, ρ,τ and ξ, on schistosomiasis
spread dynamics. The parameter values used are listed in Table 6 with τ = 0.0001 and βmv = 1.5265 ×
10−3. After performing numerical simulations, we obtained the following results.

(a) (b)

(c) (d)

Figure 5. Solution curves with varying (a) θet, (b) ρ, (c) τ and (d) ξ.

We firstly studied the impact of the average waiting time of a latent human to get treatment on
schistosomiasis prevalence. θet is varied. The results are shown in Figure 5(a). The figure shows
that the prevalence of schistosomiasis decreases as the average waiting time (1/θet) decreases. In
addition, the basic reproduction numbers (Rb

0) obtained are 3.3988, 3.1624 and 2.4300 for θet = 0.0071,
θet = 0.0119 and θet = 0.0357, respectively. It is clear that the basic reproduction number decreases as
θet increases. Agbata et al. [44] stated that a screening program could increase the possibility of early
detection and treatment. Hence, we can increase θet by implementing a screening program followed by
early treatment. Therefore, our result shows that a screening program followed by early treatment can
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reduce the prevalence of schistosomiasis.
Figure 5(b) shows the effect of habitat modification on the spread of schistosomiasis. We varied ρ

while the other parameter values are fixed as given in Table 6, τ = 0.0001 and βmv = 1.5265×10−3. The
basic reproduction numbers (Rb

0) gained is 3.1622 for ρ = 0.001, ρ = 0.01 and ρ = 0.1. It can be seen
that the number of infectious human at the beginning of intervention decreases as ρ increases. Here,
ρ is the competition rate of the snails. According to [45], habitat change can affect interspecific and
intraspecific competition. It is already known that intraspecific competition is competition of members
of the same species for limited resources. Thus, snail habitat modification, which may increase the
competition rate in the snail population, can reduce the prevalence of schistosomiasis at the beginning
of intervention. Xu et al. [17] also stated that an intervention that can be used to control the spread of
schistosomiasis is snail habitat modification.

Figure 5(c) shows the effects of the conversion rate of snail predators on the dynamics of infectious
humans. We varied τ. The other parameter values are fixed as given in Table 6, and βmv = 1.5265 ×
10−3. It is seen that the number of infectious humans decreases as τ increases. Furthermore, the basic
reproduction values (Rb

0) obtained are 3.1622, 2.5819 and 2.2360 for τ = 0.0001, τ = 0.00015 and
τ = 0.0002, respectively. The conversion rate is related to the birth rate. Therefore, the birth rate of
snail predators has an important role in reducing schistosomiasis cases. This result is similar to the
result given in [27].

Figure 5(d) shows the dynamics of infectious humans with varying ξ. The other parameter values
used are given in Table 6 with βmv = 1.5265 × 10−3 and τ = 0.0001. The basic reproduction number
(Rb

0) obtained is 3.1622 for ξ = 0.001, ξ = 0.005 and ξ = 0.01. The number of infectious humans at
the beginning of the outbreak decreases as ξ increases. Here, ξ is predation rate, which is related to the
proportion of snails killed per predator per time. Thus, releasing snail predators at snail habitats can
reduce the prevalence of schistosomiasis. We recommend using snail predators which can hunt and
kill snails effectively, for example, river prawn [13], to maximize the effect of intervention.

5. Conclusions

A schistosomiasis model with treatment, habitat modification and biological control is discussed
in this work. Our results show that the basic reproduction number is inversely proportional to θet. It
means that a screening program followed by early treatment can reduce the basic reproduction number
and schistosomiasis prevalence. On the other hand, the basic reproduction number is independent of
predation rate and competition rate of the snails. However, modifying the snail habitat and releasing
snail predators at the snail habitat can reduce the prevalence of schistosomiasis at the beginning of
intervention. To maximize this effect, we should use snail predators which can hunt and kill snails
effectively.
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